【文献】
Kobayashi, Motoyasu; Chiba, Takashi; Tsuda, Karin; Takeishi, Makoto,Anionic polymerization of N,N-dialkylacrylamides containing alkoxysilyl groups in the presence of Lewis acids,Journal of Polymer Science, Part A: Polymer Chemistry,2005年,43(13),2754-2764
(58)【調査した分野】(Int.Cl.,DB名)
反応促進剤が臭化リチウム、ヨウ化リチウム、臭化ナトリウム、ヨウ化ナトリウム、臭化四級アルキルアンモニウム、ヨウ化四級アンモニウム、臭化カリウム、及びヨウ化カリウムから選ばれる、請求項3から8のいずれか1項記載の製造方法。
極性溶剤が、アミド化合物、エーテル化合物、ケトン化合物、アルキルニトリル、及びハロゲン化炭化水素化合物から選ばれる少なくとも1つである、請求項3から10のいずれか1項記載の製造方法。
【発明を実施するための形態】
【0012】
以下、本発明について詳細に説明する。
【0013】
上記式(1)において、R
1、R
2及びR
3は、互いに独立に、下記式(a)で示される基である。
【化5】
【0014】
式(a)において、Rは、互いに独立に、置換又は非置換の、炭素数1〜10、好ましくは炭素数1〜8の一価炭化水素基である。該一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基;フェニル基、及びトリル基等のアリール基;ビニル基、及びアリル基等のアルケニル基、及びこれらの基の炭素原子に結合した水素原子の一部または全部が、塩素、フッ素等のハロゲン原子で置換されたハロゲン化アルキル基、ハロゲン化アルケニル基等が挙げられる。中でも、メチル基、エチル基、プロピル基、及びブチル基等のアルキル基が好ましく、特にはメチル基が好ましい。
【0015】
式(a)において、nは0〜20の整数、好ましくは0〜10の整数であり、特に好ましくは、nは0である。R
1、R
2及びR
3は互いに異なっていてよい。好ましくはR
1、R
2及びR
3の全てが同じnの値を有しており、特に好ましくはR
1、R
2及びR
3の全てがR
3SiO−である。
【0016】
上記式(1)において、Qは、置換又は非置換の、炭素数1〜10の二価炭化水素基である。該二価炭化水素基としては、エチレン、1,3−プロピレン、1−メチルプロピレン、1,1−ジメチルプロピレン、2−メチルプロピレン、1,2−ジメチルプロピレン、1,1,2−トリメチルプロピレン、1,4−ブチレン、2−メチル−1,4−ブチレン、2、2−ジメチル−1,4−ブチレン、3−メチル−1,4−ブチレン、2,2−ジメチル−1,4−ブチレン、2,3−ジメチル−1,4−ブチレン、2,2,3−トリメチル−1,4−ブチレン、1,5−ペンチレン、1,6−ヘキサニレン、1,7−ヘプタニレン、1,8−オクタニレン、1,9−ノナニレン、1,10−デカニレン基等の2価の基、及びこれらの基の炭素原子に結合した水素原子の一部または全部が、塩素、フッ素等のハロゲン原子で置換されたハロゲン化アルキレン基等が挙げられる。中でも、プロピレン、2−メチルプロピレン、1,4−ブチレン、3−メチル−1,4−ブチレンが好ましく、最も好ましいのは1,3−プロピレンである。
【0017】
上記式(1)において、Aは下記式(2)または(3)で示される基である。
【化6】
【化7】
式(2)において、R
cは炭素数1〜10のアルキル基である。式(3)において、p
1及びp
2は、p
1+p
2=3〜10を満たす正の整数である。Zはラジカル重合性基である。
【0018】
上記式(2)において、R
Cは好ましくは炭素数4〜7のアルキル基である。該アルキル基は、直鎖、分岐または環状構造のいずれを有していてもよい。該アルキル基としては、メチル基、エチル基、プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、i−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基が挙げられる。中でも、入手容易性及び取り扱い易さから、n−ブチル基、n−ヘキシル基、シクロペンチル基、及びシクロヘキシル基が好ましい。
【0019】
上記式(3)は2価の環状ジアザ構造を有する基である。p
1及びp
2は、p
1+p
2=3〜10を満たす正の整数であり、イミダゾリジニレン、ピペラジニレン、1,4−ジアザシクロヘプタニレン、1,4−ジアザシクロオクタニレン、1,4−ジアザシクロノナニレン、及び1,5−ジアザシクロデカニレン等の構造が挙げられる。中でも、原料の入手容易性から、ピペラジニレン構造であるのが好ましい。
【0020】
上記式(1)で示される化合物としては、例えば、下記式で示す化合物が挙げられる。
【化8】
(式中、Aは下記式のいずれかである。
【化9】
ここで、R
cはブチル基、n−ヘキシル基、又はシクロヘキシル基であり、Zはラジカル重合性基である)
【0021】
本発明のシリコーン化合物において、上記Zで示されるラジカル重合性基は、例えば、炭素数1〜10の直鎖、分岐又は環状構造を有する置換基を有して良い、窒素原子に結合可能なヘテロ原子を含む、アクリル基、メタクリル基、アルキニル基、スチリル基、インデニル基、アルケニル基、シクロアルケニル基、ノルボニル基、及び共役又は非共役アルカジエン基等である。中でも、反応の容易さからアクリル基及びメタクリル基が好ましい。
【0022】
本発明はさらに、上記式(1)で示されるシリコーン化合物の製造方法を提供する。
【0023】
本発明の製造方法は、下記式(4)で示される化合物と
【化10】
(式(4)において、R
1、R
2、R
3、及びQは上記の通りであり、Xは塩素、臭素、ブロマン基、ヨウ素、ヨーダン基、メシル基、トシル基、トリフルオロメタンスルホニル基、ノシル基、又はエポキシ基の何れかから選択される基である)
下記式(5)または式(6)で示される化合物を
【化11】
【化12】
(式(5)及び(6)において、R
c、p
1及びp
2は上記の通りである)
極性溶剤中、塩基及び反応促進剤の存在下で反応させて、
下記式(1’)で示される前駆体化合物を製造し、
【化13】
[式(1’)において、R
1、R
2、R
3、及びQは上記の通りであり、A’は下記式(2’)または(3’)で示される。
【化14】
【化15】
(式(2’)及び(3’)において、R
C、p
1及びp
2は上記の通りである)
上記式(1’)で示される前駆体化合物とラジカル重合性基を有する化合物を反応させて上記式(1)の化合物を製造する工程を含む方法である。
【0024】
上記式(4)においてXは、塩素、臭素、ブロマン基、ヨウ素、ヨーダン基、メシル基、トシル基、トリフルオロメタンスルホニル基、ノシル基、及びエポキシ基のいずれかから選択される基であり、入手容易性から塩素が好ましい。
【0025】
上記式(5)で示される化合物はアルキルアミンである。該アルキルアミンとしては、エチルアミン、プロピルアミン、n−ブチルアミン、s−ブチルアミン、t−ブチルアミン、i−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デカニルアミン、シクロペンチルアミン、シクロヘキシルアミン、シクロヘプチルアミン、シクロオクチルアミン、シクロノニルアミン、シクロデカニルアミン等が挙げられる。中でも、入手容易性及び取り扱い易さから、n−ブチルアミン、n−ヘキシルアミン、シクロペンチルアミン、またはシクロヘキシルアミンが好ましい。
【0026】
上記式(6)で示される化合物は環状ジアザ構造を有する化合物である。該化合物としては、イミダゾリジン、ピペラジン、1,4−ジアザシクロヘプタン、1,4−ジアザシクロオクタン、1,4−ジアザシクロノナン、及び1,5−ジアザシクロデカンが挙げられる。中でも、入手容易性からピペラジンが特に好ましい。
【0027】
本発明の方法は、先ず、極性溶剤中、塩基及び反応促進剤の存在下で、上記式(4)で示される化合物と、上記式(5)で示される化合物、または上記式(6)で示される化合物を反応させ、上記式(1’)で示す前駆体化合物を製造する。該工程において使用される塩基としては、アルカリ金属塩、アルカリ土類金属塩、または第三級アミン化合物が挙げられる。
【0028】
アルカリ金属塩としては、水素化リチウム、水酸化リチウム、炭酸リチウム、炭酸水素リチウム、水素化アルミニウムリチウム、水素化ホウ素リチウム、メチルリチウム、ブチルリチウム、フェニルリチウム、水素化ナトリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水素化ホウ素ナトリウム、水素化カリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、及びリン酸水素二カリウムが挙げられる。
【0029】
アルカリ土類金属塩としては、水酸化マグネシウム、炭酸マグネシウム、水酸化カルシウム、炭酸カルシウム、水酸化ストロンチウム、炭酸ストロンチウム、水酸化バリウム、及び炭酸バリウム等が挙げられる。
【0030】
第三級有機アミン化合物としては、トリメチルアミン、トリエチルアミン(Et
3N)、ジイソプロピルエチルアミン(DIPEA)、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−へプチルアミン、トリ−n−オクチルアミン、N−メチルピロリジン、N−メチルピペラジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)、N−メチルイミダゾール(NMI)、ピリジン、2,6−ルチジン、1,3,5−コリジン、N,N−ジメチルアミノピリジン、ピラジン、キノリン、1,8−ジアザビシクロー[5,4,0]−7−ウンデセン(DBU)、1,4−ジアザビシクロー[2,2,2]オクタン(DABCO)等が挙げられる。
【0031】
上記塩基の中でも、反応性の観点から、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、及びピリジンが好ましく、特にはピリジンが好ましい。塩基の量は上記式(5)または(6)で示される化合物のモル量以上が好ましく、特には上記式(5)または(6)で示される化合物のモル量と同じモル量であることが好ましい。
【0032】
反応促進剤としては、臭化リチウム、ヨウ化リチウム、臭化ナトリウム、ヨウ化ナトリウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム等の臭化四級アルキルアンモニウム、ヨウ化テトラメチルアンモニウム、ヨウ化テトラエチルアンモニウム、ヨウ化テトラブチルアンモニウム等のヨウ化四級アンモニウム、臭化カリウム、及びヨウ化カリウムが挙げられる。中でも反応性の観点からヨウ化カリウムが好ましい。反応促進剤の配合量は、前記一般式(4)で示される化合物のモル量に対して1.0モル%以下となる量が好ましく、特には0.5モル%以下となる量であることがより好ましい。反応促進剤の量が多過ぎると反応中に着色を生じるおそれがある。
【0033】
米国特許3719697号は、式(1’)で示す化合物を非極性溶剤の存在下で製造する方法を記載している。しかし該方法は反応が遅い。これは、非極性溶剤、例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、トルエン、キシレン等の炭化水素系溶剤では、反応が進行すると、式(1’)の化合物と式(4)の化合物を含む炭化水素系溶剤の層と、塩基と式(5)または式(6)の化合物を含む層へと分離し、式(4)の未反応物が残っていてもこれ以上反応が進行しなくなるためである。その為、本発明において前駆体化合物の製造は極性溶剤の存在下で行われる。
【0034】
また、極性溶剤の中でも、メタノール、エタノール等のアルコール系溶剤は、式(4)との反応性は低いものの、式(5)または式(6)の化合物と相対して、副生成物として若干量のエーテル体を与える。従って、本発明の製造方法で使用する極性溶剤としては、アミド化合物、エーテル化合物、ケトン化合物、アルキルニトリル化合物、またはハロゲン化炭化水素化合物であるのがよい。これらの溶剤として特には、直鎖、分岐又は環状構造を有する炭素数1〜8の炭化水素基を窒素上に有してよいアミド化合物;直鎖、分岐又は環状であり、不飽和結合を有していてよい、炭素原子を1〜8個有し、酸素原子を1〜3個含むエーテル化合物;酸素原子を有して良い、直鎖、分岐又は環状構造を有する、炭素数1〜7のケトン化合物;直鎖、分岐又は環状構造を有する炭素数1〜6のアルキルニトリル化合物;及び、直鎖、分岐又は環状構造を有し、炭素数1〜10の、飽和又は不飽和のハロゲン化炭化水素化合物が好ましい。
【0035】
上記極性溶剤としてより詳細には、N,N’−ジメチルホルムアミド(DMF)、N,N’−ジメチルホルムアセトアミド(DMAc)、1,3−ジメチル−2−イミダゾリジノン(DMI)、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン(DMPU)、ジエチルエーテル、t−ブチルメチルエーテル(TBME)、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、ジフェニルエーテル、ジメトキシメタン(DMM)、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、4−メチルピラン、ジオキサン、2−メチルテトラヒドロフラン、2−エチルテトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、アセトニトリル、プロピオニトリル、ブチロニトリル、α,α,α−トリフルオロメチルベンゼン、クロロベンゼン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン等が挙げられる。中でも、沸点と環境及び生成物の純度の観点から、DMAc、DMI、DMPU、CPME、ジフェニルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、2−エチルテトラヒドロフラン、MIBK、プロピオニトリル、ブチロニトリル、α,α,α−トリフルオロメチルベンゼン、及びクロロベンゼンが好ましい。最も好ましくはDMAcである。極性溶剤の量は、上記式(4)の化合物1モルに対して、0.5〜2.0モル、好ましくは1.0モルである。
【0036】
例えば、上記式(4)で示される化合物と、上記式(5)又は(6)で示される化合物、塩基、反応促進剤、及び極性溶剤をフラスコに加えて加熱撹拌(例えば、内部温度130℃)し、シロキサン基を持つ原料の塩素の横のCH
2シグナルの消失を
1H−NMRで確認した後、室温に冷却し、塩をろ過により除去した後、低揮発分を減圧下(例えば、50℃、10KPa)で留去し、次いで残渣を減圧下で蒸留(例えば、140℃、0.5Pa)することで、上記式(1’)で示される前駆体化合物を得ることができる。上記加熱攪拌温度、及び減圧条件は従来公知の方法に従い適宜選択することができる。
【0037】
上記式(1)で示される化合物は、上記式(1’)で示される前駆体化合物とラジカル重合性基を有する化合物を反応させることにより製造することができる。ラジカル重合性基は、例えば、炭素数1〜10の直鎖、分岐又は環状構造を有する置換基を有しても良い、窒素原子に結合可能なヘテロ原子を含む、アクリル基、メタクリル基、アルキニル基、スチリル基、インデニル基、アルケニル基、シクロアルケニル基、ノルボニル基、及び共役又は非共役アルカジエン基等である。該ラジカル重合性基を有する化合物としては、例えば、上記ラジカル重合性基を有する酸化物、ハロゲン化物、酸無水物、混合酸エステル等が挙げられる。より詳細には、(メタ)アクリル酸クロライド、(メタ)アクリロキシ ピバレート等が挙げられる。中でも、(メタ)アクリル酸クロライドが好ましい。
【0038】
式(1’)で示される前駆体化合物と反応させるラジカル重合性基を有する化合物の量は、好ましくは上記式(1’)で示される前駆体化合物1モルに対して、1モルより多く2モル以下であるのがよい。1モルより少ない場合は上記式(1’)で示される前駆体化合物が残存し、2モルより多い場合は反応系が酸性により易く、不純物が増加するおそれがある。更に好ましくは、原料である上記式(1’)で示される前駆体化合物のコストを考慮し、前駆体化合物1モルに対して1.05モル以上1.8モル以下であるのがよい。
【0039】
上記式(1’)で示される前駆体化合物とラジカル重合性基を有する化合物との反応はアルカリ金属塩やアルカリ土類金属塩の水溶液中で行うことが好ましい。例えば、水酸化リチウム、炭酸リチウム、炭酸水素リチウム、水素化ナトリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水素化ホウ素ナトリウム、水素化カリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、リン酸水素二カリウム等のアルカリ金属塩、または水酸化マグネシウム、炭酸マグネシウム、水酸化カルシウム、炭酸カルシウム、水酸化ストロンチウム、炭酸ストロンチウム、水酸化バリウム、炭酸バリウム等のアルカリ土類金属塩が挙げられる。中でも、入手容易性、取扱性、及び反応性から炭酸ナトリウム、及び炭酸カリウムが好ましく、より好ましくは炭酸ナトリウムである。また、炭酸ナトリウムの添加量は、反応系が常にアルカリ性である必要があるために、ラジカル重合性基を有する化合物1モルに対して1モル以上使用することがよく、より好ましくは2モル以上である。炭酸ナトリウムと水の存在下で反応を行うことにより、例えば未反応の(メタ)アクリル酸クロライドや副生成物のアクリル酸の除去が容易になる。
【0040】
例えば、前駆体化合物とラジカル重合性基を有する化合物、及び10%炭酸ナトリウム水を撹拌混合し、有機層から炭酸ナトリウム水を除去し、水により洗浄する。次いで重合禁止剤を添加し、減圧下(例えば、50℃、13KPa)で揮発成分を留去することで本発明のシリコーン化合物を得ることができる。
【0041】
本発明のシリコーン化合物は、融点が低く常温で液体である。そのためハンドリング性に優れている。また、本発明のシリコーン化合物は常温で液体であるため他のモノマー成分との優れた相溶性が期待できる。本発明のシリコーン化合物に相溶させる他のモノマー成分は特に限定されず、後述する用途に応じて、従来公知のものを使用することができる。例えば、N−ビニルピロリドン、N,N−ジメチルアクリルアミド、N−メチル−3−メチリデンピロリドンなどの窒素原子含有モノマー、メタクリル酸、ヒドロキシエチル(メタ)アクリレート等の親水性モノマーがあげられる。
【0042】
本発明のシリコーン化合物を他のモノマー成分に相溶させて得た組成物は、例えば眼用デバイス組成物、塗料、又は化粧料組成物として好適に使用することができる。化粧料組成物としては、例えば、スキンケア用、毛髪用、制汗剤用、脱臭剤用、メイクアップ用、又は紫外線防御用化粧料が挙げられる。
【実施例】
【0043】
以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。
【0044】
以下の実施例において、分子構造は核磁気共鳴分光法(
1H−NMR)及び赤外分光法(IR)を用いた測定により決定した。実施例で用いた測定装置を以下に示す。
1H−NMR:AVANCE III(ブルカー・バイオスピン株式会社)
IR:NICOLET6700(サーモフィッシャーサイエンティフィック株式会社)
【0045】
[合成例1]
温度計、撹拌装置、窒素導入管の付いた3口フラスコに[(CH
3)
3SiO]
3Si(CH
2)
3Cl(1.0mol)、n−ヘキシルアミン(3.0mol)、ヨウ化カリウム(0.1mol)、ピリジン(3.0mol)、N,N−ジメチルアセトアミド(1.0mol)を加え、内部温度130℃で加熱撹拌した。シロキサン基を持つ原料の塩素の横のCH
2シグナルの消失を
1H−NMRで確認した後、室温に冷却し、塩をろ紙ろ過により除去後、低揮発分を減圧下(50℃、10KPa)で留去し、残渣を減圧下で蒸留(140℃、0.5Pa)することで、微淡黄色透明であり室温でオイル状の生成物を得た。
【0046】
得られた生成物の構造を
1H−NMR及びIRにより同定したところ、下記式で示されるシリコーン化合物であった。また、収率は78%であった。
【化16】
1H−NMR及びIRのスペクトルを以下に示す。
1H−NMR(400MHz、CDCl
3):δ 0.10(s,27H)、0.42−0.51(m,2H)、0.85−0.91(m,3H)、1.10−1.58(m,10H)、2.60(t,J=8.2Hz,2H)
IR(NaCl):ν 756, 792, 842, 1058, 1251, 1428, 1445, 1655,2968,3453.
【0047】
[合成例2]
n−ヘキシルアミンをn−ブチルアミンに変えた以外は、合成例1の方法を繰り返し、微淡黄色透明であり室温でオイル状の生成物を得た。得られた生成物の構造を
1H−NMR及びIRにより同定したところ下記式で示されるシリコーン化合物であった。また、収率は76%であった。
【化17】
1H−NMR及びIRのスペクトルを以下に示す。
1H−NMR(400MHz,CDCl
3):δ 0.10(s,27H)、0.42−0.51(m,2H)、0.85−0.91(m,3H)、1.10−1.58(m,6H)、2.60(t,J=8.2Hz, 2H)
IR(NaCl):ν 757, 789, 843, 1056, 1250, 1427, 1654, 2972, 3452.
【0048】
[合成例3]
n−ヘキシルアミンをピペラジンに変えた以外は合成例1の方法を繰り返し、微淡黄色透明であり室温でオイル状の生成物を得た。得られた生成物の構造を
1H−NMR及びIRにより同定したところ、下記式で示されるシリコーン化合物であった。収率は76%であった。
【化18】
1H−NMR及びIRのスペクトルを以下に示す。
1H−NMR(400MHz,CDCl
3):δ 0.10(s,27H)、0.42−0.51(m,2H)、1.46−1.58(m,2H)、2.23−2.45(br s,4H)、2.60−2.92(m, 6H)
IR(NaCl):ν 759, 785, 845, 1053, 1189, 1251, 1430, 1653, 2983, 3355.
【0049】
[
参考例1]
温度計、滴下ロート、窒素導入管を装着し、マグネティックスターラーバーを入れた3口フラスコに、合成例1で得たシリコーン化合物1.0mol、アクリル酸クロライド1.05mol、及び10%炭酸ナトリウム水 2.0molを加え、撹拌した。その後、有機層から炭酸ナトリウム水を除去し、水により洗浄した。次いで重合禁止剤であるBHTを添加し、減圧下(50℃、13KPa)で揮発成分を留去し、室温で淡黄色透明油状の生成物を得た。得られた生成物の構造を
1H−NMR及びIRで同定したところ、下記式で示されるシリコーン化合物であった。また、収率は91%であった。
【化19】
1H−NMR及びIRのスペクトルを以下に示す
1H−NMR(400MHz,CDCl
3):δ 0.09(s,27H)、0.35−0.46(m,2H)、0.85−0.93(m,3H)、1.23−1.36(m,6H)、1.12−1.52(m,4H)、3.21−3.33(m,2H)、3.33−3.40(m,2H)、5.63(dd, J=10.3、2.0Hz,1H)、6.34(ddd, 16.7, 8.4, 2.0Hz, 1H)、6.54(dd, 16.7, 10.3Hz, 1H)
IR(NaCl):ν 792, 843, 1058, 1251, 1428, 1445, 1614, 1655, 2958.
【0050】
[
参考例2]
合成例1で得たシリコーン化合物を、合成例2で得たシリコーン化合物に変えた他は
参考例1を繰り返し、室温で淡黄色透明油状の生成物を得た。得られた生成物の構造を
1H−NMR及びIRで同定したところ、下記式で示されるシリコーン化合物であった。また、収率は89%であった。
【化20】
1H−NMR及びIRのスペクトルを以下に示す。
1H−NMR(400MHz,CDCl
3):δ 0.09(s,27H)、0.41−0.50(m,2H)、0.85−0.92(m,3H)、1.20−1.32(m,2H)、1.12−1.50(m,4H)、3.20−3.31(m,2H)、3.32−3.39(m,2H)、5.62(dd, J=10.3, 2.0Hz, 1H)、6.31(ddd, 16.7, 8.4, 2.0Hz, 1H)、6.53(dd, 16.7, 10.3Hz, 1H)
IR(NaCl):ν 793, 843, 1058, 1251, 1428, 1444, 1615, 1654, 2958.
【0051】
[実施例3]
合成例1で得たシリコーン化合物を、合成例3で得たシリコーン化合物に変えた他は、
参考例1を繰り返し、室温で淡黄色透明油状の生成物を得た。得られた生成物の構造を
1H−NMR及びIRで同定したところ、下記式で示されるシリコーン化合物であった。また、収率は93%であった。
【化21】
1H−NMR及びIRのスペクトルを以下に示す。
1H−NMR(400MHz,CDCl
3):δ 0.08(s,27H)、0.43−0.52(m,2H)、1.22−1.34(m,2H)、2.71−3.01(m,4H)、3.20−3.33(m,4H)、 5.60(dd, J=10.3, 2.0Hz, 1H)、6.25(ddd, 16.7, 8.4, 2.0Hz, 1H)、6.46(dd, 16.7, 10.3Hz, 1H)
IR(NaCl):ν 792, 843, 1058, 1189, 1251, 1428, 1445, 1614, 1655, 2958.
【0052】
[比較例1]
温度計、滴下ロート、窒素導入管を装着し、マグネティックスターラーバーを入れた100mL3口フラスコに、[(CH
3)
3SiO]
3Si(CH
2)
3NH
2 1mol、アクリル酸クロライド 1.05mol、及び10%炭酸ナトリウム水 2.0molを加え、撹拌した。その後、水による洗浄を行い、ろ紙でろ過後、減圧下で揮発成分を留去し、室温で無色固体状(融点51℃)の生成物を得た。得られた生成物の構造を
1H−NMR及びIRで同定したところ、下記式で示されるシリコーン化合物であった。また、収率は92%であった。
【化22】
【0053】
1H−NMR及びIRのスペクトルデータを以下に示す。
1H−NMR(400MHz,CDCl
3):δ 0.09(s,27H)、0.45−0.50(m,2H)、1.59(quin., J=7.0Hz, 2H)、 3.32(q, J=7.0Hz, 2H)、5.58(brs, 1H)、 5.62(dd, J=10.3, 1.4Hz, 1H)、6.06(ddd, 17.0, 8.4, 1.4Hz, 1H)、6.25(dd, 17.0, 10.3Hz, 1H)
IR(ATR):ν 753, 835, 1041, 1248, 1408, 1556, 1625, 1655, 2958, 3285.
【0054】
参考例1及び2、実施
例3及び比較例1で得たシリコーン化合物の室温での状態を下記表1にまとめた。
【0055】
【表1】
【0056】
比較例1で得たシリコーン化合物は融点が51℃であり常温で固体であった。これに対し、本発明のシリコーン化合物は室温で液体であり取り扱い性が良好であった。