【実施例】
【0043】
(実施例1)
<リチウム鉄シリケートの作製>
珪酸リチウム(Li
2SiO
3:キシダ化学株式会社製、純度99.5%)0.03モルと、鉄(高純度化学株式会社製、純度99.9%)0.03モルとの混合物に、アセトン20mLを加えてジルコニア製ボールミルにて500rpmで60分間混合し、乾燥した。これを炭酸塩混合物と混合した。炭酸塩混合物は、炭酸リチウム(キシダ化学株式会社製、純度99.9%)と、炭酸ナトリウム(キシダ化学株式会社製、純度99.5%)と、炭酸カリウム(キシダ化学株式会社製、純度99.5%)とを、0.435モル:0.315モル:0.25モルのモル比で混合して得た。混合割合は、珪酸リチウムと鉄との合計量100質量部に対して炭酸塩混合物が90質量部とした。
【0044】
上記混合物にアセトン20mLを加えてジルコニア製ボールミルにて500rpmで60分間混合し、乾燥した。その後、得られた粉体を金坩堝に入れ、二酸化炭素(流量100mL/分)と水素(流量3mL/分)の混合ガス雰囲気下にて電気炉で500℃に加熱し、炭酸塩混合物が溶融した状態で13時間反応させた。
【0045】
反応後、溶融塩の温度が400℃になった時点で、反応系である炉心全体を電気炉から取り出し、混合ガスを通じた状態で室温まで急冷した。
【0046】
次いで、得られた反応物に水20mLを加えて乳鉢ですりつぶし、水を用いて洗浄と濾過を繰り返して、塩が除去された粉体を得た。この粉体を100℃の乾燥機に入れて1時間程度乾燥した。
【0047】
その後、乾燥物について粉末XRD(X線回折)を行った。
図1は、乾燥物のXRDスペクトルである。XRDスペクトルを分析して結晶構造を確認した結果、単斜晶、空間群P2
1/nに属するリチウム鉄シリケートLi
2FeSiO
4が得られたことがわかった。
【0048】
(シリカコート)
上記のLi
2FeSiO
4を1g準備し、TEOS(オルトケイ酸テトラエチル)溶液(100mL)に分散させた。この分散液は、TEOSの加水分解と重合反応により、ゲル状態になる。このゲルを140℃で十分乾燥させて複合材料を得た。
【0049】
乾燥した複合材料について、XRD測定を行った。XRD測定結果を
図1に示す。
図1に示すように、シリカ(SiO
2)に由来するピークが観察された。このことから、複合材料では、リチウム鉄シリケートの表面に、シリカを有するシリカ部が形成されていることがわかった。
【0050】
<SEM分析>
シリカコートをする前のリチウム鉄シリケートと、シリカコートをしたリチウム鉄シリケートを有する複合材料について、SEM写真の撮影及びSEM−EDX(エネルギー分散型X線分光法)分析を行った。
図2の上図は、シリカコートする前のリチウム鉄シリケート化合物のSEM写真であり、下の表はリチウム鉄シリケート化合物のSEM−EDX分析結果を示す。
図3の上図は、シリカコートをすることでリチウム鉄シリケート表面にシリカ部を形成してなる複合材料のSEM写真であり、下の表は複合材料のSEM−EDX分析結果を示す。SEM−EDX分析法は、その原理上、活物質表面から数nm〜数μmの信号を検出する特徴がある。このため、SEM−EDX分析法は、リチウム複合金属酸化物の表面組成を反映している。
【0051】
図2の上図に示すように、円柱状の粒子が観察された。円柱状の粒子の長さは約80 μmであり、直径は約10μmであった。
図3の上図に示すように、複合材料では、円柱状の粒子の周囲に、多数の微粒子が観察された。円柱状の粒子の長さは約40μmであり、直径は約15μmであった。円柱状の粒子の周囲に存在する微粒子はシリカを含むシリカ部である。
【0052】
図2及び
図3の下の表は、いずれも円柱状の粒子の表面の3カ所でのSi(珪素)とFe(鉄)の元素組成比(原子%)を示す。
図2,
図3の各上図には、SEM−EDX測定箇所を「スペクトル1,2,3」で示した。
図2の下の表に示すように、粒子の表面でのSi/Feの平均値が0.967であり、SiとFeとがほぼ同じ原子数ずつ存在していることがわかった。
図1のXRD結果と
図2のSEM分析結果と併せると、
図2の上図に示す円柱状体が、Li
2FeSiO
4であることを示している。
【0053】
図3の下の表に示すように、粒子の表面でのSi/Feの平均値が1.159であり、Siの原子比がFeの原子比よりも大きくなった。
図1に示すXRD結果と併せて考えると、複合材料では、リチウム鉄シリケートを有する粒子表面に、シリカを含むシリカ部が形成されていることを示している。上記のXRD及びSEMによる分析結果から、
図4に示すように、複合材料でのシリカ部5の形態は、リチウム鉄シリケートを有する活物質6の表面全体を皮膜状に被覆しているか、または、
図5に示すように、活物質6の表面に部分的にシリカ部5が点在していると考えられる。
【0054】
<複合材料と導電助剤との複合化>
上記のシリカコートLi
2FeSiO
4を含む複合材料と導電助剤との複合化を行なった。導電助剤は、カーボン(AB:アセチレンブラック)からなる。複合材料とアセチレンブラックとを混合した。混合物では、複合材料:AB=5:4の重量比とした。混合物について、フリッチュジャパン社製のボールミリング装置P−7を用いて速度450rpm、時間5時間でボールミリング処理を行った。得られた混合体を熱処理(700℃で2時間、CO
2/H
2=100/3ccm雰囲気)を経て複合材料−カーボン複合体を作製した。
【0055】
<全固体二次電池の作製>
上記の複合材料―カーボン複合体10mg(複合材料6mg+カーボン4mg)と固体電解質(SE:solid electrolyte)Li
2S−P
2S
530mgをアルゴン雰囲気グローブボックス内で乳鉢を用いて混合した。Li
2S−P
2S
5(0.7Li2S−0.3P2S5)でのLi
2Sに対するP
2S
5のモル比は0.4である。これを直径10mm、厚み0.2〜0.3mmのペレットになるようにプレス成型した。これにより、正極材料からなる成型体を得た。
【0056】
図6に示すように、PET(ポリテトラフルオロエチレン)からなる絶縁性の円筒体91の底部を、鉄鋼材からなる蓋体92で封鎖した。蓋体92の上に、アルミニウム箔からなる集電体11を配置した。集電体11の上に、正極材料からなる成型体10を配置した。成型体10の上に固体電解質からなる電解質層2を50mg、厚み0.4〜0.5mmになるように成型した。さらに電解質層2の上にインジウム箔(厚み0.1mm)からなる負極3を成型した。負極1の上に、鉄鋼材からなる蓋体93を配設することで、円筒体91の中を密閉した。これにより、全固体二次電池9が作製された。正極材料からなる成型体10の厚みは200〜300μmであり、電解質層2の厚みは400〜500μmであり、負極3の厚みは100μmであった。蓋体92,93は、端子も兼ねており、配線で接続することで電流回路が形成される。
【0057】
(参考例1)
固体電解質の種類を、Li
2S−SiS
2−Li
3PO
4(KYORIX製)に変えた点を除いて実施例1と同様である。Li
2S−SiS
2−Li
3PO
4の各成分のモル比は、Li
2S:SiS
2:Li
3PO
4=0.63:0.36:0.01である。正極材料での複合材料(シリカコートをしたリチウム鉄シリケート)と導電助剤としてのカーボンと固体電解質Li
2S−SiS
2−Li
3PO
4の質量は、順に、6mg、4mg、30mgとした。その他は、実施例1と同様である。
【0058】
(参考例2)
正極材料での複合材料(シリカコートをしたリチウム鉄シリケート)と導電助剤としてのカーボンと固体電解質Li
2S−SiS
2−Li
3PO
4の質量は、順に、6mg、4mg、20mgとした。その他は、参考例1と同様である。
【0059】
(参考例3)
正極材料での複合材料(シリカコートをしたリチウム鉄シリケート)と導電助剤としてのカーボンと固体電解質Li
2S−SiS
2−Li
3PO
4の質量は、順に、6mg、4mg、10mgとした。その他は、参考例1と同様である。
【0060】
(参考例4)
正極材料に用いられる複合材料に変えて、シリカコートをしていないリチウム鉄シリケートを用いた。その他は、実施例1と同様である。
【0061】
<充放電特性>
実施例1及び参考例1〜4の全固体二次電池について充放電試験を行った。各電池の試験条件について表1に示した。実施例1及び参考例1〜3の電池の充放電条件は30℃で行い、参考例4の電池の充放電は50℃で行った。
【0062】
図7の上図、下図に、それぞれ実施例1,参考例1の充放電曲線を示した。
図8の上図、下図に、それぞれ参考例2, 3の充放電曲線を示した。
図9には、参考例4の充放電曲線を示した。
図7〜
図9において、右上方向に傾斜する曲線は充電曲線を示し、右下方向に傾斜する曲線は放電曲線を示している。同図において、各曲線に付した数値は充電又は放電のサイクル回数を示している。また、表1には、実施例1及び参考例1〜4の電池の充放電特性を示した。
【0063】
図7〜
図9及び表1に示すように、実施例1の電池は、参考例1〜4の電池に比べて、格段に放電容量が高かった。充放電のサイクルを重ねても、実施例1の電池の放電容量の低下は少なかった。参考例1, 2では、初期充電容量は100mAh/g以上であったが、初期放電以後の充電容量及び放電容量はゼロに近い値であった。参考例3では、初期放電容量自体が8mAh/gと非常に小さく、以後のサイクル後の容量についてもゼロに等しかった。
【0064】
参考例4では、充放電を50℃で行っており、参考例1〜3の充放電条件よりも高い温度であった。高温環境では、固体電解質Li
2S−P
2S
5のイオン導電性が高くなる傾向にある。50℃で充放電を行った参考例4の電池特性は、30℃で充放電を行った場合よりも向上しているはずである。それでも、参考例4の充電・放電容量は54mAh/g以下でわずかであった。
【0065】
以上より、固体電解質としてLi
2S−P
2S
5を用いることにより、Li
2S−SiS
2−Li
3PO
4を用いる場合に比べて、格段に充放電特性がよくなることがわかった。
【0066】
また、実施例1と参考例1についての高温環境下での充放電特性を測定した。充放電は、実施例1では50℃で行い、参考例1では50℃と60℃で行った。その結果を表2に示した。
【0067】
表1、表2の結果を比べると、実施例1では、50℃で行った場合の方が、30℃で行った場合よりも低かった。このことから、実施例1で用いられている固体電解質Li
2S−P
2S
5は、30℃での充放電特性をよくすることがわかった。
【0068】
【表1】
【0069】
【表2】