特許第6160483号(P6160483)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニコンの特許一覧

特許6160483光学系の製造方法、レンズ鏡筒、光学機器および撮像装置
<>
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000002
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000003
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000004
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000005
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000006
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000007
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000008
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000009
  • 特許6160483-光学系の製造方法、レンズ鏡筒、光学機器および撮像装置 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6160483
(24)【登録日】2017年6月23日
(45)【発行日】2017年7月12日
(54)【発明の名称】光学系の製造方法、レンズ鏡筒、光学機器および撮像装置
(51)【国際特許分類】
   G02B 7/02 20060101AFI20170703BHJP
【FI】
   G02B7/02 C
【請求項の数】18
【全頁数】17
(21)【出願番号】特願2013-509980(P2013-509980)
(86)(22)【出願日】2012年4月13日
(86)【国際出願番号】JP2012060143
(87)【国際公開番号】WO2012141295
(87)【国際公開日】20121018
【審査請求日】2015年4月2日
(31)【優先権主張番号】特願2011-89451(P2011-89451)
(32)【優先日】2011年4月13日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100084412
【弁理士】
【氏名又は名称】永井 冬紀
(74)【代理人】
【識別番号】100078189
【弁理士】
【氏名又は名称】渡辺 隆男
(72)【発明者】
【氏名】柴▲崎▼ 成良
【審査官】 小倉 宏之
(56)【参考文献】
【文献】 特開2009−115980(JP,A)
【文献】 特開2007−264160(JP,A)
【文献】 特開2005−086659(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 7/02
(57)【特許請求の範囲】
【請求項1】
レーザ光が照射される第1の所定部位を有しレンズの光軸と交差する方向に備えられる第1のアーム部と、レーザ光が照射される第2の所定部位を有し前記レンズの光軸の方向及び前記第1のアーム部が備えられた方向に交差する方向に備えられる第2のアーム部とを用いて鏡筒内に前記レンズを取り付けて光学系を組み立てる組立工程と、
前記光学系による像を用いた前記光学系の光学特性の評価結果に基づいて、前記第1の所定部位にレーザ光を照射し前記第1のアーム部を変形させることにより前記レンズの光軸の方向を修正し、前記第2の所定部位にレーザ光を照射し前記第2のアーム部を変形させることにより前記レンズの光軸に交差する面に沿った方向に前記レンズの位置を修正する修正工程とを有する光学系の製造方法。
【請求項2】
請求項1に記載された光学系の製造方法であって、
前記第1のアーム部は、一端側が前記レンズのレンズ枠に接続され他端側が前記鏡筒に接続され、
前記第2のアーム部は、一端側が前記第1のアーム部に接続され他端側が前記鏡筒に接続される光学系の製造方法。
【請求項3】
請求項1又は請求項2に記載された光学系の製造方法であって、
前記修正工程では、レーザ光により、前記レンズの光軸に平行な方向に略直交する方向の溝が前記第1の所定部位に形成され、前記レンズの光軸に略平行の溝が前記第2の所定部位に形成される光学系の製造方法。
【請求項4】
請求項1から請求項3の何れか1項に記載された光学系の製造方法であって、
前記第1のアーム部、及び、前記第2のアーム部は、プラスティックを含有する光学系の製造方法。
【請求項5】
請求項4に記載された光学系の製造方法であって、
前記第1のアーム部、及び、前記第2のアーム部は、射出成形方法により成形されたプラスティック部材からなる光学系の製造方法。
【請求項6】
請求項1から請求項5の何れか1項に記載された光学系の製造方法であって、
前記修正工程では、前記第1の所定部位にレーザ光を照射し前記第1のアーム部を変形させた後、前記第2の所定部位にレーザ光を照射し前記第2のアーム部を変形させる光学系の製造方法。
【請求項7】
請求項1から請求項5の何れか1項に記載された光学系の製造方法であって、
前記修正工程では、前記第2の所定部位にレーザ光を照射し前記第2のアーム部を変形させた後、前記第1の所定部位にレーザ光を照射し前記第1のアーム部を変形させる光学系の製造方法。
【請求項8】
請求項1から7の何れか1項に記載された光学系の製造方法であって、
前記評価結果は、前記組立工程により組み立てられた前記光学系によって形成された所定のパターンの像を撮像装置で撮像して画像データを生成し、この画像データに基づき前記光学系の光学特性を評価した結果である光学系の製造方法。
【請求項9】
請求項8に記載された光学系の製造方法であって、
前記所定のパターンとして複数のパターンを有するテストチャートを用いる光学系の製造方法。
【請求項10】
請求項1から9の何れか1項に記載された光学系の製造方法であって、
前記第1のアーム部、及び、前記第2のアーム部は、デジタルカメラの撮影レンズを保持するレンズ保持部品である光学系の製造方法。
【請求項11】
鏡筒内に備えられるレンズと、
前記レンズの光軸の方向を変化させるレーザー光の照射により形成された第1溝が第1方向に沿って備えられた第1領域を有し、前記レンズの光軸に平行な方向と交差する方向に備えられた第1のアームと、
前記レンズの光軸に交差する面に沿った方向に前記レンズの位置を変化させるレーザー光の照射により形成された第2溝が第2方向に沿って備えられた第2領域を有し、前記レンズの光軸に平行な方向及び前記第1のアームが備えられた方向に交差する方向に備えられた第2のアームとを有するレンズ鏡筒。
【請求項12】
請求項11に記載されたレンズ鏡筒であって、
前記第1方向は、前記レンズの光軸に平行な方向に略直交し、
前記第2方向は、前記レンズの光軸に略平行であるレンズ鏡筒。
【請求項13】
請求項11又は請求項12に記載されたレンズ鏡筒であって、
前記第1のアームは、一端側が前記レンズのレンズ枠に接続され他端側が前記鏡筒に接続され、
前記第2のアームは、一端側が前記第1のアームに接続され他端側が前記鏡筒に接続されるレンズ鏡筒。
【請求項14】
請求項11から請求項13の何れか1項に記載されたレンズ鏡筒を有する光学機器。
【請求項15】
撮像面を有する撮像部と、
前記撮像面の方向を変化させるレーザー光の照射により形成された第1溝が第1方向に沿って備えられた第1領域を有し、前記撮像面に直交する方向と交差する方向に備えられた第1のアームと、
前記撮像部の位置を前記撮像面に直交する方向に交差する面に沿った方向に変化させるレーザー光の照射により形成された第2溝が第2方向に沿って備えられた第2領域を有し、前記撮像面に直交する方向及び前記第1のアームが備えられた方向に交差する方向に備えられた第2のアームとを有する撮像装置。
【請求項16】
請求項15に記載された撮像装置であって、
前記第1方向は、前記撮像面に直交する方向に略直交し、
前記第2方向は、前記撮像面に略直交する方向である撮像装置。
【請求項17】
請求項15又は請求項16に記載された撮像装置であって、
前記第1のアームは、一端側が前記撮像部に接続され他端側が前記撮像装置のボディに接続され、
前記第2のアームは、一端側が前記第1のアームに接続され他端側が前記撮像装置のボディに接続される撮像装置。
【請求項18】
請求項15から請求項17の何れか1項に記載された撮像装置を有する光学機器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学系を調整する光学系の調整方法、光学系の調整装置、及び撮像素子の調整方法に関する。
【背景技術】
【0002】
カメラの撮影レンズは、保持具(レンズホルダー)に保持されたレンズが複数枚、レンズ鏡筒に組み込まれている。特に、コンパクトカメラでは、安価で軽量のプラスティック製のレンズホルダーが多用されている。従来、レンズ鏡筒に組み込まれた光学系について光学特性を評価し、その評価値が許容範囲に入っていない場合は、調整ネジ等によりレンズの光軸合わせなどの調整を行っていた。
【発明の概要】
【発明が解決しようとする課題】
【0003】
ところが、レンズ鏡筒内に取り付けられたレンズを調整ネジにより調整する作業は、レンズ鏡筒の外部から調整ネジを操作して行う熟練を要する作業であり、多大の時間と労力を費やすという問題がある。同様の問題はカメラボディに取り付けられた撮像素子を調整する際にも発生する。
【課題を解決するための手段】
【0004】
上記課題を解決するための、本発明を例示する第1の態様は、レーザ光が照射される第1の所定部位を有しレンズの光軸と交差する方向に備えられる第1のアーム部と、レーザ光が照射される第2の所定部位を有し前記レンズの光軸の方向及び前記第1のアーム部が備えられた方向に交差する方向に備えられる第2のアーム部とを用いて鏡筒内に前記レンズを取り付けて光学系を組み立てる組立工程と、前記光学系による像を用いた前記光学系の光学特性の評価結果に基づいて、前記第1の所定部位にレーザ光を照射し前記第1のアーム部を変形させることにより前記レンズの光軸の方向を修正し、前記第2の所定部位にレーザ光を照射し前記第2のアーム部を変形させることにより前記レンズの光軸に交差する面に沿った方向に前記レンズの位置を修正する修正工程とを有する光学系の製造方法である。

【0017】
本発明の第2の態様は、鏡筒内に備えられるレンズと、前記レンズの光軸の方向を変化させるレーザー光の照射により形成された第1溝が第1方向に沿って備えられた第1領域を有し、前記レンズの光軸に平行な方向と交差する方向に備えられた第1のアームと、前記レンズの光軸に交差する面に沿った方向に前記レンズの位置を変化させるレーザー光の照射により形成された第2溝が第2方向に沿って備えられた第2領域を有し、前記レンズの光軸に平行な方向及び前記第1のアームが備えられた方向に交差する方向に備えられた第2のアームとを有するレンズ鏡筒である。
【0018】
本発明の第3の態様は、撮像面を有する撮像部と、前記撮像面の方向を変化させるレーザー光の照射により形成された第1溝が第1方向に沿って備えられた第1領域を有し、前記撮像面に直交する方向と交差する方向に備えられた第1のアームと、前記撮像部の位置を前記撮像面に直交する方向に交差する面に沿った方向に変化させるレーザー光の照射により形成された第2溝が第2方向に沿って備えられた第2領域を有し、前記撮像面に直交する方向及び前記第1のアームが備えられた方向に交差する方向に備えられた第2のアームとを有する撮像装置である。
【0019】
本発明の第16の態様によれば、撮像素子の調整方法であって、撮像素子を保持するプラスティック成形部材からなる保持具をカメラボディへ取り付ける取り付け工程と、撮像素子と所定のパターンの像との間に光学系を配置して所定のパターンを撮像し、前記撮像素子によって形成されたパターンの像に基づき撮像素子の撮像特性を評価する評価工程と、評価工程の評価結果に基づいて、保持具の所定部位にレーザ光を照射することにより保持具の形状を修正する修正工程と、を含むように構成される。
【発明の効果】
【0020】
本発明の光学系の調整方法及び調整装置によれば、プラスティック成形部材からなる保持具に保持された光学部品を含む光学系が鏡筒内に組み込まれた状態で光学特性を評価し、その評価結果に基づいて保持具の所定部位にレーザ光を照射して保持具の形状を修正するので、光学系の調整を簡便に行うことができる。
【図面の簡単な説明】
【0021】
図1図1は、本発明の実施の形態に係る光学系の調整装置を模式的に示す構成図である。
図2図2(a)は、光学系の調整に用いられるテストチャートを模式的に示す図であり、図2(b)は、光学系によって形成されたテストチャートの像を模式的に示す図である。
図3図3は、第1の実施の形態においてレーザ光照射されるレンズホルダーを模式的に示す側面図であり、図3(a)はレーザ光照射前のレンズホルダー、図3(b)はレーザ光照射後のレンズホルダーである。
図4図4は、レンズホルダーへのレーザ光照射による刻線形成の一例を示す模式図であり、図4(a)は平面図、図4(b)はA−A矢視断面図である。
図5図5は、レンズホルダーへのレーザ光照射前後の内部応力分布を模式的に示す部分断面図であり、図5(a)はレーザ光照射前の内部応力分布を示す図、図5(b)はレーザ光照射後の内部応力分布を示す図である。
図6図6は、図1に示すレンズ鏡筒が収納されるデジタルカメラの内部を模式的に示す図である。
図7図7は、第2の実施の形態においてレーザ光照射されるレンズホルダーを模式的に示す斜視図である。
図8図8は、本発明の実施の形態に係る光学系の調整方法を示すフロチャートである。
図9図9は、本発明の実施の形態に係る撮像素子の調整について模式的に示す図である。
【発明を実施するための形態】
【0022】
以下、本発明の実施の形態による光学系の調整方法(以下、調整方法)および光学系の調整装置(以下、調整装置)の構成について、図面を参照しながら説明する。
−第1の実施の形態(調整装置)−
【0023】
図1に示されるように、調整装置1は、カメラ用の撮影レンズ鏡筒の光学系20を調整するものであり、レンズ鏡筒10を載置して固定支持する支持台2と、撮像装置3と、評価装置4と、照射制御装置5と、レーザ光照射手段としてのレーザマーカ6とを備える。
【0024】
撮像装置は内部に撮像面を有し、テストチャート7の像が支持台2に固定指示された光学系20により撮像面に結像される。撮像装置は、結像された像から画像データを生成する。
【0025】
評価装置4は、画像データと基準画像データとの比較に基づき、光学系20のチルト量及びシフト量に関連した評価データを算出する。
【0026】
照射制御装置5は、評価装置4が算出した評価データに基づいて、レーザマーカ6が照射するレーザ光の照射条件を算出し、その照射条件でレーザ光が照射されるようにレーザマーカ6を制御する。即ち、チルト量を補正するためのチルト補正用のレーザ光照射条件とシフト量を補正するためのシフト補正用のレーザ光照射条件とをそれぞれ設定し、これらの照射条件でレーザ光が照射されるようにレーザマーカ6を制御する。
【0027】
レーザ光照射条件とは、例えば、レーザ光の出力値、照射範囲、照射回数、照射時間、パルス照射を行う際のデューティー比等についての値である。これらの項目の値と、補正するチルト量およびシフト量のそれぞれの関係は、レーザ光照射条件テーブルとして調整装置内に用意されている。
【0028】
レーザマーカ6は、例えば炭酸ガスレーザ(COレーザ)であり、照射制御装置5による制御に基づいてレーザ光L1を第1のレンズホルダー12の所定の部位121に照射する。レーザマーカ6は光学系20の光軸に垂直な面内で上下左右方向に移動可能である。
【0029】
次に、上記の調整装置1を用いた調整方法について、図1および図8を参照しながら説明する。
−第2の実施の形態(調整方法)−
【0030】
調整されるレンズ鏡筒10には、第1のレンズ11を保持している第1のレンズホルダー12と、第2のレンズ21を保持している第2のレンズホルダー22と、第3のレンズ31を保持している第3のレンズホルダー32とが収納されている。第1、第2、第3のレンズ11、21、31は、撮影光学系20を構成する。なお、図1においては、簡単のため三つの凸レンズ11,21,31のみで光学系20を示し、それ以外のレンズは図示を省略している。
【0031】
第1、第2、第3のレンズホルダー12、22、32はいずれも、射出成型機によって射出成形されたプラスティック成形品である。これらのレンズホルダー12、22、32の各々は、縦長平板状を呈し、その一端が第1、第2、第3のレンズ11、21、31を保持し、他端がレンズ鏡筒10の内周部に取り付けられるようになっている。
【0032】
これらのレンズホルダー12、22、32に、それぞれレンズ11、21、31を取り付ける(ステップS1)。次に、レンズホルダー12、22、32をレンズ鏡筒10の内周部に取り付ける。これらのレンズホルダーの取付けは、各レンズ11、21、31のそれぞれの光軸が光学系20の光軸A0にほぼ一致するように行われる(ステップS2)。
【0033】
レンズの光軸の傾き(チルト)が光学系20の光学性能、即ち収差などへ与える影響は、光学系を構成する各レンズについて等しくない。各レンズ11、21、31のチルト量が等しくても、各レンズ11、21、31のパワーや相対的な位置などによってチルトによる光学性能への影響は異なってくる。本実施の形態では、第1のレンズ11は、光学系20を構成する全てのレンズの中で最もパワーが強く、そのチルト量が光学系20の光学性能に最も大きく影響するので、本実施の形態では、第1のレンズ11のチルトを修正する。
【0034】
次に、レンズ鏡筒10を調整装置1の支持台2に固定する(ステップS3)。その状態で、レンズ鏡筒10の前方(図中、右側)に設置されている所定のパターンのテストチャート7を撮像する。即ち、光学系20によりテストチャートを撮像して所定のパターンの像を形成する。
【0035】
図1を再び参照すると、光学系20が撮像装置3の撮像面にテストチャート7の像70を結像し、撮像装置3は像70を撮像し撮像画像データを生成する(ステップS4)。評価装置4は、テストチャート7を表わす基準画像データを予め記憶する記憶部を有し、この記憶部に記憶された基準画像データと撮像装置3からの撮像画像データとを比較する。次に、濃淡パターン70a〜70d(本実施の形態では、濃淡パターン70a)の解像度及び歪みを検出し、この解像度及び歪みに関する評価データを算出する(ステップS5)。
【0036】
次に、ステップS5で算出された評価データに基づいて、光学系20の光学特性が許容範囲に入るかどうか評価する(ステップS6)。
【0037】
図2(a)は、テストチャート7を示す。テストチャート7は、チャート面の右上、左上、左下、右下の4つの領域にそれぞれ濃淡パターン7a、7b、7c、7dを有する。テストチャート7の右上領域および左下領域の濃淡パターン7aは横縞、左上領域および右下領域の濃淡パターン7bは縦縞である。テストチャート7は異なる方向の縞により構成されているが、縞の方向が全て同一のテストチャートを用いてもよい。
【0038】
図2(b)は、光学系20によって形成されたテストチャート7の像70を模式的に表わしている。像70の濃淡パターン70a〜70dは、図2(a)のテストチャート7の濃淡パターン7a〜7dにそれぞれ対応する。像70においては、濃淡パターン70aは、他の濃淡パターン70b〜70dに比べて解像度が低下したパターンとなっている。これは、光学系20の調整不良、すなわち、第1のレンズホルダー12の取付け不良、具体的には、第1のレンズ11の光軸が光学系20の光軸A0に対して傾斜しているチルトに起因するものである。その他の濃淡パターン70b〜70dは、テストチャート7の濃淡パターン7b〜7dをほぼ正確に再現している。
【0039】
第1のレンズ11のチルト量及びチルト方向と、像70の濃淡パターン70a〜70dの解像度低下及び歪との関係を以下に詳述する。第1のレンズ11のチルト量が大きくなる、すなわち第1のレンズ11の光軸と光学系20の光軸A0とのずれ角が大きくなるにつれて、濃淡パターン70a〜70dの解像度が低下し歪みも大きくなる。また、第1のレンズ11のチルト方向は、最も解像度が低下し、最も歪みが大きくなる濃淡パターン70a〜70dを決定する。
【0040】
従って、解像度の低下や歪みの大きさに関する評価データを評価することで、光学系20の光学特性が許容範囲に入っているかどうかを判断することができる。光学系20の光学特性が許容範囲に入っていると判断された場合には、光学系20の光学特性は良好であると判断して、評価は終了する(ステップ11)。
【0041】
光学系20の光学特性が許容範囲に入っていない場合には、その評価データに基づいて、第1のレンズ11のチルトの補正すべき量が分かると共に、解像度の低下や歪みが最も大きく発生する濃淡パターンの評価結果により、第1のレンズ11のチルト方向が分かる(ステップS7)。本実施の形態では、第1のレンズ11は、縦長平板状の第1のレンズホルダー12に保持されているので、チルト方向は特定の一方向に限定されている。
【0042】
図2(b)の像70の濃淡パターン70a〜70dでは、第1のレンズホルダー12の取付け不良の影響を表すために図を単純化し、濃淡パターン70aのみが解像度が低下したように示しているが、実際には、濃淡パターン70aは解像度が大きく低下すると共に大きな歪みを生じる。その際には、他の濃淡パターン70b〜70dも相応の解像度の低下や歪みを生ずる。
【0043】
次に、光学系20の光学特性が許容範囲に入っていないと判断された場合について説明する。ステップ7において算出した補正すべきチルト量に基づいて、照射制御装置5は、レーザ光照射条件テーブルから、チルト補正用のレーザ光照射条件を設定する。これにより、レーザマーカ6から照射するレーザ光の出力値、照射範囲、照射回数、照射時間、パルス照射を行う際のデューティー比等の値を設定される(ステップS8)。
【0044】
次に、レーザ光が第1のレンズホルダー12の所定の部位にレーザ光が照射されるように、レーザマーカ6を照射位置に移動させる(ステップS9)。
【0045】
次に、レーザマーカ6から、第1のレンズホルダー12の所定の部位にレーザ光を照射して第1のレンズホルダー12を変形させる(ステップS10)。この変形によって第1のレンズ11のチルトを補正、即ち調整する。所定の部位121は、第1のレンズホルダー12の形状、寸法、及び第1のレンズホルダー12が保持するレンズの特性などを考慮して事前に決定されている。なお本実施の形態では、このレーザ光を照射する所定の部位121は、図3(a)に示すように、アーム部12bと枠部12aとの境界付近のアーム部12b上に位置するように、定められている。
【0046】
上述したレーザ光照射による第1のレンズ11のチルト調整の後、光学系20によりテストチャート7の像を撮像装置3によって再度撮像し、撮像画像データを生成する(ステップS4)
【0047】
更に、評価装置4により評価データを算出する(ステップS5)。評価データに基づいて、光学系20の光学特性が許容範囲に入るかどうか確認する(ステップS6)。もし、光学系20の光学特性が許容範囲らない場合は、ステップ7以降を繰り返して、第1のレンズホルダー12に微調整の変形を加えて、第1のレンズ11のチルト微調整を行うこともできる。
【0048】
次に、第1のレンズホルダー12に対するレーザ光照射とレンズホルダーの変形とについて詳細に説明する。
図3(a)は、射出成形された時点の第1のレンズホルダー12の具体的な形状を示し、図3(b)は、レーザ光L1をアーム部12bの部位121へ照射した後の第1のレンズホルダー12を示すものである。
【0049】
図3(a)において、第1のレンズホルダー12は、第1のレンズ11の外周を保持する枠部12aと枠部12aに連なるアーム部12bとを有し、これらの枠部12aとアーム部12bとは、射出成形時には一点鎖線で示す直線130に沿って延在している。
【0050】
このような第1のレンズホルダー12が、アーム部12bの先端部140でレンズ鏡筒10の内周部に取り付けられる際に、レンズ鏡筒内周部に対して僅かに傾いて取り付けられたために、第1のレンズ11の光軸A1が光学系20の光軸A0に対して僅かに傾斜したとする。このような第1のレンズ11の光軸A1の傾斜、即ちチルトを補正するため、アーム部12bの部位121にレーザマーカ6からレーザ光L1を照射して第1のレンズホルダー12を変形させる。
【0051】
レーザ光L1の照射について、更に詳述する。図3(a)及び図4(a)及び(b)において、レーザ光L1がアーム部12bの照射部位121をアーム部の幅方向に横切るように走査照射し、この照射によって、図4(b)に明示したように、アーム部12bの照射部位121の表面近傍に浅い溝、即ち刻線120が形成される。刻線120は、アーム部12bを幅方向にその一端から他端まで、横切っている。このようなレーザ光L1の走査照射による刻線120は、所定の間隔を隔てて互いに平行に複数本、形成される。
【0052】
複数本の刻線120は、例えば、等間隔0.14mmで互いに平行に形成される。線幅は、0.05mm〜0.5mmの範囲が好ましい。このような複数本の刻線120の形成は、レーザマーカ6がレーザ光L1をレンズホルダー12の長手方向に微少量ずつ偏向させて射出することによって形成することもできるし、レーザマーカ6の位置をレンズホルダー12の長手方向に微少量ずつ移動して、レーザ光L1を照射することによって形成することもできる。なお、刻線120は、線状の溝に限らず、不連続な溝、例えば小孔の連なりであってもよい。
【0053】
このようなレーザ光照射による複数本の刻線120の形成によって、図3(b)に示すように第1のレンズホルダー12が照射部位121付近で変形し、枠部12aが直線130に対して所定角度だけ傾斜する。枠部12aの傾斜によって、第1のレンズ11の光軸A1が所定角度だけ傾斜して、光学系20の光軸A0に略一致する。こうして、第1のレンズ11のチルト調整は、第1のレンズホルダー12がレンズ鏡筒10に取り付けられた状態で、行われる。
【0054】
レーザ光照射による第1のレンズホルダー12の変形量、具体的には枠部12aの傾斜角度は、刻線120の本数や刻線120の幅や深さなどによって決定される。具体的には、刻線120の本数を増やすこと、刻線120の幅を大きくすること、刻線120の深さを大きくすることなどによって、上記の傾斜角度を大きくすることができる。
【0055】
図5は、レーザ光の照射によってプラスティック成型品が変形する理由を説明するための図であり、第1のレンズホルダー12の照射部位121の部分断面を拡大して示したものである。
【0056】
図5(a)は、レーザ光照射前にプラスティック成形品である第1のレンズホルダー12に残留する内部応力分布を示し、図5(b)は、図5(a)の状態の第1のレンズホルダー12にレーザ光照射によって複数本の刻線120を形成した後の内部応力分布を示す。これらの内部応力分布は、等高線状の縞101で表わされており、同一の応力値をもつ位置は一本の線分で結ばれている。このような応力分布が生じるのは、第1のレンズホルダー12の成形時の金型内での溶融プラスティック圧力や冷却過程における冷却速度などに起因する。
【0057】
図5(a)では、第1のレンズホルダー12の内部応力分布が上面12Aの側と下面12Bの側とでほぼ対称となっており、上面と下面における応力が釣り合っているので、レンズホルダー12の上面12A及び下面12Bは互いに平行な平面である。これに対して、図5(b)に示すように、第1のレンズホルダー12の上面12Aにのみ刻線120を形成すると、上面12A側の応力が解放される結果、上面12Aが凹面形状に彎曲するような形状変化が生じる。
【0058】
このような形状変化の程度は、同一材料、同一寸法のプラスティック部材においては、レーザマーカ6のレーザ光照射条件によって変化する。主な照射条件は、レーザの出力値、照射範囲(刻線領域の面積)、照射時間である。上述のように、刻線120の幅や深さを大きくしたり、刻線120の本数を増やすことによって、大きな形状変化を得ることができる。更に、図4図5に示した複数本の刻線120を、所定の間隔を空けて、複数箇所に形成することによっても一層大きな形状変化を得ることができる。
【0059】
上述のように、第1のレンズホルダー12に対するレーザ光照射によって、第1のレンズホルダー12が変形し、第1のレンズ11の光軸が光学系20の光軸A0に一致するように調整される。このように調整された光学系20によって形成されたテストチャート7の像70は、図2(b)に示した像70の右上領域の濃淡パターン70aが明瞭なパターンとして表わされるようになり、解像度がレーザ光照射前よりも高くなる。
【0060】
図6は、デジタルカメラの内部構成を概略的に示す図である。デジタルカメラ100は、本実施の形態の調整装置1で調整された光学系20を有するレンズ鏡筒10と、撮像素子111と、電子ビューファインダ112とを収納する。撮影レンズとしてレンズ鏡筒10内の光学系20が用いられる。本実施の形態の光学系の調整方法により、光学系20の光軸は調整されるため、高画質の撮像画像を得ることができる。
【0061】
本実施の形態の調整装置1及び光学系の調整方法によれば、次の作用効果を奏する。
(1)第1、第2、第3のレンズ11、21、31をそれぞれ保持する第1、第2、第3のレンズホルダー12、22、32などをレンズ鏡筒10に取り付けた状態で、第1のレンズホルダー12に対するレーザ光照射によって第1のレンズ11の光軸の傾きを調整できるので、簡便に調整作業ができる。
(2)全てのレンズをレンズ鏡筒10に組み込んだ状態で光学系20の光学性能を評価し、その評価データに基づいて第1のレンズホルダー12にレーザ光照射を行い、第1のレンズ11の光軸の傾きを調整するので、調整作業の自動化が可能である。
(3)レンズホルダーを鏡筒に取り付けた後に、レンズホルダーの調整により光学特性を調整することが可能となるので、部品ごとの性能のばらつきや、鏡筒への取り付け誤差があった場合でも、鏡筒を組み立てた後に調整して、これらのばらつきによる光学性能の低下を低減することが可能となる。その結果、製造工程での良品率の向上に貢献することが期待できる。
(4)従来は、成形後のプラスティック部品の形状が設計通りの形状となるように、成形に使用する金型の寸法変更を行う必要があった。このため、新製品の製造を開始するためには、金型の調整を含む長い準備期間が必要であった。が、本発明によれば、プラスティックを成形して光学系を組み立てた後に形状を補正することが可能となったため、金型にの寸法変更に要する時間を節約でき、製造開始までの準備期間を短縮することが期待できる。
【0062】
次に、第2の実施の形態の変形例である第3の実施形態について説明する。−第3の実施の形態(調整方法)−
【0063】
上述した第2の実施の形態では、第1のレンズ11が、光学系20を構成する全てのレンズの中で最もパワーが強く、従って第1のレンズ11のチルト量が光学系20の光学性能に最も大きく影響するため、第1のレンズ11のチルトを修正した。
【0064】
もし、第2のレンズ21が最もパワーが強い場合には、この第2のレンズのチルトを調整する必要がある。その場合には、レーザマーカ6を、第2のレンズホルダー22に対向する2点鎖線の位置6Aまで移動させる。この状態で、テストチャート7の像を撮像して撮像データの評価を行い、この評価結果に基づきレーザマーカ6がレーザ光L1Aを第2のレンズホルダー22の所定の照射部位に照射する。その為に、図1に示したように、レーザマーカ6を光学系20の光軸に垂直な面内で上下左右方向に移動可能とする。
【0065】
また、レンズ鏡筒10において、図1に示した通り、第1のレンズホルダー12と第2のレンズホルダー22とは、レンズ鏡筒10の内周面に対する取付位置が角度的に大きく異なるようにしておく。図示例では180度ずれた状態としてある。これにより、レーザマーカ6が第2のレンズホルダー22にレーザ光照射する際に、第1のレンズホルダー12によりレーザ光が遮られる恐れはない。
【0066】
このように、レーザ光照射されるレンズホルダーよりも撮像装置3側に位置するレンズホルダーは、レーザマーカ6から見てレーザ光照射対象のレンズホルダーに重ならないようにすることが望ましい。即ち、レーザ光照射対象のレンズホルダーとそれより前(撮像装置側)に位置するレンズホルダーとは、レンズ鏡筒10への取付位置が角度的に互いに異なるようにすることが望ましい。
【0067】
上述の例では、レーザマーカ6を移動させることにより第2のレンズホルダー22へレーザ光照射を行うようにしたが、レーザマーカ22の位置を移動させること無く、ミラー等の偏向部材を挿脱して第2のレンズホルダー22へレーザが照射できるようにすることも可能である。例えば、L1で示された破線上とL1Aで示された破線上にミラーをそれぞれ挿入して、レーザ光L1をレーザ光L1Aに移動させるように構成してもよい。
【0068】
−第4の実施の形態(調整方法)−
上述した第2および第3の実施の形態では、レンズホルダー12にレーザ光を照射してレンズ11の光軸の傾き(チルト)調整を行うものであった。本実施の形態は、光学系20をレンズ鏡筒10に組み込んだ状態でレンズの光軸の傾き(チルト)と光軸のずれ(シフト)の2つの調整を行うものである。なお、レンズのシフトとは、当該レンズの光軸が光学系20の光軸に垂直な面内でのずれのことである。
【0069】
本実施の形態の調整装置も、図1に示した調整装置1とほぼ同一であり、調整装置1との相違点は、レンズホルダーの形状である。調整対象のレンズは、第1の実施の形態と同様に、図1の第1のレンズ11である。
【0070】
第1の実施の形態では、第1のレンズ11は、第1のレンズホルダー12に保持されていたが、第2の実施の形態では、第1のレンズ11は、図7に示す通り、レンズホルダー1200に保持され、レンズホルダー1200がレンズ鏡筒10の内周部に取り付けられている。
【0071】
図7において、レンズホルダー1200は、第1のレンズ11の外周部を保持する枠部1200aと、枠部1200aに連結している第1のアーム部1200bと、第1のアーム部1200bに連結している第2のアーム部1200cとを有する。
【0072】
第1のアーム部1200bは、平板が折り曲げられた形状の段差部1222を有すると共に、第1のアーム部先端に状に分岐した二又部1223a、1223bを有する。また、第1のアーム部1200bは、枠部1200aとの境界付近にレーザ光L1を照射する照射領域1221を有する。二又部1223a、1223bの各々には貫通孔1224が穿孔され、これらの貫通孔1224には、点線で示された軸部1225が挿通されている。軸部1225は、第1のレンズ11の光軸A1と平行に延在し、その両端はレンズ鏡筒10の内周部に固定されている。これにより、第1のアーム部1200bは軸部1225を中心に回転可能に支持されている。なお、貫通孔1224は、第1のレンズ11の中心を通って第1のアーム部1200bの延在方向に伸びる直線P1上に位置する。
【0073】
第2のアーム部1200cは、その一端が二又部1223bに固定され、第1のアーム部1200bから図1の光学系20の光軸に直角な方向に突出している。また、第2のアーム部1200cは全体が、僅かに湾曲しており、他端に凹部1227が形成され、凹部1227には点線で示された軸部1228が挿通されている。軸部1228は、第1のレンズ11の光軸A1と平行に延在し、その両端はレンズ鏡筒10の内周部に固定されている。
【0074】
第2のアーム部1200cは、第1のアーム部1200b上の直線P1に対して鋭角θの角度を成して第1のアーム部1200bから突出している。また、第2のアーム部1200cは、二又部1223bに固定された一端の近傍に照射領域1226を有する。照射領域1226は、第1のレンズ11の光軸A1に平行な面に定められる。
【0075】
<チルト調整>
図1において、レンズホルダー1200を含む全てのレンズホルダーがレンズ鏡筒10に取り付けられた状態で、レンズ鏡筒10の光学系20がテストチャート7の像を撮像装置3の撮像面に結像する。撮像装置3は、この像を撮像して画像データを生成する。評価装置4は、この画像データと基準画像データとの比較に基づき、光学系20のチルト量及びシフト量に関連した評価データを算出する。照射制御装置5は、この評価データに基づき、第1のレンズ11のチルト量を補正するためのチルト用のレーザ光照射条件と第1のレンズ11のシフト量を補正するためのシフト用のレーザ光照射条件とをそれぞれ算出する。
【0076】
レーザマーカ6は、チルト用のレーザ光照射条件に基づき、レーザ光L1を第1のアーム部1200b上の照射領域1221へ照射する。これにより、照射領域1221には複数本の刻線1231が形成され、第1のアーム部1200は照射領域1221で変形し、符号Tで示すように枠部1200aが傾斜して第1のレンズ11の光軸A1の傾き(チルト)の調整が行われる。
【0077】
<シフト調整>
上述のチルト調整に続いて、レーザマーカ6は、シフト用のレーザ光照射条件に基づき、レーザ光L1を第2のアーム部1200cの照射領域1226に照射する。このレーザ光照射によって、照射領域1226には複数本の刻線1232が形成される。これらの刻線1232の形成方向は、第1のレンズ11の光軸A1の方向とほぼ平行である。
【0078】
なお、第2のアーム部1200cの照射領域1226は、第1のレンズ11の光軸に平行な面にあるので、レーザマーカ6のレーザ光L1ともほぼ平行となる。従って、レーザマーカ6は、レーザ光L1を直接に照射領域1226へ照射することは困難である。そこで、本実施の形態の調整装置は、レーザマーカ6から出力されたレーザ光L1の向きを変える一つ以上の反射ミラーをレンズ鏡筒10内に配置する。これによって、レンズ鏡筒10内の反射ミラーは、レーザ光L1を反射して第2のアーム部1200cの照射領域1226を照射する。この反射ミラーの代わりに、光ファイバーを使用してレーザ光L1を第2のアーム部1200cの照射領域1226に導くこともできる。
【0079】
照射領域1226へのレーザ光照射により、第2のアーム部1200cは、その照射領域1226で変形し、角度θが変化する。これによって、第1のアーム部1200bは軸部1225周りに所定方向に微小量だけ回転する。その結果、第1のレンズ11は、その光軸A1が符号Sで示す方向に移動(シフト)し、第1のレンズ11の光軸A1のずれ(シフト)の調整が行われる。なお、第1のアーム部1200bを上述と逆方向に回転して、シフト調整する場合には、レーザマーカ6は、第2のアーム部1200cの照射領域1226の裏面にレーザ光照射する。
【0080】
本実施の形態でも、チルト調整及びシフト調整が終了した後に、再度、テストチャート7の像を撮像して、撮像画像データを生成し、この撮像データに基づき評価データを算出する。この評価データに基づき、上記のチルト調整及びシフト調整が不十分であったか否かを判定し、もし、不十分であった場合には、再度、上記評価データに基づき、レーザ光照射を行い、チルトの微調整および/又はシフトの微調整を行う。
【0081】
本実施の形態の調整装置1及び光学系の調整方法によれば、第1の実施の形態で述べた作用効果に加えて、第1のレンズ11のシフトも調整できるので、より精度の高い光学系を提供することができる。
【0082】
第2の実施の形態では、第1のレンズ11のチルトの調整を先に行い、シフトの調整を後で行ったが、調整の順番を逆にしてもよい。また、レンズ21のチルトの調整を省略し、シフトの調整のみを行ってもよい。
【0083】
上述の実施の形態では、射出成形されたレンズホルダーをレーザ光照射によって形状変形させる場合を説明したが、本発明は、成形されたプラスティック部材であれば、任意の部材に適用することができる。特に、本発明は、加熱工程を含む成形方法、即ち上述した射出成形、或いはプレス成形で製造されたプラスティック部材に対して適用するのが好ましい。プラスティック部材の材料としては、ナイロンやガラス繊維を配合した樹脂を用いることができる。
【0084】
また、レンズホルダーへのレーザ光照射によって刻線を形成してレンズホルダーの形状を変形させる場合を説明したが、本発明は、レーザ光照射によって刻線を形成することなく、単に照射による熱でレンズホルダーの形状を変形させてもよい。
【0085】
上述の実施の形態では、複数のレンズの中で、レンズホルダーの形状を修正するレンズが予め決まっている例を説明したが、測定された光学特性の結果に基づいてレンズホルダーの形状を修正するレンズを選択してもよい。この場合、予め光学特性と修正すべきレンズとの対応関係を調べておく。
【0086】
また、レーザを照射する所定部位が1箇所決められている例を説明したが、1つの部品の中に複数の照射する部位を設定しておき、測定された光学特性によって照射する部位を選択するようにしてもよい。図1の調整装置は、1つのレーザマーカを備えたものであるが、複数のレーザマーカを備えるように構成してもよい。例えば、チルト修正用とシフト修正用、第1のレンズホルダー用と第2のレンズホルダー用のように使い分けてもよい。
【0087】
上述の実施の形態では、光学系によって所定のパターンを撮像して光学特性の評価を行うものであったが、光学特性の評価の別例として、光学系によって所定のパターンを投影し投影されたパターンの像を評価してもよい。更に、パターンでの評価の代りに、干渉により光学特性を評価し、この評価結果に基づいてレーザを照射する部位を決めてレーザを照射し、レンズホルダーの形状を修正するようにしてもよい。
【0088】
上述の実施の形態では、レンズホルダーの形状を修正する例で説明したが、レンズ(透過部材)に限らず、ミラー等の反射部材を保持する保持具の形状を修正することも可能である。
【0089】
上述の実施の形態では、光学部品を保持するプラスティック成形部材からなる保持具にレーザ光を照射することにより形状を修正するものであったが、光学部品の保持具に限らず、他の部品を保持するプラスティック部材の修正に適用することも可能である。例えば、CCDやCMOSなどの撮像素子の取り付け位置の調整に使用することもできる。このような実施の形態について図9を用いて説明する。
−第5の実施の形態(撮像素子の調整方法)−
【0090】
図9は、撮像素子取り付け位置の調整を模式的に示す図である。撮像素子の取り付け位置を調整するために用いる調整装置91は、図1に示す光学系の調整装置に類似している。撮像素子取り付け位置の調整は次のように行う。
【0091】
まず、光学系20が組み込まれたレンズ鏡筒10が取り付けられたカメラボディ100を調整装置91の支持台2に固定する。レンズ鏡筒10の光学性能は予め把握されている。カメラボディ100には撮像素子93が取り付けられている。撮像素子93の周囲はプラスティック製の保持部材94に嵌め込みや接着等によりより保持されており、撮像素子93は上記のプラスティック製の保持部材94を介してカメラボディに取り付けられている。なお、撮像素子93の前面および背面にはそれぞれ、光学フィルタおよび撮像素子93の駆動回路基板が設けられていてもよい。
【0092】
次に、光学系20を通してテストチャート7を、カメラボディに組み込まれた撮像素子93により撮像して撮像画像データを生成する。この撮像画像データに基づいて評価装置4により、撮像素子93の基準位置からのずれ量を求めることで評価を行う。照射制御装置5には、撮像素子93の基準位置からのずれ量とレーザマーカ6から照射するレーザ光の照射条件を関連付けたレーザ光照射条件テーブルが予め記憶されている。レーザマーカ6は、照射制御装置5がレーザ光照射条件テーブルに基づいて決定されたレーザ光照射条件に基づいて、撮像素子93のプラスティック製の保持部材94の所定の位置に対してレーザ光を照射する。なお、レーザマーカ6は照射を行うのに先立って、所定の照射位置に移動するようにしてもよい。
【0093】
上記説明では、レーザマーカ6からのレーザ光は直接プラスティック製の保持部材94に照射するような構成となっているが、ミラーやレンズを介してプラスティック製の保持部材94に照射するようにしてもよい。
【0094】
上記説明の通り、本実施の形態の撮像素子の調整方法によれは、撮像素子93をカメラボディ100に取り付けた状態で、撮像素子93によるテストチャート7の撮像状態を評価し、その結果に基づいて撮像素子93の位置調整を行う。このような構成により、撮像素子93の法線と光学系20の光軸を高精度に調整することができる。
【0095】
なお、撮像素子93を取り付けたカメラボディ100の状態で調整を行う代わりに、撮像素子93をカメラボディ100に取り付ける前に、治工具等を用いて調整を行ってもよい。この場合は、撮像素子93を取り付けたプラスティック製の保持部材94と光学系20との位置関係が、カメラボディ100を介した状態と同様になるような治工具を用いる必要がある。また、この場合には、レーザマーカ6からのレーザ光がテストチャート7とレンズ鏡筒10との間から照射されるような構成としてもよい。光学系20の位置に配置される治工具にミラーを設けることもできる。
【0096】
本実施の形態と同様に、所定のパターンを撮像し、その撮像データを評価することにより、CCDが取り付けられたプラスティック部材の所定の位置にレーザ光を照射し、CCDの取り付け位置を補正する。この場合、ある程度の精度を有する光学系を介して画像データを作成する。
【0097】
本発明は、その特徴を損なわない限り、以上説明した実施の形態に限定されるものではない。
【0098】
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国出願2011年第089451号(2011年4月13日出願)
図1
図2
図3
図4
図5
図6
図7
図8
図9