(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6160675
(24)【登録日】2017年6月23日
(45)【発行日】2017年7月12日
(54)【発明の名称】樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板
(51)【国際特許分類】
C08J 5/24 20060101AFI20170703BHJP
C08K 5/3415 20060101ALI20170703BHJP
C08L 83/08 20060101ALI20170703BHJP
C08K 5/13 20060101ALI20170703BHJP
C08K 5/17 20060101ALI20170703BHJP
C08L 79/00 20060101ALI20170703BHJP
C08K 5/3445 20060101ALI20170703BHJP
C08L 63/00 20060101ALI20170703BHJP
H05K 1/03 20060101ALI20170703BHJP
【FI】
C08J5/24CEZ
C08K5/3415
C08L83/08
C08K5/13
C08K5/17
C08L79/00 Z
C08K5/3445
C08L63/00 Z
H05K1/03 610N
H05K1/03 610H
【請求項の数】15
【全頁数】16
(21)【出願番号】特願2015-212319(P2015-212319)
(22)【出願日】2015年10月28日
(62)【分割の表示】特願2012-553741(P2012-553741)の分割
【原出願日】2012年1月17日
(65)【公開番号】特開2016-26261(P2016-26261A)
(43)【公開日】2016年2月12日
【審査請求日】2015年11月26日
(31)【優先権主張番号】特願2011-8309(P2011-8309)
(32)【優先日】2011年1月18日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】日立化成株式会社
(74)【代理人】
【識別番号】100078732
【弁理士】
【氏名又は名称】大谷 保
(74)【代理人】
【識別番号】100119666
【弁理士】
【氏名又は名称】平澤 賢一
(74)【代理人】
【識別番号】100193976
【弁理士】
【氏名又は名称】澤山 要介
(72)【発明者】
【氏名】長井 駿介
(72)【発明者】
【氏名】宮武 正人
(72)【発明者】
【氏名】小竹 智彦
(72)【発明者】
【氏名】橋本 慎太郎
(72)【発明者】
【氏名】井上 康雄
(72)【発明者】
【氏名】高根沢 伸
(72)【発明者】
【氏名】村井 曜
【審査官】
加賀 直人
(56)【参考文献】
【文献】
特開2007−131842(JP,A)
【文献】
特開平02−269159(JP,A)
【文献】
特開2000−323804(JP,A)
【文献】
国際公開第2010/110433(WO,A1)
【文献】
特開平03−221526(JP,A)
【文献】
特開昭53−001298(JP,A)
【文献】
特開昭60−243124(JP,A)
【文献】
特開平06−122765(JP,A)
【文献】
特開2008−095014(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 5/24
C08K 5/13
C08K 5/17
C08K 5/3415
C08K 5/3445
C08L 63/00
C08L 79/00
C08L 83/08
H05K 1/03
(57)【特許請求の範囲】
【請求項1】
(a)1分子構造中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物及び(b)1分子構造中に少なくとも1個のアミノ基を有するシリコーン化合物を含有する樹脂成分と、(f)無機充填材とを含有する樹脂組成物を用いたプリプレグであって、(f)無機充填材の含有量が、樹脂成分の総和100質量部当たり10〜70質量部であり、硬化物の30℃から100℃の平均熱膨張率が9.0ppm/℃以下である、プリプレグ。
【請求項2】
前記樹脂組成物が(c)分子構造中にフェノール性水酸基を有する化合物を含有する、請求項1に記載のプリプレグ。
【請求項3】
前記(c)成分が、分子構造中にアミノ基とフェノール性水酸基を有する化合物である、請求項2に記載のプリプレグ。
【請求項4】
前記(c)成分が多官能フェノール性樹脂である、請求項2に記載のプリプレグ。
【請求項5】
前記樹脂組成物が(d)熱硬化性樹脂を含有する、請求項1〜4のいずれか一項に記載のプリプレグ。
【請求項6】
前記(d)成分が、分子構造中にエポキシ基および/又はシアネート基を有する樹脂である、請求項5に記載のプリプレグ。
【請求項7】
前記(b)成分が、1分子構造中に少なくとも2個のアミノ基を有するシリコーン化合物である、請求項1〜6のいずれか一項に記載のプリプレグ。
【請求項8】
前記(b)成分が、両末端にアミノ基を有するシリコーン化合物である、請求項1〜6のいずれか一項に記載のプリプレグ。
【請求項9】
前記(b)成分が、どちらか一方の末端にアミノ基を有するシリコーン化合物である、請求項1〜6のいずれか一項に記載のプリプレグ。
【請求項10】
前記(b)成分が側鎖にアミノ基を有するシリコーン化合物である、請求項1〜6のいずれか一項に記載のプリプレグ。
【請求項11】
前記(b)成分が、側鎖及び、少なくとも一方の末端にアミノ基を有するシリコーン化合物である、請求項1〜6のいずれか一項に記載のプリプレグ。
【請求項12】
前記樹脂組成物が下記一般式(I)又は(II)で表される(e)硬化促進剤を含有する、請求項1〜11のいずれか一項に記載のプリプレグ。
【化1】
(式中、R
6、R
7、R
8、R
9はそれぞれ独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はフェニル基を示し、Dはアルキレン基又は芳香族炭化水素基である。)
【化2】
(式中、R
6、R
7、R
8、R
9は各々独立に水素原子、又は炭素数1〜5の脂肪族炭化水素基、フェニル基を示し、Bは単結合、又はアルキレン基、アルキリデン基、エーテル基、スルフォニル基のいずれかである。)
【請求項13】
(f)無機充填材が溶融球状シリカであり、その平均粒子径が0.1〜10μmである、請求項1〜12のいずれか一項に記載のプリプレグ。
【請求項14】
請求項1〜13のいずれか一項に記載のプリプレグを用いて積層成形して得られた積層板。
【請求項15】
請求項14に記載の積層板を用いて製造されたプリント配線板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁性や耐熱性などを有すると共に、特に低熱膨張性に優れ、電子部品等に用いられる樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板に関する。
【背景技術】
【0002】
近年の電子機器の小型化・高性能化の流れに伴い、プリント配線板では配線密度の高度化、高集積化が進展し、これにともなって、配線用積層板の耐熱性の向上による信頼性向上への要求が強まっている。このような用途においては、優れた耐熱性、低熱膨張係数を兼備することが要求されている。
【0003】
プリント配線板用積層板としては、エポキシ樹脂を主剤とした樹脂組成物とガラス織布とを硬化・一体成形したものが一般的である。一般にエポキシ樹脂は、絶縁性や耐熱性、コスト等のバランスに優れるが、近年のプリント配線板の高密度実装、高多層化構成にともなう耐熱性向上への要請に対応するには、どうしてもその耐熱性の
改善には限界がある。さらに、熱膨張率が大きいため、芳香環を有するエポキシ樹脂の選択やシリカ等の無機充填材を高充填化することで低熱膨張化を図っている(例えば、特許文献1参照)。
【0004】
特に近年、半導体用パッケージ基板では、小型化、薄型化に伴い、部品実装時やパッケージ組み立て時において、チップと基板との熱膨張率の差に起因した反りが大きな課題となっており、低熱膨張化が求められているが、充填量を増やすことは吸湿による絶縁信頼性の低下や樹脂−配線層の密着不足、プレス成形不良を起こすことが知られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平5−148343号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、こうした現状に鑑み、特に耐熱性、低熱膨張性に優れる樹脂組成物、及びこれを用いたプリプレグ、積層板、プリント配線板を提供することである。
【課題を解決するための手段】
【0007】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ポリビスマレイミド樹脂とアミノ基を有するシリコーン樹脂を含有する樹脂組成物が上記目的に沿うものであることを見出した。
【0008】
すなわち、本発明は、以下の樹脂組成物、プリプレグ積層板及びプリント配線板を提供する。
1.(a)1分子構造中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物と、(b)1分子構造中に少なくとも1個のアミノ基を有するシリコーン化合物を含有することを特徴とする樹脂組成物。
2.さらに、(c)分子構造中にフェノール性水酸基を有する化合物を含有する上記1の樹脂組成物。
3.さらに、(d)熱硬化性樹脂を含有する上記1又は2の樹脂組成物。
4.(b)成分が、1分子構造中に少なくとも2個のアミノ基を有するシリコーン化合物である上記1〜3いずれかの樹脂組成物。
5.(b)成分が、両末端にアミノ基を有するシリコーン化合物である上記1〜3いずれかの樹脂組成物。
6.(b)成分が、どちらか一方の末端にアミノ基を有するシリコーン化合物である上記1〜3いずれかの樹脂組成物。
7.(b)成分が側鎖にアミノ基を有するシリコーン化合物である上記1〜3のいずれかの樹脂組成物。
8.(b)成分が、側鎖及び、少なくとも一方の末端にアミノ基を有するシリコーン化合物である上記1〜3いずれかの樹脂組成物。
9.(c)成分が、分子構造中にアミノ基とフェノール性水酸基を有する化合物である上記1〜8いずれかの樹脂組成物。
10.(c)成分が多官能フェノール性樹脂である上記1〜9いずれかの樹脂組成物。
11.(d)成分が、分子構造中にエポキシ基および/又はシアネート基を有する樹脂である上記1〜10いずれかの樹脂組成物。
12.さらに、下記一般式(I)又は(II)で表される(e)硬化促進剤を含有する上記1〜11のいずれかの樹脂組成物。
【0009】
【化1】
(式中、R
6、R
7、R
8、R
9はそれぞれ独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はフェニル基を示し、Dはアルキレン基又は芳香族炭化水素基である。)
【0010】
【化2】
(式中、R
6、R
7、R
8、R
9は各々独立に水素原子、又は炭素数1〜5の脂肪族炭化水素基、フェニル基を示し、Bは単結合、又はアルキレン基、アルキリデン基、エーテル基、スルフォニル基のいずれかである。)
【0011】
13.さらに、(f)無機充填材を含有する上記1〜12いずれかの樹脂組成物。
14.上記1〜13いずれかの樹脂組成物を用いたプリプレグ。
15.上記14のプリプレグを用いて積層成形して得られた積層板。
16.上記15の積層板を用いて製造されたプリント配線板。
【発明の効果】
【0012】
本発明の樹脂組成物を基材に含浸又は塗工して得たプリプレグ、及び該プリプレグを積層成形することにより製造した積層板、及び該積層板を用いて製造した多層プリント配線板は、ガラス転移温度、熱膨張率、はんだ耐熱性、そり特性に優れ、電子機器用プリント配線板として有用である。
【発明を実施するための形態】
【0013】
以下、本発明について詳細に説明する。本発明は(a)1分子構造中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物と、(b)1分子構造中に少なくとも1個のアミノ基を有するシリコーン化合物を含有することを特徴とする樹脂組成物である。
【0014】
本発明の樹脂組成物のおける(a)成分の1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物としては、例えば、N,N’−エチレンビスマレイミド、N,N’−ヘキサメチレンビスマレイミド、N,N’−(1、3−フェニレン)ビスマレイミド、N,N’−[1,3−(2−メチルフェニレン)]ビスマレイミド、N,N’−[1,3−(4−メチルフェニレン)]ビスマレイミド、N,N’−(1,4−フェニレン)ビスマレイミド、ビス(4−マレイミドフェニル)メタン、ビス(3−メチル−4−マレイミドフェニル)メタン、3,3−ジメチル−5,5−ジエチル−4、4−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(マレイミドメチル)シクロヘキサン、1,4−ビス(マレイミドメチル)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、1,3-ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(3−マレイミドフェノキシ)フェニル]メタン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4−(3−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル] −1,1,1,3,3,3−ヘキサフルオロプロパン、4,4−ビス(3−マレイミドフェノキシ)ビフェニル、4,4−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、2,2’−ビス(4−マレイミドフェニル)ジスルフィド、ビス(4−マレイミドフェニル)ジスルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド(例えば大和化成(株)製、商品名:BMI−2300など)が挙げられ、これらのマレイミド化合物は、単独で用いても2種類以上を混合して用いてもよい。
【0015】
これらのマレイミド化合物の中で、反応率が高く、より高耐熱性化できるビス(4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)スルホン、N,N’−(1、3−フェニレン)ビスマレイミド、2、2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ポリフェニルメタンマレイミドが好ましく、溶剤への溶解性の点から、ビス(4−マレイミドフェニル)メタンが特に好ましい。
【0016】
(b)成分の1分子構造中に少なくとも1個のアミノ基を有するシリコーン化合物としては、1分子構造中に少なくとも2個のアミノ基を有するシリコーン化合物が好適に用いられ、上記のようなシリコーン構造の両末端にアミノ基を有するシリコーン化合物、どちらか一方の末端にアミノ基を有するシリコーン化合物や、側鎖にアミノ基を有するシリコーン化合物、側鎖及び、少なくとも一方の末端にアミノ基を有するシリコーン化合物が用いられる。
【0017】
(b)成分の1分子構造中に少なくとも1個のアミノ基を有するシリコーン化合物は、市販品を用いることができ、例えば「KF−8010」(アミン当量430)、「X−22−161A」(アミン当量800)、「X−22−161B」(アミン当量1500)、「KF−8012」(アミン当量2200)、「KF−8008」(アミン当量5700)、「X−22−9409」(アミン当量700)、「X−22−1660B−3」(アミン当量2200)(以上、信越化学工業(株)製)、「BY−16−853U」(アミン当量460)、「BY−16−853」(アミン当量650)、「BY−16−853B」(アミン当量2200)(以上、東レダウコーニング(株)製)が挙げられ、これらは単独で、あるいは2種類以上を混合して用いてもよい。これらの中で低吸水率の点からX−22−161A、X−22−161B、KF−8012、KF−8008、X−22−1660B−3、BY−16−853Bが好ましく、低熱膨張性の点からX−22−161A、X−22−161B、KF−8012が特に好ましい。これらは単独で、あるいは2種類以上を混合して用いてもよい。
【0018】
(b)成分の使用量は、(a)成分100質量部に対して5〜100質量部が好ましく、30〜50質量部がより好ましい。5質量部以上とすることにより低熱膨張が向上する。100質量部以下とすることにより成形性が向上する。
【0019】
本発明の樹脂組成物には、さらに(c)フェノール性水酸基を有する化合物を含有させることが好ましい。
(c)成分の分子構造中にフェノール性水酸基を有する化合物は、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4−ビフェニルフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル4,4−ビフェノール、ジメチル−4、4−ビフェニルフェノール、1−(4−ヒドロキシフェニル)−2−[4−(1,1−ビス−(4−ヒドロキシフェニル)エチル)フェニル]プロパン、2,2−メチレン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4−ブチリデン−ビス(3−メチル−6−tertブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、ジイソプロポリデン骨格を有するフェノール類、1,1−ジ−4−ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン、フェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂が挙げられる。
【0020】
また、(c)成分の分子構造中にアミノ基とフェノール性水酸基を有する化合物としては、例えば、m−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、o−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリンが挙げられる。これらは単独で、あるいは2種類以上を混合して用いてもよい。これらの中で、溶解性や合成の収率の点からm−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、及び3、5−ジヒドロキシアニリンが好ましく、耐熱性の点からm−アミノフェノール及びp−アミノフェノールがより好ましく、低熱膨張性の点からp−アミノフェノールが特に好ましい。
【0021】
(c)成分が分子構造中にアミノ基とフェノール性水酸基を有する化合物である場合、(a)成分の1分子構造中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物と有機溶剤中で、必要により加熱・保温しながら0.1〜10時間撹拌し、あらかじめ反応させておくことができる。
【0022】
この場合、(c)成分のアミノ基とフェノール性水酸基を有する化合物は、低熱膨張性の点からp−アミノフェノールが好ましい。ここで、(b)成分のシリコーン化合物と(c)成分のフェノール性水酸基を有するアミン化合物の使用量は、それらの−NH
2基当量の総和と(a)成分のマレイミド化合物のマレイミド基当量との関係が、次式:
2.0≦(マレイミド基当量)/(−NH
2基換算の当量)≦10.0
に示す範囲であることが望ましい。当量比が10.0を超えると溶剤への溶解性が不足したり積層板の耐熱性が低下する場合があり、2.0未満であるとゲル化を起こしたり、積層板の耐熱性が低下する場合がある。
【0023】
(c)成分の使用量は、上記関係式を満たした上で(a)成分100質量部に対して1〜50質量部が好ましく、5〜20質量部がより好ましい。1質量部以上とすることにより耐デスミア性が向上する。50質量部以下とすることにより耐熱性が向上する。
【0024】
この際の有機溶剤の使用量は、(a)成分と(c)成分の総和100質量部当たり、10〜1000質量部とすることが好ましく、100〜500質量部とすることがより好ましく、200〜500質量部とすることが特に好ましい。有機溶剤の配合量が少ないと溶解性が不足し、また1000質量部を超えると合成に長時間を要する。
この反応で使用される有機溶剤は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブが好ましく、低毒性である点からシクロヘキサノン、プロピレングリコールモノメチルエーテルがより好ましく、揮発性が高くプリプレグの製造時に残溶剤として残りにくいプロピレングリコールモノメチルエーテルが特に好ましい。
【0025】
また、この反応には、必要により任意に反応触媒を使用することができ、特に限定されない。反応触媒の例としては、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒等が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してもよい。
上記の(a)成分と(c)成分を有機
溶剤中で反応させる際、反応温度は70〜150℃であることが好ましく、100〜130℃であることがさらに好ましい。反応時間は0.1〜10時間であることが好ましく、1〜6時間であることがさらに好ましい。
【0026】
本発明の樹脂組成物には、さらに(d)熱硬化性樹脂を含有させることが好ましい。(d)成分の熱硬化性樹脂は、特に制限されないが、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、成形性や電気絶縁性の点からエポキシ樹脂、シアネート樹脂が好ましい。
【0027】
エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物およびこれらにリン化合物を導入したリン含有エポキシ樹脂が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してよい。これらの中で、耐熱性、難燃性の点からビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂が好ましい。
【0028】
また、シアネート樹脂としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂およびこれらが一部トリアジン化したプレポリマーを挙げることができ、これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で耐熱性、難燃性の点からノボラック型シアネート樹脂が好ましい。
【0029】
(d)成分の使用量は、(a)成分100質量部に対して20〜300質量部が好ましく、50〜150質量部がより好ましい。20質量部以上とすることにより耐熱性が向上し、300質量部以下とすることにより耐デスミア性が向上する。
【0030】
本発明の樹脂組成物には、耐熱性や難燃性、銅箔接着性等の向上化のため(e)硬化促進剤を用いることが望ましく、硬化促進剤の例としては、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩が挙げられる。
その中でもイミダゾール類及びその誘導体が耐熱性や難燃性、銅箔接着性等の点から好ましく、更に下記一般式(I)で表されるイソシアネート樹脂や、下記一般式(II)で表されるイミダゾール基がエポキシ樹脂によって置換された化合物によって置換された化合物が200℃以下での比較的低温での硬化成形性とワニスやプリプレグの経日安定性に優れるためより好ましく、具体的には下記式(III)又は式(IV)で表される化合物が少量の配合使用でよく、また商業的にも安価であることから特に好ましい。
【0031】
【化3】
(式中、R
6、R
7、R
8、R
9は各々独立に水素原子、又は炭素数1〜5の脂肪族炭化水素基、フェニル基を示し、Dはアルキレン基、芳香族炭化水素基である。)
【0032】
【化4】
(式中、R
6、R
7、R
8、R
9は各々独立に水素原子、又は炭素数1〜5の脂肪族炭化水素基、フェニル基を示し、Bは単結合、又はアルキレン基、アルキリデン基、エーテル基、スルフォニル基のいずれかである。)
【0035】
(e)硬化促進剤の使用量は、固形分換算の(a)〜(d)成分の総和100質量部当たり、0.1〜10質量部とすることが好ましく、0.1〜5質量部とすることがより好ましく、0.1〜1質量部とすることが特に好ましい。硬化促進剤の使用量を0.1質量部以上とすることにより優れた耐熱性や難燃性、銅箔接着性が得られ、また10質量部以下とすることにより耐熱性、経日安定性及びプレス成形性が低下しない。
【0036】
本発明の樹脂組成物には、任意に(f)無機充填材を併用することができる。無機充填材としては、シリカ、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、EガラスやTガラス、Dガラス等のガラス粉や中空ガラスビーズ等が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してもよい。
【0037】
これらの(f)成分の無機充填材中で、誘電特性、耐熱性、低熱膨張性の点からシリカが特に好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融球状シリカが挙げられる。これらの中で、低熱膨張性及び樹脂に充填した際の高流動性から溶融球状シリカが好ましい。
【0038】
(f)成分の無機充填材として溶融球状シリカを用いる場合、その平均粒子径は0.1〜10μmであることが好ましく、0.3〜8μmであることがより好ましい。該溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂に高充填した際の流動性を良好に保つことができ、さらに10μm以下にすることで、粗大粒子の混入確率を減らし粗大粒子起因の不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
【0039】
(f)無機充填材の含有量は、固形分換算の(a)〜(d)成分の総和100質量部当たり10〜70質量部であることが好ましく、30〜55質量部であることがより好ましい。無機充填材の含有量を樹脂成分の総和100質量部当たり10〜70質量部にすることで、樹脂組成物の成形性と低熱膨張性を良好に保つことができる。
【0040】
本発明では、その目的に反しない範囲内で、任意に公知の熱可塑性樹脂、エラストマー、難燃剤、有機充填材等の併用ができる。
熱可塑性樹脂の例としては、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂が挙げられる。
エラストマーの例としては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルが挙げられる。
有機充填材の例としては、シリコーンパウダー、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、並びにポリフェニレンエーテル等の有機物粉末が挙げられる。
【0041】
本発明において、任意に該樹脂組成物に対して、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び密着性向上剤等の添加も可能であり、特に限定されない。これらの例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物やシランカップリング剤等の密着性向上剤が挙げられる。
【0042】
本発明の樹脂組成物はワニスとして用いられる。ワニスを製造する際に使用される有機溶剤は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤が挙げられ、これらは単独で、あるいは2種類以上を混合して使用してもよい。これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブが好ましく、低毒性である点からシクロヘキサノン、プロピレングリコールモノメチルエーテルがより好ましく、揮発性が高くプリプレグの製造時に残溶剤として残りにくいプロピレングリコールモノメチルエーテルが特に好ましい。
ワニスは固形分濃度として40〜80質量%として使用することが好ましい。
【0043】
本発明のプリプレグは、前記した本発明の樹脂組成物を、基材に含浸又は塗工してなるものである。以下、本発明のプリプレグについて詳述する。
本発明のプリプレグは、本発明の樹脂組成物を、基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)して本発明のプリプレグを製造することができる。本発明の基材として、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物が挙げられる。
【0044】
これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマットの形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
【0045】
本発明のプリプレグは、該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて得ることができる。
【0046】
本発明の積層板は、前述の本発明のプリプレグを用いて、積層成形して、形成することができる。本発明のプリプレグを、例えば、1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
積層板を製造する際の成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、積層板を製造することもできる。
【0047】
本発明に係るプリント配線板は、前記積層板の表面に回路を形成して製造される。すなわち、本発明に係る積層板の導体層を通常のエッチング法によって配線加工し、前述のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化する。その後、ドリル加工又はレーザ加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。
【実施例】
【0048】
次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
なお、各実施例および比較例得られた銅張積層板を用いて、ガラス転移温度、熱膨張率、はんだ耐熱性、そり特性について以下の方法で測定・評価した。
【0049】
(1)ガラス転移温度(Tg)の測定
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用いて圧縮法で熱機械分析をおこなった。評価基板を前記装置にZ方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における熱膨張曲線の異なる接線の交点で示されるTgを求め、耐熱性を評価した。
(2)熱膨張率の測定
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用いて圧縮法で熱機械分析をおこなった。評価基板を前記装置にX方向に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定した。2回目の測定における30℃から100℃の平均熱膨張率を算出し、これを熱膨張率の値とした。
【0050】
(3)はんだ耐熱性の評価
5cm角の銅張積層板を作製し、温度288℃のはんだ浴に、評価基板を1分間浮かべた後、外観を観察することによりはんだ耐熱性を評価した。
【0051】
(4)そり量の評価
AKROMETRIX社製 サーモレイPS200シャドーモアレ分析を用いて、基板の反り量を評価した。基板のサンプルサイズは40mm×40mmとし、測定エリアは36mm×36mmとした。室温から260℃まで加熱し、その後50℃まで冷却した時のそり量を測定した。
【0052】
実施例1〜10、比較例1〜3
以下に示す(a)〜(d)成分と、(e)硬化促進剤、(f)無機充填材、及び希釈溶剤にメチルエチルケトンを使用して、第1表〜第3表に示した配合割合(質量部)で混合して樹脂分65質量%の均一なワニスを得た。
次に、上記ワニスを厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量50質量%のプリプレグを得た。
このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力2.5MPa、温度230℃で90分間プレスを行って、銅張積層板を得た。
得られた銅張積層板の測定・評価結果を第1表〜第3表に示す。
【0053】
(a)マレイミド化合物
ビス(4−マレイミドフェニル)メタン
3、3−ジメチル−5、5−ジエチル−4、4−ジフェニルメタンビスマレイミド
(b)シリコーン化合物
X−22−161A(信越化学工業(株)製、アミン当量800)
X−22−161B(信越化学工業(株)製、アミン当量1500)
KF−8012(信越化学工業(株)製、アミン当量2200)
(c)フェノール性水酸基を有する化合物
ビスフェノールA
p−アミノフェノール
(d)熱硬化性樹脂
ビフェニルアラルキル型エポキシ樹脂(日本化薬(株)製、商品名:NC−3000−H)
ノボラック型シアネート樹脂(ロンザンジャパン(株)製、商品名:PT−30)
(e)硬化促進剤:G−8009L(ヘキサメチレンジイソシアネート樹脂と2−エチル−4−メチルイミダゾールの付加反応物:前記の式(III)で表される化合物)
(f)無機充填材:溶融シリカ((株)アドマテックス製、商品名:SC−2050KNK)
その他の化合物
ジアミノジフェニルメタン(比較例)
2、2−ビス[4−(アミノフェノキシ)フェニル]プロパン(比較例)
【0054】
【表1】
【0055】
【表2】
【0056】
【表3】
【0057】
第1表〜第3表から明らかなように、本発明の実施例では、ガラス転移温度、熱膨張率、はんだ耐熱性、そり特性に優れている。一方、比較例は、ガラス転移温度、熱膨張率、はんだ耐熱性、そり特性において実施例と比較し、いずれかの特性に劣っている。
【産業上の利用可能性】
【0058】
本発明の樹脂組成物より得られるプリプレグを積層成形した積層板を用いて製造されるプリント配線板は、ガラス転移温度、熱膨張率、はんだ耐熱性、そり特性に優れ、高集積化された電子機器用プリント配線板として有用である。