特許第6176295号(P6176295)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立化成株式会社の特許一覧

<>
  • 特許6176295-導電パターンの形成方法 図000003
  • 特許6176295-導電パターンの形成方法 図000004
  • 特許6176295-導電パターンの形成方法 図000005
  • 特許6176295-導電パターンの形成方法 図000006
  • 特許6176295-導電パターンの形成方法 図000007
  • 特許6176295-導電パターンの形成方法 図000008
  • 特許6176295-導電パターンの形成方法 図000009
  • 特許6176295-導電パターンの形成方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6176295
(24)【登録日】2017年7月21日
(45)【発行日】2017年8月9日
(54)【発明の名称】導電パターンの形成方法
(51)【国際特許分類】
   H05K 3/02 20060101AFI20170731BHJP
   H05K 3/06 20060101ALI20170731BHJP
【FI】
   H05K3/02 B
   H05K3/06 E
【請求項の数】4
【全頁数】21
(21)【出願番号】特願2015-164825(P2015-164825)
(22)【出願日】2015年8月24日
(62)【分割の表示】特願2014-509171(P2014-509171)の分割
【原出願日】2013年4月2日
(65)【公開番号】特開2016-6901(P2016-6901A)
(43)【公開日】2016年1月14日
【審査請求日】2016年3月25日
(31)【優先権主張番号】特願2012-85523(P2012-85523)
(32)【優先日】2012年4月4日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】日立化成株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100160897
【弁理士】
【氏名又は名称】古下 智也
(72)【発明者】
【氏名】田仲 裕之
(72)【発明者】
【氏名】山崎 宏
(72)【発明者】
【氏名】五十嵐 由三
(72)【発明者】
【氏名】伊藤 豊樹
(72)【発明者】
【氏名】太田 絵美子
【審査官】 小林 大介
(56)【参考文献】
【文献】 特開2001−203436(JP,A)
【文献】 特開平04−039816(JP,A)
【文献】 国際公開第2010/021224(WO,A1)
【文献】 特開平06−162820(JP,A)
【文献】 特開2011−198736(JP,A)
【文献】 特開2003−086910(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 3/02
H05K 3/06
H01B 5/14
H01B 13/00
(57)【特許請求の範囲】
【請求項1】
基板上に樹脂硬化層及び導電層を含む導電パターンを形成する方法であって、
支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂を含有する感光性樹脂層と、をこの順に備える感光性導電フィルムを用意し、基材上に前記導電層が密着するように前記導電層及び前記感光性樹脂層をラミネートするラミネート工程と、
前記基材上の前記感光性樹脂層を露光及び現像することにより導電パターンを形成するパターニング工程と、
を備える、導電パターンの形成方法。
【請求項2】
前記導電性繊維が銀繊維である、請求項1に記載の導電パターンの形成方法。
【請求項3】
前記導電性繊維がカーボンナノチューブである、請求項1に記載の導電パターンの形成方法。
【請求項4】
前記導電パターンが配線又は静電容量式タッチパネルの透明電極である、請求項1〜3のいずれか一項に記載の導電パターンの形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導電パターンの形成方法及び導電パターン基板に関し、特に液晶表示素子等のフラットパネルディスプレイ、タッチパネル(タッチスクリーン)、太陽電池、照明等の装置の電極配線として用いられる導電パターンの形成方法及び導電パターン基板に関する。
【背景技術】
【0002】
パソコン、テレビ等の大型電子機器、カーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA、FA機器等の表示機器などには、液晶表示素子、タッチパネル等が使用されているものが普及している。これらの液晶表示素子、タッチパネルには、透明であることが要求される配線、画素電極又は端子の一部に透明導電膜が使用されている。また、太陽電池、照明等のデバイスなどでも透明導電膜が使用されている。
【0003】
従来、透明導電膜用材料には、可視光に対して高い透過率を示すことから、酸化インジウムスズ(Indium−Tin−Oxide:ITO)、酸化インジウム及び酸化スズ等が用いられている。液晶表示素子用基板等に設けられた電極は、上記の材料からなる透明導電膜をパターニングしたものが主流になっている。
【0004】
透明導電膜のパターニング方法としては、基板等の基材上に透明導電膜を形成した後、フォトリソグラフィー法によりレジストパターンを形成し、ウエットエッチングにより導電膜の所定部分を除去して導電パターンを形成する方法が一般的である。ITO膜及び酸化インジウム膜の場合、エッチング液は塩酸と塩化第二鉄の2液よりなる混合液がよく用いられている。
【0005】
ITO膜、酸化スズ膜等は一般にスパッタ法により形成されるが、スパッタ方式の違い、スパッタパワー、ガス圧、基板温度、雰囲気ガスの種類等によって透明導電膜の性質が変わりやすい。スパッタ条件の変動による透明導電膜の膜質の違いは、透明導電膜をウエットエッチングする際のエッチング速度のばらつきの原因となり、パターンニング不良による製品の歩留まり低下を招きやすい。また、上記の導電パターンの形成方法は、スパッタ工程、レジスト形成工程及びエッチング工程を有しており、工程が長く、コスト面でも大きな負担となっている。
【0006】
最近、上記の問題を解消するために、ITO、酸化インジウム及び酸化スズ等に替わる材料を用いて透明な導電パターンを形成する試みがなされている。例えば、下記特許文献1には、銀繊維等の導電性繊維を含有する導電層を基板上に形成した後、導電層上に感光性樹脂層を形成し、その上からパターンマスクを介して露光し、現像する導電パターンの形成方法が開示されている。
【0007】
特許文献2には、支持体上の剥離可能な導電層と、導電層上の接着剤層とを少なくとも含む転写用導電性フィルムを用い、この接着剤層を介して基板に導電層を貼りつける方法が開示されており、転写後の導電層がパターニングされてもよいことが開示されている。
【0008】
特許文献3には、支持フィルム上に設けられた導電層と、該導電層上に設けられた感光性樹脂層とを備える感光性導電フィルムを用い、感光性樹脂層が基板に密着するようにラミネートする方法をとることで、導電パターンを形成することができる導電パターンの形成方法が開示されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許出願公開第2007/0074316号明細書
【特許文献2】特開2007−257963号公報
【特許文献3】国際公開第2010/021224号
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、特許文献1及び2に記載の方法では、導電パターン形成の工程が煩雑化するという問題がある。
【0011】
一方、特許文献3に記載の方法は、より簡便に導電パターンを形成できる方法であるが、基板と導電層との間に感光性樹脂層が介在することとなるため、基板表面に設けられる接続端子等と導電パターンとを簡便に接続することができない。上記問題は、特許文献2に記載の方法においても生じる。
【0012】
本発明は、基材上に、表面抵抗率が充分小さい導電パターンを充分な解像度で簡便に形成することができる導電パターンの形成方法及び導電パターン基板を提供することを目的とする。
【課題を解決するための手段】
【0013】
上記課題を解決するため本発明は、支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂を含有する感光性樹脂層と、をこの順に備える感光性導電フィルムを用意し、基材上に導電層が密着するように導電層及び感光性樹脂層をラミネートするラミネート工程と、上記基材上の感光性樹脂層を露光及び現像することにより導電パターンを形成するパターニング工程と、を備える、導電パターンの形成方法を提供する。
【0014】
本発明の導電パターンの形成方法によれば、基材上に、表面抵抗率が充分小さい導電パターンを充分な解像度で簡便に形成することができる。また、基板表面に設けられる接続端子等と導電パターンとを簡便に接続することが可能となる。
【0015】
本発明が、上記効果を奏する詳細な理由は必ずしも明らかではないが、導電性繊維を含有する導電層と感光性樹脂層とを積層することにより、基材上に導電層側からラミネートする際に導電層に感光性樹脂層が適度に含浸することで、導電層の感光性樹脂層とは反対側の面に貼付性が得られ、その後の露光・現像において充分な解像度でパターニングが可能になったものと本発明者らは推察している。
【0016】
上記感光性樹脂層は、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物及び光重合開始剤を含有することが好ましい。感光性樹脂層が、このような成分を含有することで、貼付性、基材と導電パターンとの接着性、及び導電パターンのパターンニング性を更に向上させることができる。
【0017】
上記バインダーポリマーはカルボキシル基を有することが好ましい。カルボキシル基を有するバインダーポリマーを含有することで、上記感光性樹脂層の現像性を向上させることができる。
【0018】
本発明の導電パターンの形成方法において、上記導電層及び上記感光性樹脂層の積層体は、450〜650nmの波長域における最小光透過率を80%以上とすることができる。導電層及び感光性樹脂層がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。
【0019】
上記導電性繊維は銀繊維であってもよい。銀繊維であることにより、形成される導電パターンの導電性の調整がより容易となる。
【0020】
本発明はまた、基板と、本発明の導電パターンの形成方法により基板上に形成された導電パターンと、を備える導電パターン基板を提供する。
【0021】
かかる導電パターン基板は、本発明の導電パターンの形成方法により導電パターンが形成されているため、表面抵抗率が充分に小さく、且つ充分な解像度で形成された導電パターンを備えることができる。また、形成された導電パターンは、基板表面に設けられる接続端子等との導通をとることができる。
【0022】
上記導電パターン基板において、導電パターンの表面抵抗率が2000Ω/□以下であることが好ましい。導電パターンの表面抵抗率をこのような範囲とすることで、配線又は電極としてより有効に機能させることができる。
【発明の効果】
【0023】
本発明によれば、基材上に、表面抵抗率が充分小さい導電パターンを充分な解像度で簡便に形成することができる導電パターンの形成方法及び導電パターン基板を提供することができる。また、本発明によれば、基材表面に設けられる接続端子等と導電パターンとを簡便に接続することが可能となる。さらに、本発明の導電パターンの形成方法によれば、基材と導電層との接着性も充分なものとすることができ、得られる導電パターンの基板との接着性も充分なものとすることができる。
【0024】
また、本発明によれば、対象物上に直接導電パターンを形成できるため、立体的な導通配線を簡便に形成することができる。例えば、既作製の導電パターンが設けられた基材上に、導電パターンの所定部分に絶縁樹脂等で絶縁膜を形成した後、感光性導電フィルムをラミネートし、導電パターンを形成することで、絶縁膜で被覆されていない既作製の導電パターンと新たに形成された導電パターンとの導通を図りつつ、絶縁膜部分においては導電パターンの交差部(ブリッジ部)を設けることができる。この場合、既作製の導電パターンは、ITO等の酸化物導電体、Cu等の金属などを用いることができ、これらの導電パターンと容易に導通をとることができる。
【図面の簡単な説明】
【0025】
図1】感光性導電フィルムの一例を示す模式断面図である。
図2】感光性導電フィルムの製造方法の一例を示す模式断面図である。
図3】本発明の導電パターンの形成方法の一実施形態を説明するための模式断面図であり、(a)はラミネート工程を示す模式断面図であり、(b)は感光性フィルムを転写してなる積層体を示す模式断面図であり、(c)は露光工程を示す模式断面図であり、(d)は現像工程を示す模式断面図である。
図4】透明電極が同一平面に存在する静電容量式タッチパネルの一例を示す平面図である。
図5】透明電極が同一平面に存在する静電容量式タッチパネルの一例を示す一部切欠き斜視図である。
図6図5中のVI−VI線に沿った部分断面図である。
図7】透明電極が同一平面に存在する静電容量式タッチパネルの製造方法の一例を説明するための図であり、(a)は透明電極を備える基板を示す一部切欠き斜視図であり、(b)は得られる静電容量式タッチパネルを示す一部切欠き斜視図である。
図8】透明電極が同一平面に存在する静電容量式タッチパネルの製造方法の一例を説明するための図であり、(a)は図7中のVIIIa−VIIIa線に沿った部分断面図であり、(b)は絶縁膜を設ける工程を示す部分断面図であり、(c)は図7中のVIIIc−VIIIc線に沿った部分断面図である。
【発明を実施するための形態】
【0026】
以下、本発明の好適な実施形態について詳細に説明する。なお、本明細書における「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」を意味する。同様に「(メタ)アクリル」とは、「アクリル」及び「メタクリル」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及び「メタクリロイル」を意味する。
【0027】
本実施形態に係る導電パターンの形成方法は、支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂を含有する感光性樹脂層と、をこの順に備える感光性導電フィルムを用意し、基材上に導電層が密着するように導電層及び感光性樹脂層をラミネートするラミネート工程と、上記基材上の感光性樹脂層を露光及び現像することにより導電パターンを形成するパターニング工程と、を備える。
【0028】
本明細書において、導電層と感光性樹脂層との境界は必ずしも明確になっている必要はない。導電層は感光層の面方向に導電性が得られるものであればよく、導電層に感光性樹脂層が混じり合った態様であってもよい。例えば、導電層中に感光性樹脂層を構成する組成物が含浸されていたり、感光性樹脂層を構成する組成物が導電層の表面に存在していたりしてもよい。
【0029】
図1は、感光性導電フィルムの一例を示す模式断面図である。図1に示す感光性導電フィルム10は、第一のフィルム(支持フィルム)1と、第一のフィルム1上に設けられた感光層4と、感光層4上に設けられた第二のフィルム(カバーフィルム)5を備える。感光層4は、支持フィルム1上に設けられた導電性繊維を含有する導電層2と、導電層2上に設けられた感光性樹脂層3とから構成されている。
【0030】
以下、感光性導電フィルム10を構成する支持フィルム1、導電性繊維を含有する導電層2、感光性樹脂層3及びカバーフィルム5のそれぞれについて詳細に説明する。
【0031】
支持フィルム1としては、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムが挙げられる。これらのうち、透明性、耐熱性等の観点からは、ポリエチレンテレフタレートフィルム及びポリプロピレンフィルムが好ましい。
【0032】
上記の重合体フィルムは、後に導電層2からのはく離が容易となるよう、離型処理されたものであることが好ましい。
【0033】
本実施形態においては、支持フィルム1がカバーフィルム5より優先的にはく離するようにすることができる。そのためには、カバーフィルム5と感光性樹脂層3との接着強度が、導電層2と支持フィルム1との接着強度よりも大きいことが好ましい。これらの重合体フィルムは、カバーフィルム5よりもはく離されやすいように、厚さの調整、材質の選択及び表面処理が施されたものであることが好ましい。厚さを調整する場合は、支持フィルム1の厚さとカバーフィルム5の厚みとの比は、1:1〜1:10であることが好ましく、1:1.5〜1:5であることが好ましく。1:2〜1:5であることがより好ましい。
【0034】
支持フィルム1の厚さは、5〜100μmであることが好ましく、10〜50μmであることがより好ましく、15〜25μmであることが特に好ましい。支持フィルム1の厚さを5μm以上とすることにより、より充分な機械的強度を得ることができる。例えば、導電層2を形成するための導電性繊維分散液又は感光性樹脂層3を形成するための感光性樹脂組成物を塗工する工程において、支持フィルムの破れ等が生じ難く、取扱性に優れる。支持フィルム1の厚さを100μm以下とすることにより、支持フィルム1と導電層2のはく離強度を適度なものとすることができ、はく離しやすくなる。
【0035】
導電層2に含有される導電性繊維としては、金、銀、白金等の金属繊維、及びカーボンナノチューブ等の炭素繊維などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。導電性の観点からは、金繊維及び/又は銀繊維を用いることが好ましく、形成される導電パターンの導電性を容易に調整できる観点からは、銀繊維を用いることがより好ましい。金繊維及び銀繊維は、1種を単独で又は2種以上を組み合わせて用いることができる。
【0036】
上記の金属繊維は、例えば、金属イオンをNaBH等の還元剤で還元する方法、又は、ポリオール法により調製することができる。また、上記カーボンナノチューブは、Unidym社のHipco単層カーボンナノチューブなどの市販品を使用することができる。
【0037】
導電性繊維の繊維径は、1〜50nmであることが好ましく、2〜20nmであることがより好ましく、3〜10nmであることが特に好ましい。また、導電性繊維の繊維長は、1〜100μmであることが好ましく、2〜50μmであることがより好ましく、3〜10μmであることが特に好ましい。繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。
【0038】
導電層2の厚さは、本発明の感光性導電フィルムを用いて形成される導電パターン又はその用途、求められる導電性等によっても異なるが、1μm以下であることが好ましく、1nm〜0.5μmであることがより好ましく、5nm〜0.1μmであることが特に好ましい。導電層2の厚さが1μm以下であると、450〜650nmの波長域での光透過率が高く、パターン形成性にも優れ、特に透明電極の作製に好適なものとなる。導電層2の厚さは、走査型電子顕微鏡写真によって測定される値を指す。
【0039】
導電層2は、導電性繊維同士が接触してなる網目構造を有することが好ましい。このような網目構造を有する導電層2は、感光性樹脂層3の支持フィルム側表面に形成されていてもよいが、支持フィルムをはく離したときに露出する表面においてその面方向に導電性が得られるのであれば、感光性樹脂層3の支持フィルム側表層に含まれる形態で形成されていてもよい。
【0040】
導電性繊維を含有する導電層2は、例えば、上述した導電性繊維を水及び/又は有機溶剤と、必要に応じて界面活性剤等の分散安定剤などとを加えた導電性繊維分散液を、支持フィルム1上に塗工した後、乾燥することにより形成することができる。また、乾燥後、形成された導電層2を更に加圧してもよい。導電層を加圧形成することにより、導電性繊維間の接点が増加し、導電性を向上させることができる。この際の線圧としては、0.6〜2.0MPaであることが好ましく、1.0〜1.5MPaであることがより好ましい。導電層2において、導電性繊維は界面活性剤、分散安定剤等と共存していてもかまわない。
【0041】
塗工は、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、及びスプレーコート法等の公知の方法で行うことができる。また、乾燥は、30〜150℃で1〜30分間程度、熱風対流式乾燥機等で行うことができる。
【0042】
感光性樹脂層3としては、(A)バインダーポリマー、(B)エチレン性不飽和結合を有する光重合性化合物及び(C)光重合開始剤を含有する感光性樹脂組成物から形成されるものが挙げられる。
【0043】
(A)バインダーポリマーとしては、アクリル系樹脂、スチレン系樹脂、エポキシ系樹脂、アミド系樹脂、アミドエポキシ系樹脂、アルキド系樹脂、フェノール系樹脂等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。(A)バインダーポリマーは、重合性単量体をラジカル重合させること等により製造することができる。
【0044】
上記重合性単量体としては、スチレン、ビニルトルエン、α−メチルスチレン等のα−位又は芳香族環において置換されている重合可能なスチレン誘導体;ジアセトンアクリルアミド等のアクリルアミド;アクリロニトリル;ビニル−n−ブチルエーテル等のビニルアルコールのエーテル類;(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、(メタ)アクリル酸、α−ブロモアクリル酸、α−クロルアクリル酸、β−フリルアクリル酸、β−スチリルアクリル酸、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル、マレイン酸シクロヘキシル等のマレイン酸モノエステル、フマール酸、ケイ皮酸、α−シアノケイ皮酸、イタコン酸、クロトン酸、プロピオール酸などが挙げられる。
【0045】
上記(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸ペンチルエステル、(メタ)アクリル酸ヘキシルエステル、(メタ)アクリル酸ヘプチルエステル、(メタ)アクリル酸オクチルエステル、(メタ)アクリル酸2−エチルヘキシルエステル、(メタ)アクリル酸ノニルエステル、(メタ)アクリル酸デシルエステル、(メタ)アクリル酸ウンデシルエステル、(メタ)アクリル酸ドデシルエステル、(メタ)アクリル酸ジシクロペンタニル等が挙げられる。
【0046】
上記(メタ)アクリル酸アリールエステルとしては、(メタ)アクリル酸ベンジル等が挙げられる。
【0047】
上記重合性単量体としては、その他には、2官能の(メタ)アクリル酸エステル等が挙げられる。具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
【0048】
本実施形態において、(A)バインダーポリマーは、(a)(メタ)アクリル酸、及び(b)(メタ)アクリル酸アルキルエステルに由来する構成単位を含有する共重合体が好適である。
【0049】
(A)バインダーポリマーは、アルカリ現像性をより良好にする観点から、カルボキシル基を有することが好ましい。このようなバインダーポリマーを得るためのカルボキシル基を有する重合性単量体としては、上述したような(メタ)アクリル酸等が挙げられる。
【0050】
(A)バインダーポリマーが有するカルボキシル基の比率は、バインダーポリマーを得るために使用する全重合性単量体に対するカルボキシル基を有する重合性単量体の割合として、10〜50質量%であることが好ましく、12〜40質量%であることがより好ましく、15〜30質量%であることが特に好ましく、15〜25質量%であることが極めて好ましい。アルカリ現像性に優れる点では10質量%以上であることが好ましく、アルカリ耐性に優れる点では、50質量%以下であることが好ましい。
【0051】
(A)バインダーポリマーの重量平均分子量は、10000〜200000であることが好ましいが、解像度の見地から、15000〜150000であることが好ましく、30000〜150000であることがより好ましく、30000〜100000であることがさらに好ましい。なお、重量平均分子量の測定条件は本願明細書の実施例と同一の測定条件とする。
【0052】
(B)成分である光重合性化合物としては、エチレン性不飽和結合を有する光重合性化合物を用いることができる。
【0053】
エチレン性不飽和結合を有する光重合性化合物としては、一官能ビニルモノマー、二官能ビニルモノマー、少なくとも3つの重合可能なエチレン性不飽和結合を有する多官能ビニルモノマー等が挙げられる。
【0054】
上記一官能ビニルモノマーとしては、例えば、上記(A)成分の好適な例である共重合体の合成に用いられるモノマーとして例示した(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及びそれらと共重合可能なモノマーが挙げられる。
【0055】
上記二官能ビニルモノマーとしては、ポリエチレングリコールジ(メタ)アクリレート(エトキシ基の数が2〜14のもの)、トリメチロールプロパンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2〜14のもの);ビスフェノールAポリオキシエチレンジ(メタ)アクリレート(2,2−ビス(4−(メタ)アクリロキシポリエトキシフェニル)プロパン)、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート;多価カルボン酸(無水フタル酸等)と水酸基及びエチレン性不飽和結合を有する物質(β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート等)とのエステル化物等が挙げられる。上記のビスフェノールAポリオキシエチレンジメタクリレートとしては、ビスフェノールAジオキシエチレンジアクリレート、ビスフェノールAジオキシエチレンジメタクリレート、ビスフェノールAトリオキシエチレンジアクリレート、ビスフェノールAトリオキシエチレンジメタクリレート、ビスフェノールAペンタオキシエチレンジアクリレート、ビスフェノールAペンタオキシエチレンジメタクリレート、ビスフェノールAデカオキシエチレンジアクリレート、ビスフェノールAデカオキシエチレンジメタクリレート等が挙げられる。
【0056】
上記少なくとも3つの重合可能なエチレン性不飽和結合を有する多官能ビニルモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多価アルコールにα,β−不飽和カルボン酸を反応させて得られる化合物;トリメチロールプロパントリグリシジルエーテルトリアクリレート等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物などが挙げられる。
【0057】
(C)光重合開始剤としては、ベンゾフェノン、N,N,N’,N’−テトラメチル−4,4’−ジアミノベンゾフェノン(ミヒラーケトン)、N,N,N’,N’−テトラエチル−4,4’−ジアミノベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパノン−1等の芳香族ケトン;2−エチルアントラキノン、フェナントレンキノン、2−tert−ブチルアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノン、2,3−ベンズアントラキノン、2−フェニルアントラキノン、2,3−ジフェニルアントラキノン、1−クロロアントラキノン、2−メチルアントラキノン、1,4−ナフトキノン、9,10−フェナントラキノン、2−メチル1,4−ナフトキノン、2,3−ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;1,2−オクタンジオン,1−[4−(フェニルチオ)フェニル−,2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)等のオキシムエステル化合物;2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド等のホスフィンオキサイド化合物;ベンジルジメチルケタール等のベンジル誘導体;2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等のアクリジン誘導体;N−フェニルグリシン、N−フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物などが挙げられる。また、2つの2,4,5−トリアリールイミダゾールのアリール基の置換基は同一で対称な化合物を与えてもよいし、相違して非対称な化合物を与えてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。
【0058】
これらの中でも、形成する感光性樹脂層の透明性、及び薄膜としたときのパターン形成能から、オキシムエステル化合物又はホスフィンオキサイド化合物が好ましい。
【0059】
上記(A)バインダーポリマーの配合量は、(A)バインダーポリマー及び(B)エチレン性不飽和結合を有する光重合性化合物の総量100質量部に対して、40〜80質量部であることが好ましく、50〜70質量部であることがより好ましい。この配合量を40質量部以上とすることにより、塗膜性(塗工性)に優れ、樹脂が感光性導電フィルム(感光性エレメント)の端部から染み出す現象(エッジフュージョンとも呼ばれる)をより抑制することができる。また、この配合量を80質量部以下とすることにより、感度を向上させることができ、且つ充分な機械強度を得ることができる。
【0060】
上記(B)エチレン性不飽和結合を有する光重合性化合物の配合量は、(A)バインダーポリマー及び(B)エチレン性不飽和結合を有する光重合性化合物の総量100質量部に対して、20〜60質量部であることが好ましく、30〜50質量部であることがより好ましい。この配合量を20質量部以上とすることにより、感度を向上させることができ、充分な機械強度を得ることができる。また、この配合量を60質量部以下とすることで、塗膜性(塗工性)に優れ、エッジフュージョンをより抑制することができる。
【0061】
上記(C)光重合開始剤の配合量は、(A)バインダーポリマー及び(B)エチレン性不飽和結合を有する光重合性化合物の総量100質量部に対して、0.1〜20質量部であることが好ましく、0.2〜10質量部であることがより好ましい。この配合量が0.1質量部以上とすることにより、感度を向上させることができる。この配合量が20質量部以下とすることにより、露光による感光性樹脂層の硬化をより均一に行うことができる。
【0062】
本発明における感光性樹脂組成物には、必要に応じて、マラカイトグリーン等の染料、トリブロモメチルフェニルスルホン、ロイコクリスタルバイオレット等の光発色剤、熱発色防止剤、p−トルエンスルホンアミド等の可塑剤、顔料、充填剤、消泡剤、難燃剤、安定剤、密着性付与剤、レベリング剤、はく離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤などを添加させることができる。これらの添加剤の添加量は、(A)バインダーポリマー及び(B)光重合性化合物の総量100質量部に対して各々0.01〜20質量部程度含有することができる。これらは、単独で又は2種類以上を組み合わせて使用される。
【0063】
感光性樹脂層3は、支持フィルム1上に形成された導電層2上に、必要に応じて、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N−ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶剤又はこれらの混合溶剤に溶解した、固形分10〜60質量%程度の感光性樹脂組成物の溶液を塗工した後、乾燥することにより形成できる。但し、この場合、乾燥後の感光性樹脂層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止するため、2質量%以下であることが好ましい。
【0064】
塗工は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。塗工後、有機溶剤等を除去するための乾燥は、70〜150℃で5〜30分間程度、熱風対流式乾燥機等で行うことができる。
【0065】
感光性樹脂層3の厚さは、用途により異なるが、乾燥後の厚さで0.05〜50μmであることが好ましく、0.05〜15μmであることがより好ましく、0.1〜10μmであることがさらに好ましく、0.1〜8μmであることが特に好ましく、0.1〜5μmであることが極めて好ましい。この厚さを0.05μm以上とすることにより、塗工による感光性樹脂層3の形成が容易となる。また、50μm以下とすることにより、光透過性が良好であり、充分な感度を得ることができ、且つ転写後の感光層の光硬化性を優れたものとすることができる。
【0066】
カバーフィルム5としては、支持フィルム1として用いることが可能な重合体フィルムとして例示したものが挙げられる。その際、支持フィルム1が、カバーフィルム5よりも優先してはく離されるように、支持フィルム及びカバーフィルムの膜厚制御、表面処理等により調整されることが好ましい。
【0067】
カバーフィルム5の厚さは、10〜200μmであることが好ましく、15〜150μmであることがより好ましく、15〜100μmであることが特に好ましい。
【0068】
カバーフィルム5のヘーズ値は、感度及び解像度を良好にできる観点から、0.01〜5.0%であることが好ましく、0.01〜3.0%であることがより好ましく、0.01〜2.0%であることがさらに好ましく、0.01〜1.0%であることが特に好ましい。なお、ヘーズ値はJIS K 7105に準拠して測定することができ、NDH−1001DP(日本電色工業株式会社製、商品名)等の市販の濁度計などで測定が可能である。
【0069】
本実施形態に係る感光性導電フィルムについて、支持フィルム上に導電層、感光性樹脂層を順次塗布、形成する製造方法を記載したが、感光性導電フィルムの製造方法はこれに限られるものでない。図2は、感光性導電フィルムの製造方法の一例を示す模式断面図である。図2に示す製造方法においては、導電層2を第一のフィルム(支持フィルム)1上に形成し、別途、感光性樹脂層3を第二のフィルム(カバーフィルム)5上に形成することを特徴とする。このようにして得られる2つのフィルムを、導電層2と感光性樹脂層3とが積層されるようにローラ50によりラミネートすることで、感光性導電フィルムを製造する。この製造方法によれば、導電層と感光性樹脂層とを別々に形成することから、溶液を重ねて塗布する製造方法に比べて、各層内の構造(例えば、導電層の網目構造)の制御がより容易となる。この際の、導電層を形成したフィルム及び/又は感光性樹脂層を形成したフィルムを60〜130℃に加熱してラミネートすることが好ましく、圧着圧力は0.2〜0.8MPa程度とすることが好ましい。
【0070】
本実施形態において、上記導電層2及び上記感光性樹脂層3の積層体(感光層4)は、450〜650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。感光層4がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。また、感光層4を構成する上記導電層2及び上記感光性樹脂層3の両層の合計膜厚を1〜10μmとしたときに450〜650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。導電層及び感光性樹脂層がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。
【0071】
感光性導電フィルムは、支持フィルム若しくはカバーフィルム上、又は両フィルム上に、接着層、ガスバリア層等の層を更に有していてもよい。
【0072】
感光性導電フィルムは、例えば、そのままの平板状の形態で、又は、円筒状などの巻芯に巻きとりロール状の形態で貯蔵することができる。
【0073】
巻芯としては、従来用いられているものであれば特に限定されず、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体)等のプラスチックが挙げられる。またロール状に巻き取られた感光性導電フィルムの端面には、端面保護の観点から端面セパレータを設置することが好ましく、加えて耐エッジフュージョンの観点から防湿端面セパレータを設置することが好ましい。また、感光性導電フィルムを梱包する際には、透湿性の小さいブラックシートに包んで包装することが好ましい。
【0074】
<導電パターンの形成方法>
図3は、本実施形態に係る導電パターンの形成方法を説明するための模式断面図である。本実施形態の方法は、上述した感光性導電フィルム10を、支持フィルム1をはく離し、基材20上に導電層2が密着するようにラミネートするラミネート工程(図3(a)及び(b))と、基材上の感光層を露光及び現像することにより導電パターンを形成するパターンニング工程とを備える(図3(c)及び(d))。パターニング工程は、カバーフィルム5を有する感光層4の所定部分に活性光線を照射する露光工程(図3(c))と、その後、カバーフィルム5をはく離して感光層4を現像する現像工程(図3(d))とからなる。
【0075】
基材20としては、ガラス基板、ポリカーボネート等のプラスチック基板などの基板を用いることができる。基材20の厚さは、使用の目的に応じて適宜選択することができ、フィルム状の基材を用いてもよい。フィルム状の基材としては、例えば、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、シクロオレフィンポリマフィルムが挙げられる。基材20としては、既にITO等により透明電極等が形成された基板を用いることができる。基材20は、450〜650nmの波長域での最小光透過率が80%以上であるものが好ましい。基材20が、このような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。
【0076】
ラミネート工程は、例えば、感光性導電フィルム10の支持フィルム1を除去した後、加熱しながら導電層2側をガラス基板等の基材20に圧着して積層する方法により行なわれる。なお、この作業は、密着性及び追従性の見地から減圧下で積層することが好ましい。感光性導電フィルム10の積層は、導電層2並びに感光性樹脂層3及び/又は基材20を70〜130℃に加熱することが好ましく、これらの条件には特に制限はない。また、導電層2及び感光性樹脂層3を上記のように70〜130℃に加熱すれば、予め基材20を予熱処理することは必要ではないが、積層性をさらに向上させるために基材20の予熱処理を行うこともできる。
【0077】
上記感光性導電フィルム10の積層は、圧着圧力が、0.1〜1.0MPa程度(1〜10kgf/cm程度)であることが好ましく、0.2〜0.8MPaであることがより好ましい。
【0078】
露光工程では、活性光線を照射することによって感光性樹脂層が硬化され、この硬化物によって導電層が固定されることで、基材上に導電パターンが形成される。露光工程での露光方法としては、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線Lを画像状に照射する方法(マスク露光法)が挙げられる。活性光線の光源としては、公知の光源、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線、可視光等を有効に放射するものが用いられる。また、Arイオンレーザ、半導体レーザ等の紫外線、可視光等を有効に放射するものも用いられる。さらに、写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いられる。また、レーザ露光法などを用いた直接描画法により活性光線を画像状に照射する方法を採用してもよい。
【0079】
このときの、活性光線Lの露光量は、使用する装置、感光性樹脂組成物の組成等によって異なるが、好ましくは5〜1000mJ/cmであり、より好ましくは10〜200mJ/cmである。光硬化性に優れる点では、10mJ/cm以上であることが好ましく、解像性の点では200mJ/cm以下であることが好ましい。1000mJ/cm以下とすることで、感光層の変色を抑制することができる。
【0080】
感光性樹脂層上のカバーフィルム5が活性光線Lに対して透明である場合には、カバーフィルム5を通して活性光線Lを照射することができ、カバーフィルム5が遮光性である場合には、カバーフィルム5を除去した後に感光性樹脂層に活性光線を照射する。
【0081】
なお、上述したように、本発明に用いる感光性導電フィルムは、支持フィルムがカバーフィルムよりも先にはく離されるように、支持フィルム1及びカバーフィルム5の膜厚、材質等の選択、表面処理などにより、両フィルムの接着強度を調節すればよい。
【0082】
また、基材20が活性光線Lに対して透明である場合には基材側から基材を通して活性光線を照射することができるが、解像度の点で、感光性樹脂層側から感光性樹脂層に活性光線を照射することが好ましい。
【0083】
本実施形態の導電パターンの形成方法によれば、別途作製した感光性導電フィルム10を基材20にラミネートすることにより感光層4を設けることで、より簡便に感光層4を基材20上に形成することが可能となり、生産性の向上を図ることができる。また、本発明の導電パターンの形成方法によれば、ガラス基板、プラスチック基板等の基材上に容易に透明な導電パターンを形成することが可能である。
【0084】
現像工程(導電パターンを形成する工程)では、感光層の未露光部(露光部以外の部分)が除去される。具体的には、感光層上に透明なカバーフィルム5が存在している場合には、まずカバーフィルム5を除去し、その後、ウェット現像により感光層の未露光部を除去する。これにより、所定のパターンを有する樹脂硬化層3b下に導電性繊維を含有する導電層2aが残り、導電パターンが形成される。こうして、図3(d)に示されるように、導電パターンを有する導電パターン基板40が得られる。
【0085】
ウェット現像は、アルカリ性水溶液、水系現像液、有機溶剤系現像液等の感光性樹脂に対応した現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により行われる。
【0086】
現像液としては、アルカリ性水溶液等の安全、且つ安定であり、操作性が良好なものが用いられる。上記アルカリ性水溶液の塩基としては、リチウム、ナトリウム、カリウム等のアルカリ金属の水酸化物(水酸化アルカリ);リチウム、ナトリウム、カリウム、アンモニウム等の炭酸塩又は重炭酸塩(炭酸アルカリ);リチウム、ナトリウム、カリウム、アンモニウム等のホウ酸塩又はポリホウ酸塩;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが用いられる。
【0087】
現像に用いるアルカリ性水溶液としては、0.1〜5質量%炭酸ナトリウム水溶液、0.1〜5質量%炭酸カリウム水溶液、0.1〜5質量%水酸化ナトリウム水溶液、0.1〜5質量%四ホウ酸ナトリウム水溶液等が好ましい。また、現像に用いるアルカリ性水溶液のpHは9〜11の範囲とすることが好ましく、その温度は、感光性樹脂層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。
【0088】
また、水又はアルカリ水溶液と1種以上の有機溶剤とからなる水系現像液を用いることができる。ここで、アルカリ水溶液に含まれる塩基としては、上述の塩基以外に、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2−アミノ−2−ヒドロキシメチル−1、3−プロパンジオール、1,3−ジアミノプロパノール−2、モルホリン等が挙げられる。
【0089】
有機溶剤としては、例えば、メチルエチルケトン、アセトン、酢酸エチル、炭素数1〜4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用される。
【0090】
水系現像液は、有機溶剤の濃度を2〜90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。さらに、水系現像液のpHは、感光性樹脂層の現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8〜12とすることが好ましく、pH9〜10とすることがより好ましい。また、水系現像液中には、界面活性剤、消泡剤等を少量添加することもできる。
【0091】
有機溶剤系現像液としては、例えば、1,1,1−トリクロロエタン、N−メチルピロリドン、N,N−ジメチルホルムアミド、シクロヘキサノン、メチルイソブチルケトン、γ−ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1〜20質量%の範囲で水を添加することが好ましい。以上の現像液は、必要に応じて、2種以上を併用してもよい。
【0092】
現像の方式としては、ディップ方式、パドル方式、高圧スプレー方式、スプレー方式、ブラッシング、スラッピング等が挙げられる。これらのうち、高圧スプレー方式を用いることが、解像度向上の観点から好ましい。
【0093】
本実施形態の導電パターンの形成方法においては、現像後に必要に応じて、60〜250℃程度の加熱又は0.2〜10J/cm程度の露光を行うことにより導電パターンを更に硬化してもよい。
【0094】
このように、本実施形態に係る導電パターンの形成方法によれば、ITO等の無機膜のようにエッチングレジストを形成することなく、ガラス基板、プラスチック基板等の基板上に透明な導電パターンを容易に形成することが可能である。
【0095】
本発明の導電パターン基板は、上述した導電パターンの形成方法により得られる。導電パターンの表面抵抗率は、透明電極等として有効に活用できる観点から、2000Ω/□以下であることが好ましく、1000Ω/□以下であることがより好ましく、500Ω/□以下であることが特に好ましい。表面抵抗率は、例えば、導電性繊維分散液の濃度、塗工量等によって調整することができる。
【0096】
本発明の導電パターン基板は、450〜650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。導電パターン基板40が、このような条件を満たす場合、ディスプレイパネル等での視認性が向上する。
【0097】
本発明の導電パターンの形成方法は、例えば、静電容量式タッチパネルの透明電極の形成に好ましく利用できる。図4は、透明電極(X位置座標)103及び透明電極(Y位置座標)104が同一平面上に存在する静電容量式タッチパネルの一例を示す平面図であり、図5は、その一部切欠き斜視図である。図6は、図5中のVI−VI線に沿った部分断面図である。上記静電容量式タッチパネルは、透明基板101上に、静電容量変化を検出して、X位置座標とする透明電極103と、Y位置座標とする透明電極104とを有する。これらのX、Y位置座標とするそれぞれの透明電極103、104には、タッチパネルとしての電気信号を制御するドライバ素子回路(図示せず)の制御回路に接続するための引き出し配線105a及び105bを有する。
【0098】
透明電極(X位置座標)103と透明電極(Y位置座標)104とが交差する部分には、絶縁膜106が設けられている。上記絶縁膜は、電気絶縁特性、透明性、耐現像性を有する材料から選定される。このような材料としては、薄膜で透明な感光性フィルム等が挙げられる。
【0099】
本発明の導電パターンの形成方法による、静電容量式タッチパネルの製造方法について説明する。まず透明基板101上に透明電極(X位置座標)103を形成する。具体的には、感光性導電フィルムを導電層が透明基板101に接するようラミネートする(ラミネート工程)。転写した感光層(導電層及び感光性樹脂層)に対し、所望の形状に遮光マスクを介してパターン状に活性光線を照射する(露光工程)。その後、遮光マスクを除き、更に支持フィルムをはく離し、現像を行うことで、感光層の未露光部が除去され、導電パターンが形成される(現像工程)。この導電パターンによりX位置座標を検知する透明電極103が形成される。
【0100】
続いて、透明電極(Y位置座標)104を形成する。上記の工程により形成された透明電極103の一部(例えば、透明電極103と透明電極104とが交差させようとする部分)に絶縁膜106を設け、透明基板101上に新たな感光性導電フィルムを更にラミネートし、上記同様の操作により、Y位置座標を検知する透明電極104が形成される。本発明に係る導電パターンの形成方法により、透明電極を形成することで、透明電極(X位置座標)103及び透明電極(Y位置座標)104を同一平面上に形成することが可能である。また、透明基板101側に、導電パターンが形成されることから、引き出し配線105a及び105bを形成する際に、形成された導電パターンと、引き出し配線との導通を図ることが容易となる。
【0101】
次に、透明基板101の表面に、外部回路と接続するための引き出し配線105a及び105bを形成する。引き出し配線は、例えば、フレーク状の銀等を含有する導電ペースト材料を使って、スクリーン印刷法を用いて形成することができる。
【0102】
なお、上記静電容量式タッチパネルの製造方法においては、一方の透明電極(例えば透明電極(X位置座標)103)及び引き出し配線105a,105bは、透明導電材料を用いた公知の方法で、透明基板101上に予め形成することが可能である。この場合であっても、透明電極(X位置座標)103及び透明電極(Y位置座標)104を同一平面内に形成することができ、且つ接着性、解像性により優れた導電パターンを得ることができる。また、上記工程によりパターニングすることで、ブリッジした透明電極(Y位置座標)104の導電パターンを形成することが可能となる。
【0103】
また、本発明に係る導電パターンの形成方法による、静電容量式タッチパネルの製造方法は、上記の方法に限られるものではない。例えば、透明導電材料を用いた公知の方法により、透明電極(X位置座標)103と、後にY位置座標を検出する透明電極104となる透明電極の一部を透明基板101上に予め形成した基板を用いてもよい。図7は、透明電極が同一平面に存在する静電容量式タッチパネルの製造方法の一例を説明するための図であり、(a)は透明電極を備える基板を示す一部切欠き斜視図であり、(b)は得られる静電容量式タッチパネルを示す一部切欠き斜視図である。図8は、透明電極が同一平面に存在する静電容量式タッチパネルの製造方法の一例を説明するための図である。
【0104】
まず、図7(a)及び図8(a)に示されるような、透明電極(X位置座標)103と、透明電極の一部104aとが予め形成された基板を用意し、透明電極103の一部(透明電極の一部104aに挟まれる部分)に絶縁膜106を設ける(図8の(b))。その後、上記基板に感光性導電フィルムをラミネートし、上述した露光工程及び現像工程と同様の方法により、導電パターンが形成される。この導電パターンにより透明電極のブリッジ部104bを形成することができる(図8(c))。この透明電極のブリッジ部104bにより、予め形成された透明電極の一部104a同士を導通することができ、透明電極(Y位置座標)104が形成される。
【0105】
予め形成された透明電極は、例えば、ITOなどを用いた公知の方法により形成されてもいてもよい。
【0106】
また、引き出し配線105a,105bは、透明導電材料の他、Cu、Ag等の金属などを用いた公知の方法で形成することが可能である。本発明の導電パターンの形成方法においては、引き出し配線105a,105bが予め形成された基板を用いてもよい。このような基板を用いた場合、本発明の導電パターン形成方法によれば、引き出し配線と直接導通を図りつつ、透明電極(X位置座標)とは絶縁した状態で、透明電極(Y位置座標)を形成することが可能となり、導電パターン基板をより簡便に製造することが可能である。
【実施例】
【0107】
以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
【0108】
<導電性繊維分散液(銀繊維分散液)の調製>
[ポリオール法による銀繊維の調製]
2000mLの3口フラスコに、エチレングリコール500mLを入れ、窒素雰囲気下、マグネチックスターラーで攪拌しながらオイルバスにより160℃まで加熱した。ここに、別途用意したPtCl2mgを50mLのエチレングリコールに溶解した溶液を滴下した。4〜5分後、AgNO5gをエチレングリコール300mLに溶解した溶液と、重量平均分子量が4万のポリビニルピロリドン(和光純薬工業株式会社製)5gをエチレングリコール150mLに溶解した溶液とを、それぞれの滴下ロートから1分間で滴下し、その後160℃で60分間攪拌した。
【0109】
上記反応溶液が30℃以下になるまで放置してから、アセトンで10倍に希釈し、遠心分離機により2000回転で20分間遠心分離し、上澄み液をデカンテーションした。沈殿物にアセトンを加え攪拌後に上記と同様の条件で遠心分離し、アセトンをデカンテーションした。その後、蒸留水を用いて同様に2回遠心分離して、銀繊維を得た。得られた銀繊維を光学顕微鏡で観察したところ、繊維径(直径)は約5nmで、繊維長は約5μmであった。
【0110】
[銀繊維分散液の調製]
純水に、上記で得られた銀繊維を0.2質量%、及び、ドデシル−ペンタエチレングリコールを0.1質量%の濃度となるように分散し、導電性繊維分散液1を得た。
【0111】
<感光性樹脂組成物の溶液の調製>
[アクリル樹脂の合成]
撹拌機、還流冷却器、温度計、滴下ロート及び窒素ガス導入管を備えたフラスコに、メチルセロソルブとトルエンとの混合液(メチルセロソルブ/トルエン=3/2(質量比)、以下、「溶液s」という)400gを加え、窒素ガスを吹き込みながら撹拌して、80℃まで加熱した。一方、単量体としてメタクリル酸100g、メタクリル酸メチル250g、アクリル酸エチル100g及びスチレン50gと、開始剤としてアゾビスイソブチロニトリル0.8gとを混合した溶液(以下、「溶液a」という)を用意した。次に、80℃に加熱された溶液sに、溶液aを4時間かけて滴下した後、80℃で撹拌しながら2時間保温した。さらに、100gの溶液sにアゾビスイソブチロニトリル1.2gを溶解した溶液を、10分かけてフラスコ内に滴下した。そして、滴下後の溶液を撹拌しながら80℃で3時間保温した後、30分間かけて90℃に加熱した。90℃で2時間保温した後、冷却してバインダーポリマー溶液を得た。このバインダーポリマー溶液に、アセトンを加えて不揮発成分(固形分)が50質量%になるように調製し、(A)成分としてのバインダーポリマー溶液を得た。得られたバインダーポリマーの重量平均分子量はGPCによる標準ポリスチレン換算で80000であった。これをアクリルポリマーAとした。なお、重量平均分子量を測定したGPCの測定条件は下記の通りである。
【0112】
[GPC測定条件]
機種:日立L6000(株式会社日立製作所製)
検出:L3300RI(株式会社日立製作所製)
カラム:Gelpack GL−R440 + GL−R450 + GL−R400M(日立化成株式会社製)
カラム仕様:直径10.7mm × 300mm
溶媒:THF(テトラヒドロフラン)
試料濃度:NV(不揮発分濃度)50質量%の樹脂溶液を120mg採取、5mLのTHFに溶解
注入量:200μL
圧力:4.9MPa
流量:2.05mL/min
【0113】
[感光性樹脂組成物の溶液の調製]
表1に示す材料を同表に示す配合量(単位:質量部)で配合し、感光性樹脂組成物の溶液を調製した。
【0114】
【表1】
【0115】
<感光性導電フィルムの作製>
(実施例1)
上記導電性繊維分散液1を、支持フィルムである厚さ16μmのポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会社製、商品名:G2−16)上に25g/mで均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥し、室温(25℃)において1MPaの線圧で加圧することにより、支持フィルム上に導電性繊維を含有する導電層を形成した。なお、走査型電子顕微鏡写真により測定したところ、導電層の乾燥後の膜厚は、約0.1μmであった。
【0116】
次に、上記感光性樹脂組成物の溶液を、別途用意した厚さ50μmのポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会製、商品名:G2−50)上に均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層を形成した。なお、走査型電子顕微鏡写真により測定したところ、感光性樹脂層の乾燥後の膜厚は5μmであった。
【0117】
以上のようにして得られた、導電層を形成したPETフィルムと感光性樹脂層を形成したPETフィルムとを、導電層と感光性樹脂層とが向かい合うように配置し、120℃、0.4MPaの条件でラミネートすることにより、目的の感光性導電フィルムを作製した。
【0118】
<表面抵抗率及び光透過率の測定>
厚さ1mmのポリカーボネート基板を80℃に加温し、その表面上に実施例1で得られた感光性導電フィルムの支持フィルム(厚さ16μmのPETフィルム)をはく離しながら導電層とポリカーボネート基板とを対向させて、120℃、0.4MPaの条件でラミネートした。ラミネート後、基板を冷却し基板の温度が23℃になった時点で、カバーフィルム(厚さ50μmのPETフィルム)側から超高圧水銀灯を有する露光機(株式会社オーク製作所製、商品名:EXM−1201)を用いて、1000mJ/cmの露光量で感光層(導電層及び感光性樹脂層)に光照射した。露光後、室温(25℃)で15分間放置し、続いて、カバーフィルムであるPETフィルムをはく離することで、銀繊維を含有する導電膜をポリカーボネート基板上に形成し、導電膜基板を得た。得られた導電膜基板について、表面抵抗率及び450〜650nmの波長域における最小光透過率の評価を行った。下記の測定装置を用いて測定した導電膜の表面抵抗率は、100Ω/□であり、450〜650nmの波長域における最小光透過率(基板を含む)は、90%であった。
【0119】
[表面抵抗率の測定]
非接触型表面抵抗計(ナプソン株式会社製、EC−80P)を用い測定した。
【0120】
[光透過率の測定]
分光光度計(株式会社日立ハイテクノロジーズ製、商品名「U−3310」)を用いて、450〜650nmの波長域における最小光透過率を測定した。
【0121】
<導電パターンの形成>
厚さ1mmのポリカーボネート基板を80℃に加温し、その表面上に、実施例1で得られた感光性導電フィルムを、支持フィルムをはく離しながら導電層とポリカーボネート基板とを対向させて、120℃、0.4MPaの条件でラミネートした。ラミネート後、基板を冷却し基板の温度が23℃になった時点で、カバーフィルムであるPETフィルム面に、ライン幅/スペース幅が200/200μmで長さが100mmの配線パターンを有するフォトマスクを密着させた。そして、超高圧水銀灯を有する露光機(株式会社オーク製作所製、商品名:EXM−1201)を用いて、30mJ/cmの露光量で感光層(導電層及び感光性樹脂層)に光照射した。
【0122】
露光後、室温(25℃)で15分間放置し、続いて、カバーフィルムであるPETフィルムをはく離し、30℃で1質量%炭酸ナトリウム水溶液を30秒間スプレーすることにより現像した。現像後、ライン幅/スペース幅が約200/200μmの、銀繊維を含有する導電パターンをポリカーボネート基板上に形成した。それぞれの導電パターンは良好に形成されていることが確認された。
【産業上の利用可能性】
【0123】
本発明の導電パターンの形成方法によれば、基材との接着性が充分であり、表面抵抗率が充分小さい導電パターンを充分な解像度で形成することが可能となる。加えて、基板表面に設けられる接続端子等と導電パターンとを簡便に接続することが可能となる。
【符号の説明】
【0124】
1…第一のフィルム(支持フィルム)、2…導電層、2a…導電パターン、3…感光性樹脂層、3b…樹脂硬化層、4…感光層、5…第二のフィルム(カバーフィルム)、10…感光性導電フィルム、20…基材、101…透明基板、103…透明電極(X位置座標)、104…透明電極(Y位置座標)、104a…透明電極の一部、104b…透明電極のブリッジ部、105a,105b…引き出し配線、106…絶縁膜。
図1
図2
図3
図4
図5
図6
図7
図8