(58)【調査した分野】(Int.Cl.,DB名)
前記スリットノズルは、第1の処理液を前記基板の表面に供給するための第1のスリットノズルと、第2の処理液を前記基板の表面に供給するための第2のスリットノズルとを備えていることを特徴とする請求項1乃至6のいずれか一項に記載の基板処理装置。
【発明を実施するための形態】
【0015】
以下、本発明の実施形態について図面を参照して説明する。
図1は、研磨ユニット、洗浄ユニット、および乾燥ユニットを備えた研磨装置を示す図である。この研磨装置は、ウェーハ(基板)を研磨し、洗浄し、乾燥させる一連の工程を行うことができる装置である。
図1に示すように、研磨装置は、略矩形状のハウジング2を備えており、ハウジング2の内部は隔壁2a,2bによってロード/アンロード部6と研磨部1と洗浄部8とに区画されている。研磨装置は、ウェーハ処理動作を制御する動作制御部10を有している。
【0016】
ロード/アンロード部6は、多数のウェーハをストックするウェーハカセットが載置されるロードポート12を備えている。このロード/アンロード部6には、ロードポート12の並びに沿って走行機構14が敷設されており、この走行機構14上にウェーハカセットの配列方向に沿って移動可能な搬送ロボット(ローダー)16が設置されている。搬送ロボット16は走行機構14上を移動することによってロードポート12に搭載されたウェーハカセットにアクセスできるようになっている。
【0017】
研磨部1は、ウェーハの研磨が行われる領域であり、第1研磨ユニット1A、第2研磨ユニット1B、第3研磨ユニット1C、第4研磨ユニット1Dを備えている。第1研磨ユニット1Aは、研磨面を有する研磨パッド20が取り付けられた第1研磨テーブル22Aと、ウェーハを保持しかつウェーハを第1研磨テーブル22A上の研磨パッド20に押圧しながら研磨するための第1トップリング24Aと、研磨パッド20に研磨液(例えばスラリ)やドレッシング液(例えば、純水)を供給するための第1研磨液供給ノズル26Aと、研磨パッド20の研磨面のドレッシングを行うための第1ドレッシングユニット28Aと、液体(例えば純水)と気体(例えば窒素ガス)の混合流体、または液体(例えば純水)を霧状にして研磨面に噴射する第1アトマイザ30Aとを備えている。
【0018】
同様に、第2研磨ユニット1Bは、研磨パッド20が取り付けられた第2研磨テーブル22Bと、第2トップリング24Bと、第2研磨液供給ノズル26Bと、第2ドレッシングユニット28Bと、第2アトマイザ30Bとを備えており、第3研磨ユニット1Cは、研磨パッド20が取り付けられた第3研磨テーブル22Cと、第3トップリング24Cと、第3研磨液供給ノズル26Cと、第3ドレッシングユニット28Cと、第3アトマイザ30Cとを備えており、第4研磨ユニット1Dは、研磨パッド20が取り付けられた第4研磨テーブル22Dと、第4トップリング24Dと、第4研磨液供給ノズル26Dと、第4ドレッシングユニット28Dと、第4アトマイザ30Dとを備えている。
【0019】
第1研磨ユニット1Aおよび第2研磨ユニット1Bに隣接して、第1リニアトランスポータ40が配置されている。この第1リニアトランスポータ40は、4つの搬送位置(第1搬送位置TP1、第2搬送位置TP2、第3搬送位置TP3、第4搬送位置TP4)の間でウェーハを搬送する機構である。また、第3研磨ユニット1Cおよび第4研磨ユニット1Dに隣接して、第2リニアトランスポータ42が配置されている。この第2リニアトランスポータ42は、3つの搬送位置(第5搬送位置TP5、第6搬送位置TP6、第7搬送位置TP7)の間でウェーハを搬送する機構である。
【0020】
第1搬送位置TP1に隣接して、搬送ロボット16からウェーハを受け取るためのリフタ44が配置されている。ウェーハはこのリフタ44を介して搬送ロボット16から第1リニアトランスポータ40に渡される。リフタ44と搬送ロボット16との間に位置して、シャッタ(図示せず)が隔壁2aに設けられており、ウェーハの搬送時にはシャッタが開かれて搬送ロボット16からリフタ44にウェーハが渡されるようになっている。
【0021】
ウェーハは、搬送ロボット16によってリフタ44に渡され、さらにリフタ44から第1リニアトランスポータ40に渡され、そして第1リニアトランスポータ40によって研磨ユニット1A,1Bに搬送される。第1研磨ユニット1Aのトップリング24Aは、そのスイング動作により第1研磨テーブル22Aの上方位置と第2搬送位置TP2との間を移動する。したがって、トップリング24Aへのウェーハの受け渡しは第2搬送位置TP2で行われる。
【0022】
同様に、第2研磨ユニット1Bのトップリング24Bは研磨テーブル22Bの上方位置と第3搬送位置TP3との間を移動し、トップリング24Bへのウェーハの受け渡しは第3搬送位置TP3で行われる。第3研磨ユニット1Cのトップリング24Cは研磨テーブル22Cの上方位置と第6搬送位置TP6との間を移動し、トップリング24Cへのウェーハの受け渡しは第6搬送位置TP6で行われる。第4研磨ユニット1Dのトップリング24Dは研磨テーブル22Dの上方位置と第7搬送位置TP7との間を移動し、トップリング24Dへのウェーハの受け渡しは第7搬送位置TP7で行われる。
【0023】
第1リニアトランスポータ40と、第2リニアトランスポータ42と、洗浄部8との間にはスイングトランスポータ46が配置されている。ウェーハは、スイングトランスポータ46によって第1リニアトランスポータ40から第2リニアトランスポータ42に搬送される。さらに、ウェーハは、第2リニアトランスポータ42によって第3研磨ユニット1Cおよび/または第4研磨ユニット1Dに搬送される。
【0024】
スイングトランスポータ46の側方には、図示しないフレームに設置されたウェーハの仮置き台48が配置されている。この仮置き台48は、
図1に示すように、第1リニアトランスポータ40に隣接して配置されており、第1リニアトランスポータ40と洗浄部8との間に位置している。スイングトランスポータ46は、第4搬送位置TP4、第5搬送位置TP5、および仮置き台48の間でウェーハを搬送する。
【0025】
仮置き台48に載置されたウェーハは、洗浄部8の第1の搬送ロボット50によって洗浄部8に搬送される。洗浄部8は、研磨されたウェーハを処理液で洗浄する一次洗浄ユニット52および二次洗浄ユニット54と、洗浄されたウェーハを乾燥する乾燥ユニット56とを備えている。第1の搬送ロボット50は、ウェーハを仮置き台48から一次洗浄ユニット52に搬送し、さらに一次洗浄ユニット52から二次洗浄ユニット54に搬送するように動作する。二次洗浄ユニット54と乾燥ユニット56との間には、第2の搬送ロボット58が配置されている。この第2の搬送ロボット58は、ウェーハを二次洗浄ユニット54から乾燥ユニット56に搬送するように動作する。
【0026】
乾燥されたウェーハは、搬送ロボット16により乾燥ユニット56から取り出され、ウェーハカセットに戻される。このようにして、研磨、洗浄、および乾燥を含む一連の処理がウェーハに対して行われる。
【0027】
第1研磨ユニット1A、第2研磨ユニット1B、第3研磨ユニット1C、および第4研磨ユニット1Dは互いに同一の構成を有している。したがって、以下、第1研磨ユニット1Aについて説明する。
図2は、第1研磨ユニット1Aを示す斜視図である。
図2に示すように、第1研磨ユニット1Aは、研磨パッド20を支持する研磨テーブル22Aと、ウェーハWを研磨パッド20に押し付けるトップリング24Aと、研磨パッド20に研磨液(スラリー)を供給するための研磨液供給ノズル26Aとを備えている。
図2において、第1ドレッシングユニット28Aと第1アトマイザ30Aは省略されている。
【0028】
研磨テーブル22Aは、テーブル軸23を介してその下方に配置されるテーブルモータ25に連結されており、このテーブルモータ25により研磨テーブル22Aが矢印で示す方向に回転されるようになっている。研磨パッド20は研磨テーブル22Aの上面に貼付されており、研磨パッド20の上面がウェーハWを研磨する研磨面20aを構成している。トップリング24Aはトップリングシャフト27の下端に固定されている。トップリング24Aは、その下面に真空吸着によりウェーハWを保持できるように構成されている。トップリングシャフト27は、トップリングアーム31内に設置された図示しない回転機構に連結されており、トップリング24Aはこの回転機構によりトップリングシャフト27を介して回転駆動されるようになっている。
【0029】
ウェーハWの表面の研磨は次のようにして行われる。トップリング24Aおよび研磨テーブル22Aをそれぞれ矢印で示す方向に回転させ、研磨液供給ノズル26Aから研磨パッド20上に研磨液(スラリー)を供給する。この状態で、トップリング24AによりウェーハWを研磨パッド20の研磨面20aに押し付ける。ウェーハWの表面は、研磨液に含まれる砥粒の機械的作用と研磨液に含まれる化学成分の化学的作用により研磨される。
【0030】
一次洗浄ユニット52および二次洗浄ユニット54は、互いに同じ構成を有している。したがって、以下、一次洗浄ユニット52について説明する。
図3は、一次洗浄ユニット(基板洗浄装置)52を示す斜視図である。
図3に示すように、第1洗浄ユニット52は、ウェーハWを水平に保持して回転させる4つの保持ローラ(基板保持部)71,72,73,74と、ウェーハWの上下面に接触するロールスポンジ(スクラブ洗浄具)77,78と、これらのロールスポンジ77,78を回転させる回転機構80,81と、ウェーハWの上面(絶縁膜、または金属膜、または絶縁膜および金属膜絶縁膜を含むデバイスなどの構造体が形成されている面)に第1の処理液および第2の処理液を供給する処理液供給部110とを備えている。
【0031】
本実施形態では、第1の処理液として純水が供給され、第2の処理液として、超純水で希釈された薬液(以下、単に薬液という)が使用される。以下の説明では、第1の処理液および第2の処理液を、適宜総称して単に処理液という。処理液供給部110は、ウェーハWの上面の直上に配置されており、上側のロールスポンジ(スクラブ洗浄具)77に隣接して配置されている。なお、図示しないが、ウェーハWの下面に薬液および純水をそれぞれ供給する下側薬液供給ノズルおよび下側純水供給ノズルが設けられている。
【0032】
保持ローラ71,72,73,74は図示しない駆動機構(例えばエアシリンダ)によって、ウェーハWに近接および離間する方向に移動可能となっている。上側のロールスポンジ77を回転させる回転機構80は、その上下方向の動きをガイドするガイドレール89に取り付けられている。また、この回転機構80は昇降駆動機構82に支持されており、回転機構80および上側のロールスポンジ77は昇降駆動機構82により上下方向に移動されるようになっている。なお、図示しないが、下側のロールスポンジ78を回転させる回転機構81もガイドレールに支持されており、昇降駆動機構によって回転機構81および下側のロールスポンジ78が上下動するようになっている。昇降駆動機構としては、例えばボールねじを用いたモータ駆動機構またはエアシリンダが使用される。ウェーハWの洗浄時には、ロールスポンジ77,78は互いに近接する方向に移動してウェーハWの上下面に接触する。
【0033】
図4は、ウェーハW、ロールスポンジ77、および処理液供給部110の上面図であり、
図5は
図4に示す処理液供給部110のA−A線断面図であり、
図6は
図4に示す処理液供給部110のB−B線断面図である。
図5および
図6は、いずれもウェーハWの半径方向から見た処理液供給部110の断面図を示している。処理液供給部110は、ウェーハWの略半径方向に沿って直線的に延びる第1のスリットノズル112および第2のスリットノズル113を備えており、さらにこれら第1のスリットノズル112および第2のスリットノズル113に接続された第1の流路115および第2の流路116を備えている。第1のスリットノズル112および第2のスリットノズル113は互いに隣接している。
【0034】
第1の流路115および第2の流路116は、スリットノズル112,113と同様に、ウェーハWの半径方向に沿って延びている。第1の流路115の内側端部は閉じられており、その外側端部は第1の供給ライン121を介して第1の処理液供給源124に接続されている。同様に、第2の流路116の内側端部は閉じられており、その外側端部は第2の供給ライン122を介して第2の処理液供給源125に接続されている。
【0035】
第1の処理液としての純水は、第1の処理液供給源124から第1の供給ライン121を介して第1の流路115に供給され、さらに第1のスリットノズル112からウェーハWの上面に供給される。同様に、第2の処理液としての薬液は、第2の処理液供給源125から第2の供給ライン122を介して第2の流路116に供給され、さらに第2のスリットノズル113からウェーハWの上面に供給される。
【0036】
第1のスリットノズル112および第2のスリットノズル113は、ウェーハ(基板)Wの上面に近接して配置されており、ウェーハWのほぼ半径方向に沿って延びている。これらスリットノズル112,113は、互いに平行である。第1のスリットノズル112および第2のスリットノズル113は、ウェーハWの上面を向いた第1のスリット口112aおよび第2のスリット口113aをそれぞれ有している。これらスリット口112a,113aは、第1の流路115および第2の流路116にそれぞれ連通している。それぞれのスリット口112a,113aは、単一のスリット口でもよく、または直線上に並んだ複数のスリット口であってもよい。
【0037】
第1のスリットノズル112および第2のスリットノズル113は、ウェーハWの半径よりも長く、これらスリットノズル112,113の外側端部はウェーハWの外周部の上方に位置し、内側端部はウェーハWの中心を越えた位置にある。このようにスリットノズル112,113(およびスリット口112a,113a)がウェーハWの半径方向よりも長いので、これらスリットノズル112,113から供給された処理液は、ウェーハWの中心を含む全面に供給される。
【0038】
第1のスリットノズル112は純水をウェーハWの上面に供給し、第2のスリットノズル113は薬液をウェーハWの上面に供給する。第1の処理液としての純水は、予め脱気処理されている。純水は予め脱気処理された超純水であることが好ましい。
図5および
図6に示すように、ウェーハWの回転方向(進行方向)において、第1のスリットノズル112は第2のスリットノズル113の上流側に配置されている。したがって、純水が先にウェーハWの上面に供給され、次に薬液が純水の上に供給される。すなわち、ウェーハW上には、純水からなる下層膜と、薬液からなる上層膜が形成される。
【0039】
純水は、予め脱気処理されており、その溶存酸素量は極めて少ない。ウェーハWの上面に形成された金属配線(例えば銅配線)は純水によって覆われるので、純水が金属配線の保護膜として作用し、金属配線の腐食を防止する。純水と薬液はロールスポンジ77によって混合され、その後遠心力によってウェーハWから除去される。第1のスリットノズル112を第2のスリットノズル113の下流側に配置してもよい。この場合は、純水が薬液の保護膜として作用し、大気中の酸素から薬液および金属配線を保護することができる。
【0040】
処理液は第1の流路115および第2の流路116の外側端部から導入され、第1の流路115および第2の流路116の内側端部が閉じられているので、これら流路115,116内で処理液の圧力勾配が形成される。すなわち、流路115,116の内側端部では処理液の圧力が高く、流路115,116の外側端部では処理液の圧力が低くなる。したがって、スリットノズル112,113から吐出される処理液の流量は、ウェーハWの半径位置に従って変わる。
【0041】
図7は、第1のスリットノズル112および第2のスリットノズル113から吐出される処理液の流量を示すグラフである。
図7において、縦軸は処理液の流量を表し、横軸はスリットノズル112,113の内側端部から外側端部までの各位置を表している。
図7に示すように、処理液の流量は、スリットノズル112,113の内側端部での値F1からスリットノズル112,113の外側端部での値F2まで徐々に減少している。好ましくは、スリットノズル112,113の外側端部での値F2は、スリットノズル112,113の内側端部での値F1の半分以下である。
【0042】
回転するウェーハW上の処理液には、ウェーハWの外周側でより強い遠心力が作用することから、ウェーハWに接触した処理液は瞬時に半径方向外側へ移動し、ウェーハWから排出されてしまう。ウェーハWの外周部においてロールスポンジ77が接触する処理液は、ウェーハWの中心側で供給された処理液が遠心力によって外側に運ばれたものである。したがって、ウェーハWの中心側において処理液の流量を多くすることで、効率よくウェーハWを洗浄することができる。仮に処理液の流量がウェーハWの半径方向に沿って均一か、または外周部側での流量が中心側よりも多い場合には、洗浄に用いられない処理液が大量にウェーハWの表面から遠心力によって排出されることとなるため、洗浄効率は低くなる。本実施形態によれば、上述したスリットノズル112,113内に形成された圧力勾配により、ウェーハWの中心側での処理液の流量は、ウェーハWの外周側での処理液の流量よりも多くなる。よって、過剰な量の処理液を用いることなく、ウェーハWの表面を効率よく洗浄することができる。
【0043】
図5および
図6に示すように、ウェーハWの半径方向から見たときの第1のスリットノズル112および第2のスリットノズル113は、ウェーハWの表面に垂直な方向(すなわち、鉛直方向)に対して傾斜している。より具体的には、これらスリットノズル112,113のスリット口112a,113aは、ウェーハWの進行方向の下流側に向かって傾斜している。上側のロールスポンジ(スクラブ洗浄具)77はスリットノズル112,113の下流側に配置されているので、これらスリットノズル112,113はロールスポンジ77に向かって傾斜している。
【0044】
スリットノズル112,113の傾斜角度は、ウェーハWの半径位置に従って徐々に変化しており、具体的には、
図5および
図6に示すように、ウェーハWの外周側でのスリットノズル112,113の傾斜角度θ2は、ウェーハWの中心側でのスリットノズル112,113の傾斜角度θ1よりも大きくなっている。これは、より高い速度で移動するウェーハWの外周側領域に処理液が当たったときの処理液の飛び散りを防止するため、およびそのような処理液の飛び散りに際して大気中の酸素が処理液に溶け込むことを防止するためである。一例として、ウェーハWの中心側でのスリットノズル112,113の傾斜角度θ1は0よりも大きく、かつ15度以下であり(0<θ1≦15°)、ウェーハWの外周側でのスリットノズル112,113の傾斜角度θ2は30度以上である(θ2≧30°)。
【0045】
図4に示すように、処理液供給部110は、矢印で示すウェーハWの回転方向(進行方向)においてロールスポンジ77の上流側に配置されている。上述したように、第1のスリットノズル112および第2のスリットノズル113はロールスポンジ77に向かって傾斜しており、できるだけ短い時間で処理液がロールスポンジ77に到達するようになっている。ウェーハWの上から見たときに、第1のスリットノズル112および第2のスリットノズル113は、ウェーハWの半径方向に対してやや傾いている。より具体的には、スリットノズル112,113の外側端部とロールスポンジ77との距離は、スリットノズル112,113の内側端部とロールスポンジ77との距離よりも短くなっている。これは、より強い遠心力が働くウェーハWの外周側領域において十分な量の処理液をロールスポンジ77に供給するためである。このような配置により、処理液が遠心力によって除去される前に、処理液をロールスポンジ77に供給することができる。
【0046】
第1のスリットノズル112および第2のスリットノズル113の先端(すなわち、スリット口112a,113aの先端)は、ウェーハWの上面に近接して配置されている。ウェーハWの上面と、第1のスリットノズル112および第2のスリットノズル113の先端との距離は、10mm〜30mmであることが好ましい。このような配置によれば、スリットノズル112,113から出た処理液は極めて短い時間内で大気中を通過し、ウェーハWに到達する。したがって、大気中の酸素が処理液中に溶け込む量を極めて少なくすることができる。これに加え、スプレーノズルを使用した場合に比べて、スリットノズル112,113から吐出される処理液の表面積は小さいので、大気中の酸素が処理液中に溶け込む量をさらに少なくすることができる。結果として、ウェーハWの上面に形成されている金属配線(例えば銅配線)の腐食を防止することができる。
【0047】
図8は、ウェーハWに供給された処理液中の溶存酸素量[ppm]の測定結果を示す図である。
図8に示す実施例1は、
図3に示す実施形態に係る基板洗浄装置を用いたときの測定結果を示し、比較例1は
図15に示す従来の装置を用いたときの測定結果を示し、比較例2は
図16に示す従来の装置を用いたときの測定結果を示している。この測定結果から分かるように、上記実施形態に係る基板洗浄装置を用いることにより、ウェーハW上での処理液中の溶存酸素量を少なくすることができる。
【0048】
次に、ウェーハWを洗浄する工程の一例について説明する。まず、ウェーハWをその軸心まわりに回転させる。次いで、第1のスリットノズル112および第2のスリットノズル113から純水および薬液がそれぞれウェーハWの上面に供給され、同時に図示しない下側薬液供給ノズルおよび下側純水供給ノズルから薬液および純水がウェーハWの下面に供給される。この状態で、ロールスポンジ77,78がその水平に延びる軸心周りに回転しながらウェーハWの上下面に摺接することによって、ウェーハWの上下面をスクラブ洗浄する。
【0049】
スクラブ洗浄後、回転するウェーハWに第1のスリットノズル112および図示しない下側純水供給ノズルから純水をウェーハWの上面および下面に供給することによってウェーハWの濯ぎ(リンス)が行われる。ウェーハWのリンスでは薬液は供給されない。ウェーハWのリンスは、ロールスポンジ77,78をウェーハWの上下面に摺接させながら行なってもよいし、ロールスポンジ77,78をウェーハWの上下面から離間させた状態で行なってもよい。
【0050】
金属配線の腐食防止をさらに確実にするために、第1のスリットノズル112に導入される純水に不活性ガス(例えば窒素ガス)を予め溶解させることが好ましい。
図9は、純水に不活性ガスを溶解させる不活性ガス供給部130を備えた基板洗浄装置の一部を示す上面図である。
図9に示すように、不活性ガス供給部130は、第1の供給ライン121に接続されている。窒素ガスなどの不活性ガスは、第1の供給ライン121内を流れる純水内に供給され、不活性ガスが溶存する純水が生成される。不活性ガスを含んだ純水は、第1の流路115を通って第1のスリットノズル112に供給され、さらに第1のスリットノズル112からウェーハWの上面に供給される。
【0051】
図10(a)はウェーハの上面に供給された直後の、不活性ガスが溶存する純水を示す模式図であり、
図10(b)はある程度の時間が経過した後の純水を示す模式図である。
図10(a)および
図10(b)に示す例では、不活性ガスとして窒素ガスが使用されている。ウェーハW上の純水と周囲の大気は、それらの界面を通じて均衡状態を達成しようとするため、まず純水中の窒素が大気に放出され、その後大気中の酸素が純水に取り込まれる。したがって、大気中の酸素が純水に溶存するまでには、ある程度の時間がかかる。ウェーハWに供給された純水はロールスポンジ77のスクラブ洗浄に使用された後、回転するウェーハWの遠心力により速やかにウェーハWから除去される。
【0052】
図11(a)および
図11(b)は、不活性ガスが溶存していない純水をウェーハWに供給したときの純水の状態を示す模式図である。より具体的には、
図11(a)は、ウェーハの上面に供給された直後の、不活性ガスが溶存していない純水を示し、
図11(b)はある程度の時間が経過した後の純水を示している。
図11(a)および
図11(b)に示すように、純水と大気とは均衡状態を達成しようとするため、大気中の酸素は、酸素がほとんどない純水に取り込まれやすい。
【0053】
図10(b)と
図11(b)との対比から分かるように、予め不活性ガスを溶存させた純水(または超純水)を使用することによって、ウェーハの表面に形成された金属配線の腐食防止をさらに確実とすることができる。なお、薬液の希釈に使用される超純水にも、不活性ガスが溶存した超純水を使用することが好ましい。
【0054】
本発明は、ロールスポンジ型の基板洗浄装置のみならず、ペンスポンジタイプの基板洗浄装置にも適用することができる。
図1に示す、一次洗浄ユニット52および二次洗浄ユニット54は、
図3に示すロールスポンジタイプの基板洗浄装置である。これに代えて、ペンスポンジタイプの基板洗浄装置を一次洗浄ユニット52および/または二次洗浄ユニット54に使用してもよい。例えば、一次洗浄ユニット52としてロールスポンジタイプの基板洗浄装置を使用し、二次洗浄ユニット54としてペンスポンジタイプの基板洗浄装置を使用してもよい。
【0055】
図12は、ペンスポンジタイプの基板洗浄装置を示す斜視図である。
図12に示すように、このタイプの基板洗浄装置は、ウェーハWを保持して回転させる基板保持部91と、ペンスポンジ92と、ペンスポンジ92を保持するアーム94と、ウェーハWの上面に処理液(純水および薬液)を供給する処理液供給部110とを備えている。ペンスポンジ92は、アーム94内に配置された回転機構(図示せず)に連結されており、ペンスポンジ92は鉛直方向に延びる中心軸線まわりに回転されるようになっている。
【0056】
基板保持部91は、ウェーハWの周縁部を保持する複数の(
図12では4つの)チャック95を備えており、これらチャック95でウェーハWを水平に保持する。チャック95にはモータ98が連結されており、チャック95に保持されたウェーハWはモータ98によってその軸心まわりに回転する。
【0057】
アーム94はウェーハWの上方に配置されている。アーム94の一端にはペンスポンジ92が連結され、アーム94の他端には旋回軸100が連結されている。この旋回軸100にはアーム94を旋回させるアーム回転機構としてのモータ101が連結されている。アーム回転機構は、モータ101に加えて、減速ギヤなどを備えてもよい。モータ101は、旋回軸100を所定の角度だけ回転させることにより、アーム94をウェーハWと平行な平面内で旋回させるようになっている。アーム94の旋回により、これに支持されたペンスポンジ92がウェーハWの半径方向外側に移動する。
【0058】
図13は、
図12に示すウェーハW、ペンスポンジ92、および処理液供給部110の上面図である。
図13に示すように、ウェーハWの回転方向において、処理液供給部110はペンスポンジ92の上流側に配置されている。この例では、第1のスリットノズル112および第2のスリットノズル113は、ウェーハWの半径方向に対して傾斜していない。処理液供給部110のその他の構成は、
図4乃至
図6に示す処理液供給部110と同じであるので、その重複する説明を省略する。
【0059】
ウェーハWは次のようにして洗浄される。まず、ウェーハWをその軸心まわりに回転させる。次いで、処理液供給部110の第1のスリットノズル112および第2のスリットノズル113(
図4および
図5参照)から純水および薬液がそれぞれウェーハWの上面に供給される。この状態で、ペンスポンジ92が鉛直に延びるその軸心周りに回転しながらウェーハWの上面に摺接し、さらに
図13に示すようにウェーハWの半径方向に沿って移動する。純水および薬液の存在下でペンスポンジ92がウェーハWの上面に摺接することにより、ウェーハWがスクラブ洗浄される。
【0060】
スクラブ洗浄後、ウェーハWから薬液を洗い流すために、第1のスリットノズル112から回転するウェーハWの上面に純水を供給し、ウェーハWをリンスする。ウェーハWのリンスでは、薬液は供給されない。次いで、ウェーハWへの純水の供給を停止する。ウェーハWのリンスは、ペンスポンジ92をウェーハWに摺接させながら行なってもよいし、ペンスポンジ92をウェーハWから離間させた状態で行なってもよい。
【0061】
図4乃至
図6に示す処理液供給部110は、2つのスリットノズル、すなわち第1のスリットノズル112および第2のスリットノズル113を備えるが、1つのスリットノズルを備えてもよい。さらに、処理液として、純水(超純水)および薬液に限らず、水素水などの機能水を使用することも可能である。水素水は、還元作用を有することから、銅などの金属腐食防止に効果的とされている。しかしながら、水素水がスプレーノズルによりウェーハに供給されると、大気中の酸素が水素水中に溶け込み、その期待される効果が薄れてしまう。本発明によれば、水素水などの機能水を最適な形態で供給することができるので、機能水はその機能を最大限に発揮することができる。
【0062】
上述した実施形態に係る基板洗浄装置は、処理液をウェーハW上に供給しながらスクラブ洗浄具(ロールスポンジ、ペンスポンジ)でウェーハWをスクラブ洗浄するが、単に処理液をウェーハW上に供給することでウェーハWを洗浄してもよい。例えば、
図14は、スクラブ洗浄具を備えていない基板洗浄装置を示す平面図である。この例では、第1のスリットノズル112および第2のスリットノズル113は、ウェーハWの半径方向に延びている(すなわち、ウェーハWの半径方向に対して傾斜していない)。その他の構成は、
図3乃至
図6に示す構成と同じである。
【0063】
上述した例は、本発明に係る基板処理装置を基板洗浄装置に適用した例であるが、本発明の装置は、基板を乾燥する装置にも適用することができる。例えば、基板を低速で回転させ、基板の表面に純水(または超純水)を供給し、その後、基板を高速で回転させて基板をスピン乾燥させる基板乾燥装置に本発明を適用することも可能である。
【0064】
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。