【実施例】
【0037】
以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、下記において、「部」は質量部を意味する。分子量は、GPC(ゲルパーミエーションクロマトグラフ)測定により求めたポリスチレン換算の数平均分子量である。粘度は、回転粘度計を用いて測定した25℃における値である。
【0038】
[1]有機シラン化合物の製造
[実施例1−1]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、Ricon181(Cray Vally社製、数平均分子量7,100、上記式(2)におけるe=52、(f+g)=22、h=29)100g、トルエン200g、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として3.1×10
-3モル)、および炭酸水素アンモニウム0.2g(3.1×10
-3モル)を納めた。この中に、トリエトキシシラン51g(0.31モル)を内温75〜85℃で2時間かけて滴下した後、80℃で1時間撹拌した。ガスクロマトグラフィーで分析したトリエトキシシランの反応率の結果を表1に示した。
撹拌終了後、減圧濃縮および濾過し、粘度8,000mPa・s、数平均分子量10,500の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=0、g=22、h=29で表される有機ケイ素化合物であった。
【0039】
[実施例1−2]
炭酸水素アンモニウムを酢酸0.2g(1.5×10
-3モル)に変更した以外は、実施例1−1と同様に反応および後処理を行い、粘度8,000mPa・s、数平均分子量10,500の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=0、g=22、h=29で表される有機ケイ素化合物であった。
なお、ガスクロマトグラフィーで分析したトリエトキシシランの反応率の結果を表1に示した。
【0040】
[実施例1−3]
炭酸水素アンモニウムをアセトアミド0.2g(1.5×10
-3モル)に変更した以外は、実施例1−1と同様に反応および後処理を行い、粘度8,000mPa・s、数平均分子量10,500の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=0、g=22、h=29で表される有機ケイ素化合物であった。
なお、ガスクロマトグラフィーで分析したトリエトキシシランの反応率の結果を表1に示した。
【0041】
[実施例1−4]
炭酸水素アンモニウムを除いた以外は、実施例1−1と同様に反応および後処理を行い、粘度14,000mPa・s、数平均分子量7,100の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=21.8、g=0.2、h=29で表される有機ケイ素化合物であった。
なお、ガスクロマトグラフィーで分析したトリエトキシシランの反応率の結果を表1に示した。
【0042】
【表1】
【0043】
表1に示されるように、無機酸のアンモニウム塩、カルボン酸、酸アミド化合物を助触媒として用いることで、より効率的に反応が進行していることがわかる。
【0044】
[実施例1−5]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、Ricon181(Cray Vally社製、数平均分子量7,100、上記式(2)におけるe=52、(f+g)=22、h=29)100g、トルエン200g、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として1.5×10
-3モル)、および酢酸0.1g(1.5×10
-3モル)を納めた。この中に、トリエトキシシラン25g(0.15モル)を内温75〜85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度10,500mPa・s、数平均分子量8,800の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=11、g=11、h=29で表される有機ケイ素化合物であった。
【0045】
[実施例1−6]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、Ricon181(Cray Vally社製、数平均分子量7,100、上記式(2)におけるe=52、(f+g)=22、h=29)100g、トルエン200g、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として1.0×10
-3モル)、および酢酸0.07g(1.0×10
-3モル)を納めた。この中に、トリエトキシシラン17g(0.10モル)を内温75〜85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度11,500mPa・s、数平均分子量8,200の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=15、g=7、h=29で表される有機ケイ素化合物であった。
【0046】
[実施例1−7]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、Ricon181(Cray Vally社製、数平均分子量7,100、上記式(2)におけるe=52、(f+g)=22、h=29)100g、トルエン200g、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として0.5×10
-3モル)、および酢酸0.04g(0.5×10
-3モル)を納めた。この中に、トリエトキシシラン8g(0.05モル)を内温75〜85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度12,500mPa・s、数平均分子量7,500の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=52、f=19、g=3、h=29で表される有機ケイ素化合物であった。
【0047】
[実施例1−8]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、Ricon184(Cray Vally社製、数平均分子量17,000、上記式(2)におけるe=126、(f+g)=54、h=70)100g、トルエン200g、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として3.1×10
-3モル)、および酢酸0.2g(3.1×10
-3モル)を納めた。この中に、トリエトキシシラン51g(0.31モル)を内温75〜85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度38,000mPa・s、数平均分子量25,000の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=126、f=0、g=54、h=70で表される有機ケイ素化合物であった。
【0048】
[実施例1−9]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、Ricon184(Cray Vally社製、数平均分子量17,000、上記式(2)におけるe=126、(f+g)=54、h=70)100g、トルエン200g、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として1.5×10
-3モル)、および酢酸0.1g(1.5×10
-3モル)を納めた。この中に、トリエトキシシラン25g(0.15モル)を内温75〜85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度45,000mPa・s、数平均分子量21,000の褐色透明液体を得た。生成物の分子量および
1H−NMRスペクトルから求めた平均構造は、上記式(1)においてe=126、f=27、g=27、h=70で表される有機ケイ素化合物であった。
【0049】
[比較例1−1]
特開2005−250603号公報を参考に、以下の手法により有機ケイ素化合物を合成した。
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、R−45H(出光興産(株)製、数平均分子量2,800)100gとKBE−9007(信越化学工業(株)製、3−イソシアネートプロピルトリエトキシシラン)18g、およびジオクチルスズオキサイド触媒(東京化成工業製)0.5gを納め、内温60℃で2時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度8,000mPa・s、数平均分子量3,300の褐色透明液体を得た。
【0050】
[比較例1−2]
特開昭62−265301号公報を参考に、以下の手法により有機ケイ素化合物を合成した。
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、B−1000(日本曹達(株)製)100g、トルエン200gおよび3−メルカプトプロピルトリエトキシシラン129g(0.8モル)を納め、内温100℃で4時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度5,000mPa・s、数平均分子量2,000の褐色透明液体を得た。
【0051】
[比較例1−3]
特開昭62−265301号公報を参考に、以下の手法により有機ケイ素化合物を合成した。
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、B−1000(日本曹達(株)製)100g、トルエン200gおよび3−メルカプトプロピルトリエトキシシラン23g(0.1モル)を納め、内温100℃で4時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度900mPa・s、数平均分子量1,600の褐色透明液体を得た。
【0052】
[2]ゴム組成物の調製
[実施例2−1〜2−3]
表2に示されるように、油展エマルジョン重合SBR(JSR(株)製#1712)110部、NR(RSS#3グレード)20部、カーボンブラック(N234グレード)20部、シリカ(日本シリカ工業(株)製ニプシルAQ)50部、実施例1−2で得られた有機ケイ素化合物6.5部、またはこの有機ケイ素化合物とKBE−846(信越化学工業社製、ビス(トリエトキシシリルプロピル)テトラスルフィド)との合計6.5部、ステアリン酸1部、並びに老化防止剤6C(大内新興化学工業(株)製ノクラック6C)1部を配合してマスターバッチを調製した。
これに亜鉛華3部、加硫促進剤DM(ジベンゾチアジルジスルフィド)0.5部、加硫促進剤NS(N−t−ブチル−2−ベンゾチアゾリルスルフェンアミド)1部および硫黄1.5部を加えて混練し、ゴム組成物を得た。
【0053】
[実施例2−4〜2−8]
表2に示されるように、実施例1−2で得られた有機ケイ素化合物を、実施例1−5〜1−9で得られた有機ケイ素化合物にそれぞれ変更した以外は、実施例2−3と同様にしてゴム組成物を得た。
【0054】
[比較例2−1〜2−3]
表3に示されるように、実施例1−2で得られた有機ケイ素化合物を、比較例1−1〜1−3で得られた有機ケイ素化合物にそれぞれ変更した以外は、実施例2−3と同様にしてゴム組成物を得た。
【0055】
[比較例2−4]
表3に示されるように、実施例1−2で得られた有機ケイ素化合物を、KBE−846に変更した以外は、実施例2−1と同様にしてゴム組成物を得た。
【0056】
上記実施例2−1〜2−8および比較例2−1〜2−4で得られたゴム組成物について、未加硫および加硫物性を下記の方法で測定した。結果を表2,3に併せて示す。
〔未加硫物性〕
(1)ムーニー粘度
JIS K 6300に準拠し、温度130℃、余熱1分、測定4分にて測定し、比較例2−4を100として指数で表した。指数の値が小さいほど、ムーニー粘度が低く、加工性に優れている。
〔加硫物性〕
(2)動的粘弾性
粘弾性測定装置(レオメトリックス社製)を使用し、引張の動歪5%、周波数15Hz、0℃、60℃の条件にて測定した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を160gとした。tanδの値は比較例2−4を100として指数で表した。0℃の指数値が大きいほどウェットグリップ性能が優れるものとして評価でき、60℃の指数値が小さいほどヒステリシスロスが小さく低発熱性である。
(3)耐磨耗性
JIS K 6264−2:2005に準拠し、ランボーン型磨耗試験機を用いて室温、スリップ率25%の条件で試験を行い、比較例2−4を100として指数表示した。指数値が大きいほど、磨耗量が少なく耐磨耗性に優れることを示す。
【0057】
【表2】
【0058】
【表3】
【0059】
表2および3に示されるように、実施例2−1〜2−8のゴム組成物は、比較例2−2〜2−4のゴム組成物に比べ、ムーニー粘度が低く、加工性に優れていることがわかる。
また、実施例2−1〜2−8のゴム組成物の加硫物は、比較例2−1〜2−4のゴム組成物の加硫物に比べ、ウェットグリップ性能が優れ、さらに低発熱性であり、また、耐摩耗性に優れていることがわかる。
【0060】
[実施例2−9〜2−11]
表4に示されるように、NR(RSS#3グレード)100部、プロセスオイル38部、カーボンブラック(N234グレード)5部、シリカ(日本シリカ工業(株)製ニプシルAQ)105部、実施例1−2で得られた有機ケイ素化合物8.4部、またはこの有機ケイ素化合物とKBE−846(信越化学工業社製、ビス(トリエトキシシリルプロピル)テトラスルフィド)との合計8.4部、ステアリン酸2部、老化防止剤6C(大内新興化学工業(株)製ノクラック6C)2部を配合してマスターバッチを調製した。
これに酸化亜鉛2部、加硫促進剤CZ(大内新興化学工業(株)製ノクセラーCZ、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)3部および硫黄2部を加えて混練し、ゴム組成物を得た。
【0061】
[実施例2−12〜2−16]
表4に示されるように、実施例1−2で得られた有機ケイ素化合物を、実施例1−5〜1−9で得られた有機ケイ素化合物にそれぞれ変更した以外は、実施例2−11と同様にしてゴム組成物を得た。
【0062】
[比較例2−5〜2−7]
表5に示されるように、実施例1−2で得られた有機ケイ素化合物を、比較例1−1〜1−3で得られた有機ケイ素化合物にそれぞれ変更した以外は、実施例2−11と同様にしてゴム組成物を得た。
【0063】
[比較例2−8]
表5に示されるように、実施例1−2で得られた有機ケイ素化合物を、KBE−846に変更した以外は、実施例2−9と同様にしてゴム組成物を得た。
【0064】
次に、ゴム組成物の未加硫物性(ムーニー粘度)および加硫物性(動的粘弾性、耐磨耗性)を上記と同様の方法で測定した。比較例2−8を100として指数で表した結果を表4,5に併せて示す。
【0065】
【表4】
【0066】
【表5】
【0067】
表4および表5に示されるように、実施例2−9〜2−16のゴム組成物の加硫物は、比較例2−5〜2−8のゴム組成物の加硫物に比べ、動的粘弾性が低く、すなわち、ヒステリシスロスが小さく低発熱性であり、また、耐摩耗性に優れていることがわかる。