【0020】
電池外装用積層体10は、
図2に示すように、基材層11と、アルミ箔12とは、接着剤層15を介して接着されている。また、アルミ箔12と、多層のシーラントフィルム17との接着のため、少なくともアルミ箔12の多層のシーラントフィルム17と貼り合せる側の面に、耐食性コーティング層14が形成され、該耐食性コーティング層14の上に、金属との熱接着性樹脂層16を介して多層のシーラントフィルム17が接着されている。
この耐食性コーティング層14の上に、金属との熱接着性樹脂層16を接着するのは、熱ラミネート工法により施されている。
また、電池外装用積層体10において、金属との熱接着性樹脂層16の融解熱量は、25mJ/mg以下である。
また、アルミ箔12の少なくとも片面には、耐電解液用の表面処理液をコーティング工法によって塗布して、耐食性コーティング層14が形成されている。
また、この電池外装用積層体10は、JIS K7127に規定された測定方法により測定し、前記積層体の引張破断伸度が50%以上である。
ここで、引張破断伸度とは、JIS K7127に準拠し、引張速度50mm/分で測定した際に求められた引張破断伸度である。電池外装用積層体10の引張破断伸度がMD方向、TD方向のいずれも50%以上であると、電池外装用積層体10を折り重ねてもコーナ部が十分に引き伸ばされ、破断することがないので、ピンホールが発生しない。
また、基材層11とアルミ箔12とは、ウレタン系接着剤層15を介して接着されている。
アルミ箔12と、多層のシーラントフィルム17とは、酸変性ポリオレフィン樹脂、エポキシ変性ポリオレフィン樹脂、酸変性ポリオレフィン樹脂と2官能以上のエポキシ基を有するエポキシ化合物とを混合したエポキシ基含有の酸変性ポリオレフィン樹脂からなる金属との熱接着性樹脂群の中から選択したいずれか1つの金属との熱接着性樹脂である金属との熱接着性樹脂層16を介して、熱ラミネート工法により接着されている。
また、多層のシーラントフィルム17は、金属との熱接着性樹脂層16とポリオレフィン樹脂層13とが積層されて形成されている。
また、多層のシーラントフィルム17のポリオレフィン樹脂層13は、ポリプロピレン樹脂層又はポリエチレン樹脂層からなる。
更に本発明では、アルミ箔12と、多層のシーラントフィルム17とを、熱ラミネート工法により接着して積層体を形成した後、引き続いて、該積層体の温度を10℃/秒以上の冷却速度で急速降下させ、金属との熱接着性樹脂層が結晶化するのを抑えることにより、金属との熱接着性樹脂層の融解熱量を25mJ/mg以下とするのが好ましい。
また、アルミ箔12と多層のシーラントフィルム17との間の接着強度が、JIS C6471に規定された測定方法(引き剥がし測定方法A)により測定し、10N/inch以上である。
【実施例】
【0029】
(測定方法)
・積層体の引張破断伸度の測定方法:JIS K7127「プラスチック−引張特性の試験方法−第3部:フィルム及びシートの試験条件」に規定された測定方法により測定した。
・アルミ箔と多層のシーラントフィルムとの接着強度の測定方法:JIS C6471「フレキシブルプリント配線板用銅張積層板試験方法」に規定された引き剥がし測定方法A(90°方向引き剥がし)により測定した。ただし、JIS C6471では、引き剥がし強さを、銅箔の幅(mm)に基づき、(N/mm)の単位で結果を報告することを規定しているが、本測定では、アルミ箔の幅に基づき、(N/inch)の単位で結果を記載した。ここで、1inch=25.4mmである。
・ピンホール破断発生率の測定方法:電池外装用積層体を50×50mmサイズで深さ8mmの冷間成形による絞り成形品を50個成形し、目視によりピンホールの有無を確認した。
・ヒートシール時の層間剥離発生数:電池外装用積層体を50×50mmサイズで深さ8mmの冷間成形による絞り成形品を50個成形し、ヒートシール後に、60℃×90RH%の恒温恒湿度オーブンに48時間放置して、その後、目視により、基材層とアルミ箔との層間剥離の有無を確認した。
・電解液強度保持率の測定方法:作製した電池外装用積層体を用いて、50×50mm(ヒートシール幅が5mm)の4方袋に製袋して、その中にLiPF
6を1mol/リットル添加したプロピレンカーボネート(PC)/ジエチルカーボネート(DEC)電解液に純水を0.5wt%添加して、それを2cc計量し、充填して包装した。この4方袋を60℃のオーブンに100時間保管後、アルミ箔とポリプロピレン(PP)樹脂フィルムとの層間接着強度(k2)を測定する。
ここで、事前に測定しておいた、電解液に暴露する前のアルミ箔とポリプロピレン(PP)樹脂フィルムとの層間接着強度(k1)と、電解液に暴露した後の層間接着強度(k2)との比率を電解液強度保持率K=(k2/k1)×100(%)とした。
・ラミネートフィルムの、金属との熱接着性樹脂層の結晶化エネルギー(金属との熱接着性樹脂層の融解熱量)の測定方法:DSC(示差熱測定装置)にて、ラミネートフィルムを10mgサンプリングして、10℃/分の昇温速度で、室温から200℃まで測定し、金属との熱接着性樹脂の厚み比率で重量を割って、金属との熱接着性樹脂層の重量を算出して、吸熱量を測定し、これを結晶化エネルギー(金属との熱接着性樹脂層の融解熱量)として、比較した。
(測定装置)
・引張破断伸度の測定装置:メーカ名:島津製作所、型式:AUTOGRAPH AGS‐100A引張試験装置
・接着強度の測定装置:メーカ名:島津製作所、型式:AUTOGRAPH AGS‐100A引張試験装置
・DSC:メーカ名:エスアイアイ・ナノテクノロジー(株)、型式:EXSTAR DSC7020
【0030】
(実施例1)
厚みが40μmのアルミ箔の、多層のシーラントフィルムと貼り合せる側の面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液をグラビアコーターにて乾燥後の厚みが0.6μmとなるように塗布し、耐食性コーティング層を積層した後、更に200℃のオーブンにて加熱し架橋反応させアルミ箔に焼き付けた。
さらに、アルミ箔に積層した耐食性コーティング層の上に、インラインで多層のシーラントフィルムを、加熱ロールを用いて熱ラミネートした。引き続いて、前記熱ラミネートした積層体を冷却ロールに通して、前記熱ラミネートした積層体の温度を、10℃/秒以上の冷却速度で急速降下させて急冷した。
ここで用いた、多層のシーラントフィルムは、エポキシ樹脂配合の酸変性ポリオレフィン樹脂層とポリプロピレン樹脂層との厚み比率が1:3であり、かつ、全体の厚みが80μmとなるように、多層キャスト工法にて製膜したものである。
また、エポキシ樹脂配合の酸変性ポリオレフィン樹脂は、酸変性ポリプロピレン樹脂に2官能以上のエポキシ基を有するエポキシ化合物(新日鉄住金化学(株)製、品名:YP55U)を8%ブレンドコンパウンドして得た、エポキシ基含有の酸変性ポリオレフィン樹脂のマスターバッチ樹脂ペレットと、酸変性ポリオレフィン樹脂とをブレンドして、エポキシ樹脂量が1%になるように配合したものである。
次に、アルミ箔の、多層のシーラントフィルムと貼り合せる側とは反対側の面に、基材層(厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、厚みが3μmのウレタン系接着剤層を用いてドライラミネートにより積層させた基材層)を対向させ、この基材層と、このアルミ箔とをウレタン系接着剤からなる接着剤層(厚み4μm)を介してドライラミネートにより積層した。
更に、アルミ箔と、金属との熱接着性樹脂層との接着強度を上げるために、この電池外装用積層体を80℃の熱風オーブンに48時間保管し、実施例1の電池外装用積層体を得た。
この実施例1の電池外装用積層体から試験片を採取し、MD方向およびTD方向の引張破断伸度を測定した。また、この電池外装用積層体10で8mm深さの絞り成形を50回行って、ヒートシール時の層間剥離発生数を測定した。また、この実施例1の電池外装用積層体からアルミ箔と多層のシーラントフィルムとの接着強度の測定用の試験片を採取し、アルミ箔と多層のシーラントフィルムとの接着強度を測定した。それらの結果を表1に示す。
【0031】
(実施例2)
厚みが40μmのアルミ箔の、多層のシーラントフィルムと貼り合せる側の面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、乾燥後の厚みが0.6μmとなるように塗布し、耐食性コーティング層を積層し、更に200℃のオーブンにて加熱し架橋反応させてアルミ箔に焼き付けた。
さらに、アルミ箔に積層した耐食性コーティング層の上に、インラインで多層のシーラントフィルムを、加熱ロールを用いて熱ラミネートで貼り合せた後、前記熱ラミネートした積層体を冷却ロールに通して、前記熱ラミネートした積層体の温度を、10℃/秒以上の冷却速度で急速降下させて急冷した。
引き続いて、厚みが25μmの延伸ポリアミド樹脂フィルムと、前記積層体のアルミ箔とを(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み3μm)を介して積層した以外は実施例1と同様にして、実施例2の電池外装用積層体を得た。実施例2の電池外装用積層体について、引張破断伸度、ヒートシール時の層間剥離の発生数およびアルミ箔と多層のシーラントフィルムとの接着強度を測定した。それらの結果を表1に示す。
ここで用いた多層のシーラントフィルムは、エポキシ樹脂配合の酸変性ポリオレフィン樹脂層とLLDPE樹脂層との厚み比率が1:3であり、かつ、全体の厚みが80μmとなるように、多層キャスト工法にて製膜したものである。
また、エポキシ樹脂配合の酸変性ポリオレフィン樹脂は、無水マレイン酸変性ポリエチレン樹脂(品名/三井化学(株)製、アドマー樹脂)に水酸基含有エポキシ化合物(品名/三菱化学(株)製、エピコート1001)を1.0wt%ブレンドコンパウンドした樹脂(すなわち、無水マレイン酸変性ポリエチレン樹脂の無水マレイン酸官能基に反応させてエポキシ基を導入したポリエチレン樹脂)を使用した。
【0032】
(比較例1)
厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、厚みが4μmのウレタン系接着剤でドライラミネートした基材層を用意し、この基材層の延伸ポリアミド樹脂フィルム側の面に、厚みが40μmのアルミ箔を、ウレタン系接着剤からなる接着剤層(厚み4μm)を介して積層した。それを実施例1と同様に処理して、前記アルミ箔の多層のシーラントフィルムと貼り合せる側の面に、耐食性コーティング層を積層した。
次に、無水マレイン酸変性ポリプロピレン樹脂を20μmの厚みで溶融押出し、ポリプロピレン樹脂のシーラントフィルム(厚み60μm)と50m/分の加工速度でサンドイッチラミネート加工して、順に積層して多層のシーラントフィルムを形成して、比較例1の電池外装用積層体を作製した。
作製後は、実施例1と同様にして、比較例1の電池外装用積層体について、引張破断伸度、ヒートシール時の層間剥離発生数およびアルミ箔と多層のシーラントフィルムとの接着強度を測定した。それらの結果を表1に示す。
【0033】
(実施例3)
厚みが40μmのアルミ箔の、多層のシーラントフィルムと貼り合せる側の面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、グラビアコーターにて乾燥後の厚みが0.6μmとなるように塗布し、耐食性コーティング層を積層し、更に200℃のオーブンにて加熱し架橋反応させアルミ箔に焼き付けた。
さらに、アルミ箔に積層した耐食性コーティング層の上に、インラインで多層のシーラントフィルムを、加熱ロールを用いて熱ラミネートで貼り合せた以外は実施例1と同様にして、実施例3の電池外装用積層体を得て、引張破断伸度、ヒートシール時の層間剥離の発生数およびアルミ箔と多層のシーラントフィルムとの接着強度を測定した。それらの結果を表1に示す。
ここで用いた多層のシーラントフィルムは、エポキシ樹脂配合の酸変性ポリオレフィン樹脂層とポリプロピレン樹脂層との厚み比率が1:3であり、かつ、全体の厚みが80μmとなるように、多層キャスト工法にて製膜したものである。
なお、このエポキシ樹脂配合の酸変性ポリオレフィン樹脂は、酸変性ポリプロピレン樹脂に2官能以上のエポキシ基を有するエポキシ化合物(新日鉄住金化学(株)製、品名:YP55U)を1%ブレンドコンパウンドして得たエポキシ基含有の酸変性ポリオレフィン樹脂の樹脂ペレットを使用した。
【0034】
(比較例2)
厚みが12μmの延伸ポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmの延伸ポリアミド樹脂フィルムとを、ウレタン系接着剤でドライラミネート工法で貼り合せた基材層を用意し、この基材層の延伸ポリアミド樹脂フィルム側の面に、厚みが40μmのアルミ箔を、(エポキシ系接着剤を含有する)ウレタン系接着剤からなる接着剤層(厚み4μm)を介して積層した。それに無水マレイン酸変性ポリエチレン樹脂を押出し50m/分の加工速度で押出ラミネートし、ボイル用ポリエチレンシーラントを、上記無水マレイン酸変性ポリオレフィンでの熱ラミネートによりサンドラミした以外は、実施例1と同様にして、比較例2の電池外装用積層体を得て、引張破断伸度、ヒートシール時の層間剥離発生数およびアルミ箔と多層のシーラントフィルムとの接着強度を測定した。それらの結果を表1に示す。
【0035】
【表1】
【0036】
実施例1〜3は、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を塗布し、耐食性コーティング層を積層していることから、アルミ箔と多層のシーラントフィルムとの接着強度が10N/inch以上であるので、引張破断伸度がMD方向、TD方向のいずれも50%を超えており、ヒートシール時の層間剥離発生の頻度が低くなった。
実施例1〜3の電池外装用積層体は、金属との熱接着性樹脂層の融解熱量が25mJ/mg以下であり、アルミ箔と多層のシーラントフィルムとの接着強度が高いため、ヒートシール時の層間剥離発生する頻度が低下した。
また、実施例1〜3の電池外装用積層体を用いて、電解液強度保持率を測定した。試験結果は、実施例1の電池外装用積層体における電解液強度保持率が86%であり、実施例2の電池外装用積層体における電解液強度保持率が88%であり、実施例3の電池外装用積層体における電解液強度保持率が84%であった。つまり、実施例1〜3の電池外装用積層体は、リチウム電池の電解液に対して耐食性があった。
一方、比較例1の電池外装用積層体では、アルミ箔と多層のシーラントフィルムとの接着方法が押出ラミネートであるため、加熱量が足らないことから、接着強度は十分でなく、層間強度が10N/inch以下(6N/inch)であったため、電解液処理後において、層間剥離が発生した。
また、比較例2の電池外装用積層体では、アルミ箔と多層のシーラントフィルムとの接着強度が、加工速度を30m/分以上で加工すると、層間接着強度が10N/inch以下であり、接着強度が足らず、加工速度を下げなければならず、コスト的にメリットが無いことがわかった。また、無水マレイン酸変性ポリオレフィンでの熱ラミネートであるため、加工速度が低い条件で、接着強度を10N/inchにしたサンプルは、絞り成形時及び電解液処理後でも品質上の問題は無い。
比較例1,2の電池外装用積層体は、金属との熱接着性樹脂層の融解熱量が25mJ/mg以下でないために、アルミ箔と多層のシーラントフィルムとの接着強度が低く、ヒートシール時の層間剥離発生の頻度が増大した。
【0037】
(実施例4)
厚みが40μmのアルミ箔の、多層のシーラントフィルムと貼り合せる側の面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%とを溶かした水溶液を、乾燥後の厚みが0.5μmとなるように塗布し、耐食性コーティング層を積層し、更に200℃のオーブンにて加熱し架橋反応させてアルミ箔に焼き付けた。
さらに、アルミ箔に積層した耐食性コーティング層の上に、インラインで多層のシーラントフィルムを、加熱ロールを用いて熱ラミネートした。ここで用いた多層のシーラントフィルムは、エポキシ樹脂配合の酸変性ポリオレフィン樹脂層とランダムコーポリマーポリプロピレン樹脂層との厚み比率が1:3であり、かつ、全体の厚みが80μmとなるように、多層キャスト工法にて製膜したものである。なお、エポキシ樹脂配合の酸変性ポリオレフィン樹脂は、無水マレイン酸変性ポリプロピレン樹脂に2官能エポキシ基含有化合物を6%ブレンドコンパウンドして樹脂化したものである。前記アルミ箔の耐食性コーティング層の面と、得られた多層のシーラントフィルムとを、熱ラミネート工法にて貼り合せて積層体を作製した直後に、前記積層体を冷却ロールに通して、前記積層体の温度を10℃/秒以上の冷却速度で急速降下させて急冷することにより結晶化を抑えた。
次に、厚みが25μmの延伸ポリアミド樹脂フィルムを、3g/m
2で塗布されたウレタン系接着剤層を介してドライラミネートにより、前記積層体のアルミ箔側の面を積層し、電池外装用積層体を作製した後、更に、アルミ箔と、金属との熱接着性樹脂層との接着強度を上げるために、この電池外装用積層体を80℃の熱風オーブンに48時間保管し、実施例4の電池外装用積層体を得た。
この実施例4の電池外装用積層体から試験片を採取し、アルミ箔と多層のシーラントフィルムとの接着強度を測定した。また、この実施例4の電池外装用積層体で8mm深さの絞り成形を50回行って、ピンホール破断の発生数を計測し、ピンホール破断発生率を求めた。また、この実施例4の電池外装用積層体で8mm深さの絞り成形を50回行って、ヒートシール時の層間剥離発生数を測定した。それらの結果を表2に示す。
【0038】
(実施例5)
金属との熱接着性樹脂層の2官能エポキシ化合物を、ブレンドコンパウンドしたポリプロピレン樹脂層の厚みを40μmにして、ポリオレフィン樹脂層のランダムコーポリマーポリプロピレン樹脂層の厚みを40μmにし、多層プロピレンフィルムの総厚みを80μmにしたこと以外は、実施例4と同様にして、実施例5の電池外装用積層体を得て、アルミ箔と多層のシーラントフィルムとの接着強度、ヒートシール時の層間剥離発生数およびピンホール破断発生率を測定した。それらの結果を表2に示す。
【0039】
(比較例3)
厚みが12μmのポリエチレンテレフタレート(PET)樹脂フィルムと、厚みが25μmのポリアミド樹脂フィルム層とが、3g/m
2で塗布されたウレタン系接着剤層を介して積層してなる基材層を用意し、この基材層の延伸ポリアミド樹脂フィルム側の面に、エポキシ系接着剤を含有するウレタン系接着剤層3μmとアルミ箔とを、このアルミ箔の下記ヒートシール剤側の面に、水酸基を有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製、商品名:Gポリマー樹脂)を1重量%と、フッ化クロム(III)を2重量%と、を溶かした水溶液を、乾燥後の厚みが0.6μmとなるように塗布し、その上に酸変性ポリプロピレン系ヒートシール剤を3g/m
2で塗布し、その後にポリプロピレン樹脂層40μmが20m/分の加工速度で熱ラミネートした後、冷却ロールに通さず、前記熱ラミネートした積層体の温度を、8℃/秒以下の冷却速度で徐々に降下させ、4層構成(PET樹脂フィルム、ポリアミド樹脂フィルム層、アルミ箔、多層プロピレン樹脂層)からなる、比較例3の電池外装用積層体を得た。
この比較例3の電池外装用積層体から試験片を採取し、アルミ箔と多層のシーラントフィルムとの接着強度を測定した。また、この比較例3の電池外装用積層体で8mm深さの絞り成形を50回行って、ピンホール破断の発生数を計測し、ピンホール破断発生率を求めた。また、この比較例3の電池外装用積層体で8mm深さの絞り成形を50回行って、ヒートシール時の層間剥離発生数を測定した。それらの結果を表2に示す。
【0040】
【表2】
【0041】
実施例4,5の電池外装用積層体によれば、最外層に厚み12μmのPET樹脂フィルムを積層しなくても、金属との熱接着性樹脂層の融解熱量が25mJ/mg以下であり、アルミ箔と多層のシーラントフィルムとの接着強度が高いため、ヒートシール時の層間剥離発生、及びピンホールの破断発生の頻度が低くなった。
比較例3の電池外装用積層体は、金属との熱接着性樹脂層の融解熱量が25mJ/mg以下でないために、アルミ箔と多層のシーラントフィルムとの接着強度が低く、ピンホールの破断発生の頻度が増大した。