(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【0007】
特許文献1,2に開示される、エリアセンサを用いた欠陥検査装置は、情報量が多い2次元画像データを処理する必要がある。欠陥検査装置では、エリアセンサから出力される2次元画像データを対象に、パーソナルコンピュータ(PC)によって実現される画像解析部において欠陥位置などを解析するが、2次元画像データは情報量が多いので、画像解析部による2次元画像データの解析処理時間が長くなる傾向がある。
【0008】
欠陥検査装置では、画像解析部による2次元画像データの解析処理速度に応じて、シート状成形体の搬送速度を制御する。情報量の多い2次元画像データの画像解析部による解析処理速度が遅くなると、シート状成形体の搬送速度を低下させる必要があり、検査効率が低下してしまう。
【0009】
本発明の目的は、シート状成形体の欠陥を検査するための画像データを生成する画像生成装置において、高い欠陥検出能力を維持した上で、画像解析部による画像処理の高速化を図ることができ、検査効率を向上することができる画像生成装置、該画像生成装置を備える欠陥検査装置、および欠陥検査方法を提供することである。
【0010】
本発明は、シート状成形体の欠陥を検査するための画像データを生成する画像生成装置であって、
シート状成形体を該シート状成形体の長手方向に搬送する搬送部と、
シート状成形体の長手方向に垂直な幅方向に直線状に延びる光源を備え、該光源によってシート状成形体に光を照射する光照射部と、
前記搬送部によって搬送中のシート状成形体に対して撮像動作を行って、2次元画像を表す2次元画像データを生成する撮像部と、
1または複数のアルゴリズム処理によって、前記2次元画像データを構成する各画素の特徴量を、各画素の輝度値に基づいて算出する特徴量算出部と、
前記2次元画像データを構成する各画素を、前記特徴量が予め定める閾値以上である欠陥画素と、前記特徴量が前記閾値未満である残余画素とに区別し、前記欠陥画素については前記特徴量に応じた階調値を表す階調情報が格納された階調情報格納ビット列からなり、前記残余画素については零の階調値を表す階調情報が格納された階調情報格納ビット列からなる処理画像データを生成する処理画像データ生成部と、
前記処理画像データに基づいて、画素ごとに、シート状成形体における欠陥についての欠陥情報を取得し、その取得した欠陥情報が格納された欠陥情報格納ビット列を生成する欠陥情報取得部と、
画素ごとに、前記処理画像データの前記階調情報格納ビット列に、前記欠陥情報格納ビット列を付加して得られる解析用ビット列からなる解析用画像データを生成する解析用画像データ生成部と、
を備える画像生成装置を提供する。
【0011】
また本発明の画像生成装置において、前記欠陥情報は、シート状成形体における欠陥の種類を表す欠陥種類情報を含むことができる。
【0012】
また本発明の画像生成装置において、前記特徴量算出部は、複数のアルゴリズム処理によって前記特徴量を算出し、
前記欠陥情報取得部は、画素ごとの前記階調情報格納ビット列の階調情報が、前記複数のアルゴリズム処理のうちのいずれのアルゴリズム処理によって算出された特徴量に応じた階調情報であるかに基づいて、前記欠陥種類情報を含む前記欠陥情報を取得することが好ましい。
【0013】
また本発明は、前記画像生成装置と、
前記画像生成装置の解析用画像データ生成部によって生成された解析用画像データを構成する解析用ビット列に格納された情報を用いて、予め定める画像解析を行うことによって、シート状成形体の欠陥を検出する画像解析装置と、
を備える欠陥検査装置である。
【0014】
また本発明は、シート状成形体の欠陥を検査するための欠陥検査方法であって、
シート状成形体を、該シート状成形体の長手方向に搬送する搬送工程と、
シート状成形体の長手方向に垂直な幅方向に直線状に延びる光源によって、搬送される前記シート状成形体に光を照射する光照射工程と、
搬送中の前記シート状成形体に対して撮像動作を行って、2次元画像を表す2次元画像データを生成する撮像工程と、
1または複数のアルゴリズム処理によって、前記2次元画像データを構成する各画素の特徴量を、各画素の輝度値に基づいて算出する特徴量算出工程と、
前記2次元画像データを構成する各画素を、前記特徴量が予め定める閾値以上である欠陥画素と、前記特徴量が前記閾値未満である残余画素とに区別し、前記欠陥画素については前記特徴量に応じた階調値を表す階調情報が格納された階調情報格納ビット列からなり、前記残余画素については零の階調値を表す階調情報が格納された階調情報格納ビット列からなる処理画像データを生成する処理画像データ生成工程と、
前記処理画像データに基づいて、画素ごとに、シート状成形体における欠陥についての欠陥情報を取得し、その取得した欠陥情報が格納された欠陥情報格納ビット列を生成する欠陥情報取得工程と、
画素ごとに、前記処理画像データの前記階調情報格納ビット列に、前記欠陥情報格納ビット列を付加して得られる解析用ビット列からなる解析用画像データを生成する解析用画像データ生成工程と、
前記解析用画像データを構成する前記解析用ビット列に格納された情報を用いて、予め定める画像解析を行うことによって、シート状成形体の欠陥を検出する画像解析工程と、
を含む欠陥検査方法である。
【0015】
本発明によれば、画像生成装置は、シート状成形体の欠陥を検査するための画像データを生成する装置であり、搬送部、光照射部、撮像部、特徴量算出部、処理画像データ生成部、欠陥情報取得部、および解析用画像データ生成部を備える。画像生成装置において撮像部は、光照射部によって光が照射されながら搬送部によって搬送されるシート状成形体に対して撮像動作を行って、2次元画像を表す2次元画像データを生成する。特徴量算出部は、前記2次元画像データを、予め定めるアルゴリズムで処理することによって、2次元画像データを構成する各画素の、輝度値に基づく特徴量を算出する。
【0016】
処理画像データ生成部は、前記2次元画像データを構成する各画素を、前記特徴量が予め定める閾値以上である欠陥画素と、前記特徴量が前記閾値未満である残余画素とに区別し、前記欠陥画素については前記特徴量に応じた階調値を表す階調情報が格納された階調情報格納ビット列からなり、前記残余画素については零の階調値を表す階調情報が格納された階調情報格納ビット列からなる処理画像データを生成する。欠陥情報取得部は、前記処理画像データに基づいて、画素ごとに、シート状成形体における欠陥についての情報である欠陥情報を取得し、その取得した欠陥情報が格納された欠陥情報格納ビット列を生成する。
【0017】
解析用画像データ生成部は、画素ごとに、前記処理画像データの前記階調情報格納ビット列に、欠陥情報取得部が生成した前記欠陥情報格納ビット列を付加し、そうして得られる解析用ビット列からなる解析用画像データを生成する。
【0018】
このように構成される本発明の画像生成装置では、撮像部によって生成された、シート状成形体の2次元画像データに基づいて、シート状成形体の欠陥を検査するための画像データである解析用画像データを生成するので、たとえばラインセンサによる複数の1次元画像データに基づいて欠陥を検査するための画像データを生成する場合に比べて、高い欠陥検出能力を維持することができる。
【0019】
さらに本発明の画像生成装置では、撮像部から出力された、情報量の多い2次元画像データは、階調情報格納ビット列で各画素が構成される処理画像データに変換され、さらに、階調情報格納ビット列に欠陥情報格納ビット列が付加された解析用ビット列で各画素が構成される解析用画像データに変換される。画像生成装置は、このようにして2次元画像データから変換された、解析用ビット列で各画素が構成される解析用画像データを、シート状成形体の欠陥を検査するための画像データとして生成するので、この解析用画像データを用いて画像解析を行うことによって、画像解析の高速化を図ることができ、欠陥検査の効率を向上することができる。
【0020】
また本発明によれば、欠陥情報取得部が処理画像データに基づいて取得する欠陥情報は、シート状成形体における欠陥の種類を表す欠陥種類情報を含むことができる。これによって、画像生成装置は、欠陥種類情報に基づいて、シート状成形体における欠陥の種類に関する情報を取得することができる。
【0021】
また本発明によれば、特徴量算出部は、複数のアルゴリズム処理によって特徴量を算出する。そして、欠陥情報取得部は、画素ごとの階調情報格納ビット列の階調情報が、複数のアルゴリズム処理のうちのいずれのアルゴリズム処理によって算出された特徴量に応じた階調情報であるかに基づいて、欠陥種類情報を含む欠陥情報を取得することができる。
【0022】
また本発明によれば、欠陥検査装置は、前記の本発明に係る画像生成装置と、画像解析装置とを備える。画像解析装置は、画像生成装置の解析用画像データ生成部によって生成された解析用画像データを構成する解析用ビット列に格納された情報を用いて、予め定める画像解析を行うことによって、シート状成形体の欠陥を検出する。これによって、画像解析装置による画像解析の高速化を図ることができ、欠陥検査の効率を向上することができる。
【0023】
また本発明によれば、欠陥検査方法は、搬送工程、光照射工程、撮像工程、特徴量算出工程、処理画像データ生成工程、欠陥情報取得工程、解析用画像データ生成工程、および画像解析工程を含む。欠陥検査方法において撮像工程では、光が照射されながら搬送部によって搬送されるシート状成形体に対して撮像動作を行って、2次元画像を表す2次元画像データを生成する。特徴量算出工程では、前記2次元画像データを、予め定めるアルゴリズムで処理することによって、2次元画像データを構成する各画素の、輝度値に基づく特徴量を算出する。
【0024】
処理画像データ生成工程では、前記2次元画像データを構成する各画素を、前記特徴量が予め定める閾値以上である欠陥画素と、前記特徴量が前記閾値未満である残余画素とに区別し、欠陥画素については前記特徴量に応じた階調値を表す階調情報が格納された階調情報格納ビット列からなり、残余画素については零の階調値を表す階調情報が格納された階調情報格納ビット列からなる処理画像データを生成する。欠陥情報取得工程では、前記処理画像データに基づいて、画素ごとに、シート状成形体における欠陥についての情報である欠陥情報を取得し、その取得した欠陥情報が格納された欠陥情報格納ビット列を生成する。
【0025】
解析用画像生成工程では、画素ごとに、前記処理画像データの前記階調情報格納ビット列に、前記欠陥情報格納ビット列を付加し、そうして得られる解析用ビット列によって構成される解析用画像データを生成する。そして、画像解析工程では、前記解析用画像データを構成する解析用ビット列に格納された情報を用いて、予め定める画像解析を行うことによって、シート状成形体の欠陥を検出する。
【0026】
このように構成される本発明の欠陥検査方法では、撮像工程において生成された、シート状成形体の2次元画像データに基づいて、シート状成形体の欠陥検出が行われるので、たとえばラインセンサによる複数の1次元画像データに基づいて欠陥検出が行われる場合に比べて、高い欠陥検出能力を維持することができる。
【0027】
さらに本発明の欠陥検査方法では、撮像工程において生成された、情報量の多い2次元画像データは、階調情報格納ビット列によって各画素が構成される処理画像データに変換され、さらに、階調情報格納ビット列に欠陥情報格納ビット列が付加された解析用ビット列によって各画素が構成される解析用画像データに変換される。このようにして2次元画像データから変換された、解析用ビット列によって各画素が構成される解析用画像データに基づいて、画像解析工程において、画像解析が行われてシート状成形体の欠陥が検出されるので、画像解析工程における画像解析の高速化を図ることができ、検査効率を向上することができる。
【図面の簡単な説明】
【0028】
図1は、本発明の一実施形態に係る欠陥検査方法の工程を示す工程図である。
図2は、本発明の一実施形態に係る欠陥検査装置100の構成を示す模式図である。
図3は、欠陥検査装置100の構成を示すブロック図である。
図4Aは、欠陥検出アルゴリズムの一例であるエッジプロファイル法を説明するための図であり、撮像装置5で生成された2次元画像データに対応する2次元画像Aの一例を示す図である。
図4Bは、処理画像生成部61で作成されたエッジプロファイルP1の一例を示す図である。
図4Cは、処理画像生成部61で作成された微分プロファイルP2の一例を示す図である。
図5Aは、欠陥検出アルゴリズムの他の例であるピーク法を説明するための図であり、撮像装置5で生成された2次元画像データに対応する2次元画像Bの一例を示す図である。
図5Bは、処理画像生成部61で作成された輝度プロファイルP3の一例を示す図である。
図5Cは、処理画像生成部61で実行される、データ点の一端から他端に向かって移動する質点の想定手順を説明するための図である。
図5Dは、処理画像生成部61で作成された輝度値差プロファイルP4の一例を示す図である。
図6Aは、欠陥検出アルゴリズムの他の例である平滑化法を説明するための図であり、撮像装置5で生成された2次元画像データに対応する2次元画像Cの一例を示す図である。
図6Bは、処理画像生成部61で生成された平滑化プロファイルP5の一例を示す図である。
図7Aは、欠陥検出アルゴリズムの他の例である第2のエッジプロファイル法を説明するための図であり、撮像装置5で生成された2次元画像データに対応する2次元画像Dの一例を示す図である。
図7Bは、処理画像生成部61で作成されたエッジプロファイルP6の一例を示す図である。
図7Cは、処理画像生成部61で作成されたエッジプロファイルP7の一例を示す図である。
図8Aは、画像処理装置6が生成する処理画像の一例を示す図であり、第1欠陥検出アルゴリズムで処理されて生成された処理画像Eの一例を示す図である。
図8Bは、画像処理装置6が生成する処理画像の一例を示す図であり、第2欠陥検出アルゴリズムで処理されて生成された処理画像Fの一例を示す図である。
図8Cは、処理画像生成部61が、処理画像Eと処理画像Fとを合成して生成した処理画像Gの一例を示す図である。
図9Aは、画像処理装置6が生成する解析用画像の一例を示す図であり、処理画像生成部61で生成された処理画像Gを構成する各画素の階調情報格納ビット列に、欠陥情報格納ビット列を付加することにより、得られた解析用画像Hの一例を示す図である。
図9Bは、解析用画像Hにおける画素を構成する解析用ビット列H31、H32およびH33の一例を示す図である。
【発明を実施するための形態】
【0029】
図1は、本発明の一実施形態に係る欠陥検査方法の工程を示す工程図である。本実施形態の欠陥検査方法は、
図1に示す搬送工程s1と、光照射工程s2と、撮像工程s3と、特徴量算出工程s4と、処理画像データ生成工程s5と、欠陥情報取得工程s6と、解析用画像データ生成工程s7と、画像解析工程s8とを含む。
【0030】
図2は、本発明の一実施形態に係る欠陥検査装置100の構成を示す模式図である。
図3は、欠陥検査装置100の構成を示すブロック図である。本実施形態の欠陥検査装置100は、熱可塑性樹脂などのシート状成形体2の欠陥を検出する装置であり、本発明に係る画像生成装置1と、画像解析装置7とを備える。欠陥検査装置100の画像生成装置1は、搬送装置3、照明装置4、撮像装置5、および画像処理装置6を備える。欠陥検査装置100は、本発明に係る欠陥検査方法を実現する。搬送装置3が搬送工程s1を実行し、照明装置4が光照射工程s2を実行し、撮像装置5が撮像工程s3を実行し、画像処理装置6が特徴量算出工程s4、処理画像データ生成工程s5、欠陥情報取得工程s6および解析用画像データ生成工程s7を実行し、画像解析装置7が画像解析工程s8を実行する。
【0031】
欠陥検査装置100は、搬送装置3により一定幅で長手方向に連続するシート状成形体2を一定方向(シート状成形体2の幅方向に直交する前記長手方向と同一方向)に移送し、この移送過程で照明装置4により照明されたシート面を撮像装置5により撮像して2次元画像を表す2次元画像データを生成し、画像処理装置6が、前記2次元画像データに基づいて解析用画像データを生成し、画像解析装置7が、画像処理装置6から出力される解析用画像データに基づいて欠陥検出を行うものである。
【0032】
被検査体であるシート状成形体2は、押出機から押し出された熱可塑性樹脂をロールの隙間に通して表面を平滑にしたり凹凸形状を付与するなどの処理が施され、引取ロールにより搬送ロール上を冷却されながら引き取られることにより成形される。本実施形態のシート状成形体2に適用可能な熱可塑性樹脂は、たとえば、メタクリル樹脂、メタクリル酸メチル−スチレン共重合体(MS樹脂)、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン、ポリカーボネイト(PC)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリビニルアルコール(PVA)、トリアセチルセルロース樹脂(TAC)などである。シート状成形体2は、これら熱可塑性樹脂の単層シート、積層シートなどから成形される。
【0033】
また、シート状成形体2に生じる欠陥の例としては、成形時に生じる気泡、フィッシュアイ、異物、タイヤ跡、打痕、傷などの点状の欠陥(点欠陥)、折り目跡などにより生じるいわゆるクニック(knick)、厚さの違いにより生じるいわゆる原反スジなどの線状の欠陥(線欠陥)が挙げられる。
【0034】
搬送装置3は、搬送部としての機能を有し、シート状成形体2を一定方向(搬送方向Z)に搬送する。搬送装置3は、たとえば、シート状成形体2を搬送方向Zに搬送する送出ローラと受取ローラとを備え、ロータリーエンコーダなどにより搬送距離を計測する。本実施形態では搬送速度は、搬送方向Zに2〜30m/分程度に設定される。
【0035】
照明装置4は、光照射部としての機能を有し、搬送方向Zに直交するシート状成形体2の幅方向を線状に照明する。照明装置4は、撮像装置5で撮影される画像に線状の反射像が含まれるように配置されている。具体的には、照明装置4は、シート状成形体2を基準として、撮像装置5と同じ側において、シート状成形体2の表面を臨み、シート状成形体2の表面における照明領域、すなわち、撮像装置5が撮像する撮像領域までの距離が、たとえば200mmとなるように配置されている。
【0036】
照明装置4の光源としては、LED(Light Emitting Diode)、メタルハライドランプ、ハロゲン伝送ライト、蛍光灯など、シート状成形体2の組成および性質に影響を与えない光を照射するものであれば、特に限定されない。なお、照明装置4は、シート状成形体2を挟んで撮像装置5とは反対側に配置されていてもよい。この場合には、撮像装置5で撮像された画像に、シート状成形体2を透過する透過像が含まれる。
【0037】
欠陥検査装置100は、撮像部としての機能を有する複数の撮像装置5を備え、各撮像装置5は、搬送方向Zに直交する方向(シート状成形体2の幅方向)に等間隔に配列される。また、撮像装置5は、撮像装置5からシート状成形体2の撮像領域の中心に向かう方向と搬送方向Zとが鋭角をなすように配置されている。撮像装置5は、シート状成形体2の照明装置4による反射像または透過像(以下、一括して「照明像」という)を含む2次元画像を複数回撮像して、複数の2次元画像データを生成する。
【0038】
撮像装置5は、2次元画像を撮像するCCD(Charge Coupled Device)またはCMOS(Complementary Metal−Oxide Semiconductor)のエリアセンサからなる。撮像装置5は、
図2に示すように、シート状成形体2の搬送方向Zに直交する幅方向の全領域を撮像するように配置されている。このように、シート状成形体2の幅方向の全領域を撮像し、搬送方向Zに連続するシート状成形体2を搬送することにより、効率的にシート状成形体2の全領域の欠陥を検査することができる。
【0039】
撮像装置5の撮像間隔(フレームレート)は、固定されていてもよく、ユーザが撮像装置5自体を操作することによって変更可能となっていてもよい。また、撮像装置5の撮像間隔は、デジタルスチルカメラの連続撮影の時間間隔である数分の1秒などであってもよいが、検査の効率化を向上させるために、短い時間間隔、たとえば一般的な動画データのフレームレートである1/30秒などであることが好ましい。
【0040】
撮像装置5が撮像する2次元画像の搬送方向Zの長さは、撮像装置5が2次元画像を取り込んでから次の2次元画像を取り込むまでの時間にシート状成形体2が搬送される搬送距離の少なくとも2倍以上であることが好ましい。すなわち、シート状成形体2の同一箇所を2回以上樶像することが好ましい。このように、2次元画像の搬送方向Zの長さを、撮像装置5が2次元画像を取り込んでから次の2次元画像を取り込むまでの時間におけるシート状成形体2の搬送距離よりも大きくし、シート状成形体2の同一部分の撮像回数を増加させることにより、高精度に欠陥を検査することができる。
【0041】
画像処理装置6は、特徴量算出部、処理画像データ生成部および欠陥情報取得部としての機能を有する処理画像生成部61と、解析用画像データ生成部としての機能を有する解析用画像生成部62とを備える。画像処理装置6は、複数の撮像装置5のそれぞれに対応して設けられる。処理画像生成部61は、FPGA(Field−programmable gate array)やGPGPU(General−purpose computing on graphics processing units)など、画像処理ボードや撮像装置5の内部のハードウェアによって実現することができる。
【0042】
処理画像生成部61は、撮像装置5から出力された2次元画像データを予め定めるアルゴリズム(以下、「欠陥検出アルゴリズム」という)で処理することによって、前記2次元画像データを構成する各画素の、輝度値に基づく特徴量を算出する。さらに、処理画像生成部61は、前記2次元画像データにおいて、前記特徴量が予め定める閾値以上である画素を欠陥画素として認識し、欠陥画素については前記特徴量に応じた階調値を表す階調情報が格納され、欠陥画素以外の残余画素(前記特徴量が前記閾値未満である画素)については零の階調値を表す階調情報が格納された階調情報格納ビット列を生成する。各々の画素について生成した階調情報格納ビット列は、それぞれ、複数のビットからなる。そして、処理画像生成部61は、各々の画素が前記階調情報格納ビット列で構成される処理画像データを出力する。さらにまた、処理画像生成部61は、生成した処理画像データに基づいて、画素ごとに、シート状成形体2における欠陥についての情報である欠陥情報を取得し、その取得した欠陥情報が格納された欠陥情報格納ビット列を生成する。各々の画素について生成した欠陥情報格納ビット列は通常、それぞれ、複数のビットからなる。
【0043】
処理画像生成部61で用いられる欠陥検出アルゴリズムについて、
図4A〜4C、
図5A〜5D、
図6Aおよび6B、ならびに
図7A〜7Cを参照しながら説明する。
【0044】
図4A〜4Cは、欠陥検出アルゴリズムの一例であるエッジプロファイル法を説明するための図である。
図4Aは、撮像装置5で生成された2次元画像データに対応する2次元画像Aの一例を示し、画像の上側が搬送方向Z下流側であり、画像の下側が搬送方向Z上流側である。2次元画像Aにおいて、シート状成形体2の幅方向に平行な方向をX方向とし、シート状成形体2の長手方向(搬送方向Zに平行な方向)に平行な方向をY方向とする。
図4Aにおいて、2次元画像AのY方向に関して中央に位置し、X方向に延びる帯状の明領域が照明像A1であり、照明像A1の内部に存在する暗領域が第1欠陥画素群A21であり、照明像A1の近傍に存在する明領域が第2欠陥画素群A22である。
【0045】
エッジプロファイル法による欠陥検出アルゴリズムを用いる場合、処理画像生成部61は、まず、2次元画像Aを、Y方向に沿った1列ずつの画素列のデータに分割する。次に、処理画像生成部61は、各画素列のデータについて、Y方向一端(
図4Aにおける2次元画像Aの上端)から他端(
図4Aにおける2次元画像Aの下端)に向かってエッジを探査していくエッジ判定処理を行う。
【0046】
具体的には、処理画像生成部61は、各画素列のデータについて、Y方向一端側から2つ目の画素を注目画素とし、注目画素に対して一端側に隣接する隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上大きいか否かを判定する。隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上大きいと判定された場合には、処理画像生成部61は、隣接画素が上限エッジA3であると判定する。それ以外の場合には、処理画像生成部61は、注目画素をY方向他端に向かって1画素ずつずらしながら、隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上大きいと判定されるまでエッジ判定処理を繰返す。
【0047】
上限エッジA3を検出した後、処理画像生成部61は、注目画素をY方向他端に向かって1画素ずつずらしながら、隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上小さいか否かを判定する。隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上小さいと判定された場合には、処理画像生成部61は、隣接画素が下限エッジA4であると判定する。それ以外の場合には、処理画像生成部61は、注目画素をY方向他端に向かって1画素ずつずらしながら、隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上小さいと判定されるまでエッジ判定処理を繰返す。
【0048】
図4Aでは、処理画像生成部61によるエッジ判定処理によって検出された上限エッジA3の例を「○」で示し、下限エッジA4の例を「●」で示している。
図4Aから明らかなように、2次元画像Aにおいて欠陥が存在する第1欠陥画素群A21および第2欠陥画素群A22では、上限エッジA3と下限エッジA4とのY方向についての座標値(Y座標値)の差が、欠陥画素以外の残余画素におけるY座標値の差よりも極端に小さい。また、2次元画像Aにおける第2欠陥画素群A22では、上限エッジA3のY座標値が、欠陥画素以外の残余画素におけるY座標値と明らかに異なる。
【0049】
このような特徴を利用して、処理画像生成部61は、
図4Bに示すエッジプロファイルP1を作成する。
図4Bに示すエッジプロファイルP1では、2次元画像Aにおける第2欠陥画素群A22に対応して、上限エッジA3のY座標値に対応するピークP11が出現している。なお、処理画像生成部61は、上限エッジA3と下限エッジA4とのY座標値の差に基づいて、エッジプロファイルを作成するように構成されていてもよい。この場合には、処理画像生成部61によって作成されたエッジプロファイルでは、2次元画像Aにおける第1欠陥画素群A21および第2欠陥画素群A22に対応して、上限エッジA3と下限エッジA4とのY座標値の差が小さいピークが出現することになる。
【0050】
さらに、処理画像生成部61は、エッジプロファイルP1について微分処理を行い、
図4Cに示す微分プロファイルP2を作成する。
図4Cに示す微分プロファイルP2では、エッジプロファイルP1におけるピークP11に対応して、すなわち、2次元画像Aにおける第2欠陥画素群A22に対応して、予め定める閾値以上の(微分値が大きい)特徴量P22を有するピークP21が出現している。
【0051】
処理画像生成部61は、微分プロファイルP2に基づいて、予め定める閾値以上の特徴量P22を有するピークP21に対応する、2次元画像Aにおける画素を欠陥画素として抽出する。
図4Cに示す微分プロファイルP2の例では、処理画像生成部61は、欠陥画素として第2欠陥画素群A22を抽出する。
【0052】
図5A〜5Dは、欠陥検出アルゴリズムの他の例であるピーク法を説明するための図である。
図5Aは、撮像装置5で生成された2次元画像データに対応する2次元画像Bの一例を示し、画像の上側が搬送方向Z下流側であり、画像の下側が搬送方向Z上流側である。2次元画像Bにおいて、シート状成形体2の幅方向に平行な方向をX方向とし、シート状成形体2の長手方向(搬送方向Zに平行な方向)に平行な方向をY方向とする。
図5(a)において、2次元画像BのY方向に関して中央に位置し、X方向に延びる帯状の明領域が照明像B1であり、照明像B1の内部に存在する暗領域が第1欠陥画素群B21であり、照明像B1の近傍に存在する明領域が第2欠陥画素群B22である。
【0053】
ピーク法による欠陥検出アルゴリズムを用いる場合、処理画像生成部61は、まず、2次元画像Bを、Y方向に沿った1列ずつの画素列のデータに分割する。次に、処理画像生成部61は、各画素列のデータについて、2次元画像BのY方向に平行な一直線L上に沿った位置における輝度値のデータを点として連続的に描画し、それらを繋いだ曲線を、
図5Bに示す輝度プロファイルP3として作成する。
【0054】
2次元画像Bに欠陥画素が存在しない場合、輝度プロファイルP3は、谷部分が出現しない単峰のプロファイルを示すが、欠陥画素が存在する場合には
図5Bに示すように、谷部分P31が出現した双峰のプロファイルを示すようになる。
【0055】
次に、処理画像生成部61は、各画素列の輝度プロファイルP3について、隣接するデータ点間の移動時間がデータ点間の距離にかかわらず一定となるように、輝度プロファイルP3のX方向の一端から他端に向かって移動する質点を想定する。ここで、前記質点が、
図5Cに示すように、データ点cからそれに隣接するデータ点bへ、データ点bからそれに隣接するデータ点aへ、データ点aからそれに隣接するデータ点dへ移動していくとする。また、データ点dが注目画素に対応するデータ点であるものとする。
【0056】
処理画像生成部61は、データ点dの直前に質点が通過したデータ点a,b,cにおける質点の速度ベクトルおよび加速度ベクトルを求める。すなわち、処理画像生成部61は、データ点dの直前に質点が通過した2つのデータ点aおよびデータ点bの座標と、前記移動時間とに基づいて、データ点bからデータ点aまでの区間における質点の速度ベクトルを求める。また、処理画像生成部61は、データ点aの直前に質点が通過した2つのデータ点bおよびデータ点cの座標と、前記移動時間とに基づいて、データ点cからデータ点bまでの区間における質点の速度ベクトルを求める。さらに、処理画像生成部61は、データ点bからデータ点aまでの区間における質点の速度ベクトルと、データ点cからデータ点bまでの区間における質点の速度ベクトルとに基づいて、データ点cからデータ点aまでの区間における質点の加速度ベクトルを求める。そして、処理画像生成部61は、データ点bからデータ点aまでの区間における質点の速度ベクトルと、データ点cからデータ点aまでの区間における質点の加速度ベクトルとから、データ点dの座標を予測する(予測データ点f)。
【0057】
処理画像生成部61は、上記のようにして予測されたデータ点dの予測データ点fの輝度値と、データ点dの実際(実測)の輝度値との差を求め、
図5Dに示す輝度値差プロファイルP4を作成する。
図5Dに示す輝度値差プロファイルP4では、
図5Bに示す輝度プロファイルP3における谷部分P31に対応して、すなわち、2次元画像Bにおける第1欠陥画素群B21に対応して、予め定める閾値以上の(輝度値差が大きい)特徴量P42を有するピークP41が出現している。
【0058】
処理画像生成部61は、輝度値差プロファイルP4に基づいて、予め定める閾値以上の特徴量P42を有するピークP41に対応する、2次元画像Bにおける画素を欠陥画素として抽出する。
図5Dに示す輝度値差プロファイルP4の例では、処理画像生成部61は、欠陥画素として第1欠陥画素群B21を抽出する。
【0059】
図6Aおよび6Bは、欠陥検出アルゴリズムの他の例である平滑化法を説明するための図である。
図6Aは、撮像装置5で生成された2次元画像データに対応する2次元画像Cの一例を示し、画像の上側が搬送方向Z下流側であり、画像の下側が搬送方向Z上流側である。2次元画像Cにおいて、シート状成形体2の幅方向に平行な方向をX方向とし、シート状成形体2の長手方向(搬送方向Zに平行な方向)に平行な方向をY方向とする。
図6Aにおいて、2次元画像CのY方向に関して中央に位置し、X方向に延びる帯状の明領域が照明像C1であり、照明像C1の内部に存在する暗領域が第1欠陥画素群C21であり、照明像C1の近傍に存在する明領域が第2欠陥画素群C22である。
【0060】
平滑化法による欠陥検出アルゴリズムを用いる場合、処理画像生成部61は、まず、2次元画像Cを、Y方向に沿った1列ずつの画素列のデータに分割する。次に、処理画像生成部61は、X方向およびY方向に数画素(たとえば、X方向に5画素、Y方向に1画素)のカーネルC31を作成する。
【0061】
そして、処理画像生成部61は、各画素列のデータについて、2次元画像CのY方向に平行な一直線L上に沿った位置におけるカーネルC31内の中央画素の輝度値と、カーネルC31内の全画素の輝度値の平均値との差のデータを点として連続的に描画し、それらを繋いだ曲線を、
図6Bに示す平滑化プロファイルP5として作成する。
図6Bに示す平滑化プロファイルP5では、2次元画像Cにおける第1欠陥画素群C21に対応して、予め定める閾値以上の(輝度値差が大きい)特徴量P52を有するピークP51が出現している。
【0062】
処理画像生成部61は、平滑化プロファイルP5に基づいて、予め定める閾値以上の特徴量P52を有するピークP51に対応する、2次元画像Cにおける画素を欠陥画素として抽出する。
図6Bに示す平滑化プロファイルP5の例では、処理画像生成部61は、欠陥画素として第1欠陥画素群C21を抽出する。
【0063】
図7A〜7Cは、欠陥検出アルゴリズムの他の例である第2のエッジプロファイル法を説明するための図である。
図7Aは、撮像装置5で生成された2次元画像データに対応する2次元画像Dの一例を示し、画像の上側が搬送方向Z下流側であり、画像の下側が搬送方向Z上流側である。2次元画像Dにおいて、シート状成形体2の幅方向に平行な方向をX方向とし、シート状成形体2の長手方向(搬送方向Zに平行な方向)に平行な方向をY方向とする。
図7Aにおいて、2次元画像DのY方向に関して中央に位置し、X方向に延びる帯状の明領域が照明像D1であり、照明像D1の内部に存在する暗領域が第1欠陥画素群D21であり、照明像D1の近傍に存在する明領域が第2欠陥画素群D22である。
【0064】
第2のエッジプロファイル法による欠陥検出アルゴリズムを用いる場合、処理画像生成部61は、まず、2次元画像Dを、Y方向に沿った1列ずつの画素列のデータに分割する。次に、処理画像生成部61は、各画素列のデータについて、Y方向一端(
図7Aにおける2次元画像Dの上端)から他端(
図7Aにおける2次元画像Dの下端)に向かってエッジを探査していくエッジ判定処理を行う。
【0065】
具体的には、処理画像生成部61は、各画素列のデータについて、Y方向一端側から2つ目の画素を注目画素とし、注目画素に対して一端側に隣接する隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上大きいか否かを判定する。隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上大きいと判定された場合には、処理画像生成部61は、隣接画素がエッジD3であると判定する。それ以外の場合には、処理画像生成部61は、注目画素をY方向他端に向かって1画素ずつずらしながら、隣接画素の輝度値よりも注目画素の輝度値が所定の閾値以上大きいと判定されるまでエッジ判定処理を繰返す。
【0066】
図7Aでは、処理画像生成部61によるエッジ判定処理によって検出されたエッジD3の例を「○」で示している。
図7Aから明らかなように、2次元画像Dの明領域と暗領域との境界部分において欠陥が存在する第2欠陥画素群D22では、エッジD3のY方向についての座標値(Y座標値)が極端に変化する。
【0067】
このような特徴を利用した、2次元画像Dにおける欠陥画素を抽出する方法としては、2種類ある。
図7Bに示す第1の方法では、処理画像生成部61は、2次元画像DにおけるエッジD3に対応したエッジプロファイルP6を作成する。なお、
図7Bでは、2次元画像Dの第2欠陥画素群D22の近傍におけるエッジD3に対応したエッジプロファイルP6を拡大して示している。
図7Bに示すエッジプロファイルP6では、2次元画像Dにおける第2欠陥画素群D22に対応して、Y座標値が極端に変化している。
【0068】
処理画像生成部61は、作成したエッジプロファイルP6上の任意の2点である点P61および点P62を選択し、点P61と点P62とを結ぶ直線と、エッジプロファイルP6の曲線とで囲まれた領域P63の面積を特徴量として算出する。処理画像生成部61は、エッジプロファイルP6に基づいて、予め定める閾値以上の特徴量(領域P63の面積)を有するプロファイル部分に対応する、2次元画像Dにおける画素を欠陥画素として抽出する。
【0069】
図7Cに示す第2の方法では、処理画像生成部61は、2次元画像DにおけるエッジD3に対応したエッジプロファイルP7を作成する。なお、
図7Cでは、2次元画像Dの第2欠陥画素群D22の近傍におけるエッジD3に対応したエッジプロファイルP7を拡大して示している。
図7Cに示すエッジプロファイルP7では、2次元画像Dにおける第2欠陥画素群D22に対応して、Y座標値が極端に変化している。
【0070】
処理画像生成部61は、作成したエッジプロファイルP7上の任意の2点である点P71および点P72を選択し、点P71におけるエッジプロファイルP7の接線P711と、点P72におけるエッジプロファイルP7の接線P721とを作成する。次に、処理画像生成部61は、X軸に平行な仮想直線P73と接線P711との成す角度α1、および、仮想直線P73と接線P721との成す角度α2を算出し、その算出した角度α1と角度α2との差である角度α3を求める。そして、処理画像生成部61は、エッジプロファイルP7における点P71と点P72との間の弧P74の長さと、角度α3とを用いて、エッジプロファイルP7における点P71と点P72との間の弧P74に対する曲率半径Rを特徴量として算出する。処理画像生成部61は、エッジプロファイルP7に基づいて、予め定める閾値範囲内の特徴量(曲率半径R)を有するプロファイル部分に対応する、2次元画像Dにおける画素を欠陥画素として抽出する。
【0071】
シート状成形体2に生じる欠陥としては、前述したように、気泡、フィッシュアイ、異物、タイヤ跡、打痕、傷などの点欠陥、折り目あとなどにより生じるいわゆるクニック(knick)、厚さの違いにより生じるいわゆる原反スジなどの線欠陥が挙げられる。
【0072】
処理画像生成部61による処理画像の生成時に用いられる欠陥検出アルゴリズムの種類によって、抽出可能な欠陥の種類が異なる。欠陥検出アルゴリズムの一例である前記エッジプロファイル法は、異物やタイヤ跡、傷などの欠陥については高い抽出能で抽出することができる。前記ピーク法は、異物、打痕、傷などの欠陥については高い抽出能で抽出することができる。前記平滑化法は、気泡、フィッシュアイ、打痕などの欠陥については高い抽出能で抽出することができる。前記第2のエッジプロファイル法は、原反スジやクニックなどの欠陥については高い抽出能で抽出することができる。
【0073】
このような、欠陥検出アルゴリズムの種類による欠陥抽出能の違いを利用して、処理画像生成部61が複数の欠陥検出アルゴリズムを用いた処理によって特徴量を算出する。そして、その算出した特徴量を用いて2次元画像における欠陥画素を抽出することによって、撮像装置5が生成した2次元画像における欠陥領域の欠陥種類の区別が可能となる。
【0074】
図8A〜8Cは、画像処理装置6が生成する処理画像の一例を示す図である。本実施形態では、画像処理装置6の処理画像生成部61は、撮像装置5から出力された2次元画像データを、前述の欠陥検出アルゴリズムで処理して欠陥画素を抽出した後、
図8A〜8Cに示すような処理画像を生成する。
図8A〜8Cに示す例では、処理画像生成部61は、種類の異なる2つの欠陥検出アルゴリズムである第1欠陥検出アルゴリズムと第2欠陥検出アルゴリズムとを用いて、2次元画像における欠陥画素を抽出し、処理画像を生成する。ここで、第1欠陥検出アルゴリズムは、撮像装置5が生成した2次元画像における第1欠陥画素群に対しては高い抽出能を有しているが、第2欠陥画素群に対しては抽出能を有していないものとする。また、第2欠陥検出アルゴリズムは、撮像装置5が生成した2次元画像における第2欠陥画素群に対しては高い抽出能を有しているが、第1欠陥画素群に対しては抽出能を有していないものとする。
【0075】
処理画像生成部61は、撮像装置5から出力された2次元画像データを、第1欠陥検出アルゴリズムと第2欠陥検出アルゴリズムとで並列で処理して、特徴量が予め定める閾値以上(欠陥検出アルゴリズムとして第2のエッジプロファイル法を用いた場合には、「特徴量が予め定める閾値範囲内」)の画素を欠陥画素として抽出した後、
図8Aに示すような処理画像E、および
図8Bに示すような処理画像Fを生成する。
【0076】
図8Aに示す処理画像Eは、第1欠陥検出アルゴリズムで処理されて生成された処理画像であり、第1欠陥検出アルゴリズムの処理により抽出可能な第1欠陥画素群E21については特徴量に応じた階調値を表す階調情報が格納され、第1欠陥画素群E21以外の残余画素群E22については零の階調値を表す階調情報が格納された階調情報格納ビット列によって構成される。ここで、処理画像生成部61によって生成される処理画像Eに対応する処理画像データを構成する各画素の階調情報格納ビット列は、ビット数が「8」のビット列であり、8個の各ビットには「0」または「1」が格納されて、256階調を表すことができるものとする。たとえば、階調情報格納ビット列に「00000000」が格納された画素は階調値が「0(零)」であり、階調情報格納ビット列に「11111111」が格納された画素は階調値が「255」である。
【0077】
また、
図8Bに示す処理画像Fは、第2欠陥検出アルゴリズムで処理されて生成された処理画像であり、第2欠陥検出アルゴリズムの処理により抽出可能な第2欠陥画素群F21については特徴量に応じた階調値を表す階調情報が格納され、第2欠陥画素群F21以外の残余画素群F22については零の階調値を表す階調情報が格納された階調情報格納ビット列によって構成される。ここで、処理画像生成部61によって生成される処理画像Fに対応する処理画像データを構成する各画素の階調情報格納ビット列は、ビット数が「8」のビット列であり、8個の各ビットには「0」または「1」が格納されて、256階調を表すことができるものとする。たとえば、階調情報格納ビット列に「00000000」が格納された画素は階調値が「0(零)」であり、階調情報格納ビット列に「11111111」が格納された画素は階調値が「255」である。
【0078】
処理画像生成部61は、第1欠陥検出アルゴリズムで処理されて生成された処理画像Eと、第2欠陥検出アルゴリズムで処理されて生成された処理画像Fとを合成して、
図8Cに示すような処理画像Gを生成する。
図8Cに示す処理画像Gは、処理画像Eに基づく第1欠陥画素群G21と、処理画像Fに基づく第2欠陥画素群G22と、第1欠陥画素群G21および第2欠陥画素群G22以外の残余画素群G23とによって構成されている。
【0079】
図8Cに示す例では、処理画像生成部61によって生成された処理画像Gにおいて、第1欠陥画素群G21の中央に位置する画素の階調情報格納ビット列G31には、階調値が「255」であることを表す「11111111」が格納され、第2欠陥画素群G22の中央に位置する画素の階調情報格納ビット列G32には、階調値が「128」であることを表す「01111111」が格納され、残余画素群G23の各画素の階調情報格納ビット列G33には、階調値が「0(零)」であることを表す「00000000」が格納されている。
【0080】
本実施形態では、処理画像生成部61は、
図8Cに示す処理画像Gに対応する処理画像データに基づいて、シート状成形体2における欠陥についての情報である欠陥情報を取得する。処理画像生成部61が欠陥情報を取得するときに用いる処理画像Gは、欠陥検出能が異なる複数(2つ)の欠陥検出アルゴリズムで処理されて生成された処理画像Eと処理画像Fとを合成して生成されたものであるので、処理画像Gに対応する処理画像データに基づいて処理画像生成部61が取得する欠陥情報に、シート状成形体2における欠陥の種類を表す欠陥種類情報を含ませることができる。具体的には、処理画像生成部61は、処理画像Gを構成する階調情報格納ビット列に格納された階調情報が、複数の欠陥検出アルゴリズムのうちのいずれの欠陥検出アルゴリズムで処理することによって算出された特徴量に応じた階調情報であるかに基づいて、欠陥種類情報を含む欠陥情報を取得することができる。
【0081】
処理画像生成部61から出力される処理画像Gに対応した処理画像データは、解析用画像生成部62に入力される。
図9Aおよび9Bは、画像処理装置6が生成する解析用画像の一例を示す図である。
【0082】
画像処理装置6の解析用画像生成部62は、処理画像生成部61で生成された処理画像Gを構成する第1欠陥画素群G21、第2欠陥画素群G22および残余画素群G23の各階調情報格納ビット列に、前記欠陥情報が格納された欠陥情報格納ビット列を付加し、
図9Aに示すような解析用画像Hを生成する。解析用画像Hは、前記階調情報格納ビット列に前記欠陥情報格納ビット列が付加された解析用ビット列によって構成される。解析用画像生成部62は、生成した解析用画像Hに対応した解析用画像データを出力する。
【0083】
図9Aに示す解析用画像Hは、X方向一端(
図9Aにおける解析用画像Hの左端)から他端(
図9Aにおける解析用画像Hの右端)に向かって0,1,2,…,W−2,W−1の順に位置付けられたX方向に並ぶW個の画素、Y方向一端(
図9Aにおける解析用画像Hの上端)から他端(
図9Aにおける解析用画像Hの下端)に向かって0,1,2,…,H−2,H−1の順に位置付けられたY方向に並ぶH個の画素によって構成される画像である。
【0084】
図9Aでは、解析用画像Hは、X方向一端からの位置(X座標値)が「8」でありY方向一端からの位置(Y座標値)が「6」の画素が最大輝度値となる第1欠陥画素群H21と、X方向一端からの位置(X座標値)が「W−5」でありY方向一端からの位置(Y座標値)が「3」の画素が最大輝度値となる第2欠陥画素群H22と、第1欠陥画素群H21および第2欠陥画素群H22以外の残余画素群H23と、を有する。
【0085】
解析用画像Hにおいて、第1欠陥画素群H21は、処理画像生成部61が生成した処理画像Gにおける第1欠陥画素群G21に対応する画素群であり、第2欠陥画素群H22は、処理画像生成部61が生成した処理画像Gにおける第2欠陥画素群G22に対応する画素群であり、残余画素群H23は、処理画像生成部61が生成した処理画像Gにおける残余画素群G23に対応する画素群である。
【0086】
図9Bに示すように、解析用画像Hにおいて、第1欠陥画素群H21の各画素は、解析用ビット列H31によって構成され、この解析用ビット列H31は、処理画像Gの第1欠陥画素群G21の階調情報格納ビット列G31に対応した階調情報格納ビット列H311に、欠陥情報が格納された欠陥情報格納ビット列H312が付加されたビット列である。解析用ビット列H31の欠陥情報格納ビット列H312は、たとえばビット数が「2」のビット列であり、2個の各ビットには「0」または「1」が格納されて、欠陥情報として欠陥種類情報を表すことができる。
図9Bに示す例では、第1欠陥画素群H21の中央に位置する画素の解析用ビット列H31において、階調情報格納ビット列H311には、階調値が「255」であることを表す「11111111」が格納され、欠陥情報格納ビット列H312には、階調情報格納ビット列H311に格納された階調情報が、第1欠陥検出アルゴリズムおよび第2欠陥検出アルゴリズムのうちの第1欠陥検出アルゴリズムでの処理によって算出された特徴量に応じた階調情報であることを表す「01」が格納されている。
【0087】
また、解析用画像Hにおいて、第2欠陥画素群H22の各画素は、
図9Bに示すように、解析用ビット列H32によって構成され、この解析用ビット列H32は、処理画像Gの第2欠陥画素群G22の階調情報格納ビット列G32に対応した階調情報格納ビット列H321に、欠陥情報が格納された欠陥情報格納ビット列H322が付加されたビット列である。解析用ビット列H32の欠陥情報格納ビット列H322は、たとえばビット数が「2」のビット列であり、2個の各ビットには「0」または「1」が格納されて、欠陥情報として欠陥種類情報を表すことができる。
図9Bに示す例では、第2欠陥画素群H22の中央に位置する画素の解析用ビット列H32において、階調情報格納ビット列H321には、階調値が「128」であることを表す「01111111」が格納され、欠陥情報格納ビット列H322には、階調情報格納ビット列H321に格納された階調情報が、第1欠陥検出アルゴリズムおよび第2欠陥検出アルゴリズムのうちの第2欠陥検出アルゴリズムでの処理によって算出された特徴量に応じた階調情報であることを表す「10」が格納されている。
【0088】
また、解析用画像Hにおいて、残余画素群H23の各画素は、
図9Bに示すように、解析用ビット列H33によって構成され、この解析用ビット列H33は、処理画像Gの残余画素群G23の階調情報格納ビット列G33に対応した階調情報格納ビット列H331に、欠陥情報が格納された欠陥情報格納ビット列H332が付加されたビット列である。解析用ビット列H33の欠陥情報格納ビット列H332は、たとえばビット数が「2」のビット列であり、2個の各ビットには「0」または「1」が格納されて、欠陥情報として欠陥種類情報を表すことができる。
図9Bに示す例では、残余画素群H23の各画素の解析用ビット列H33において、階調情報格納ビット列H331には、階調値が「0(零)」であることを表す「00000000」が格納され、欠陥情報格納ビット列H332には、階調情報格納ビット列H331に格納された階調情報が、第1欠陥検出アルゴリズムおよび第2欠陥検出アルゴリズムのうちのいずれの欠陥検出アルゴリズムにおいても、予め定める閾値以上の特徴量が算出されず、「欠陥ではない」ことを表す「00」が格納されている。
【0089】
以上の説明では、解析用画像Hを構成する解析用ビット列H31,H32,H33における欠陥情報格納ビット列H312,H322,H332に、欠陥情報として欠陥種類情報が格納されている例を示したが、このような構成に限定されるものではない。
【0090】
欠陥情報格納ビット列に格納される欠陥情報の、欠陥種類情報以外の例としては、シート状成形体2における欠陥の位置情報などを挙げることができる。たとえば、欠陥情報として欠陥の位置情報を格納する場合、欠陥情報格納ビット列H312,H322,H332に、それぞれの画素のX,Y座標値を格納すればよい。
【0091】
解析用画像生成部62から出力された解析用画像Hに対応する解析用画像データは、画像解析装置7に入力される。
【0092】
図2に戻って、説明を続ける。本実施形態の欠陥検査装置100に備えられる画像解析装置7は、画像生成装置1における画像処理装置6の解析用画像生成部62から出力された解析用画像データを構成する解析用ビット列H31,H32,H33の各ビットに格納された情報を用いて、予め定める画像解析を行うことによって、シート状成形体2の欠陥を検出する。画像解析装置7は、解析用画像入力部71、画像解析部72、制御部73、および表示部74を備える。解析用画像入力部71は、画像処理装置6の解析用画像生成部62から出力された解析用画像データを入力する。
【0093】
画像解析部72は、解析用画像入力部71から入力された解析用画像データにおける、解析用ビット列H31,H32,H33の各ビットに格納された情報を解析して、欠陥に関する欠陥位置情報、欠陥輝度情報、および欠陥種類情報などを生成し、これらの情報を制御部73に出力する。
【0094】
たとえば、画像解析部72は、解析用画像Hにおける欠陥画素の座標をシート状成形体2上の位置に変換して、シート状成形体2における欠陥の位置を示す欠陥位置情報を生成し、この生成した欠陥位置情報を制御部73に出力する。
【0095】
また、画像解析部72は、解析用画像Hにおける欠陥の階調情報の分布をシート状成形体2上の欠陥の輝度分布に変換して、シート状成形体2における欠陥の輝度分布を示す欠陥輝度情報を生成し、この生成した欠陥輝度情報を制御部73に出力する。
【0096】
また、画像解析部72は、解析用画像Hにおける欠陥の種類ごとの分布をシート状成形体2上の欠陥の種類ごとの分布に変換して、シート状成形体2における欠陥の種類ごとの分布を示す欠陥種類情報を生成し、この生成した欠陥種類情報を制御部73に出力する。
【0097】
制御部73は、画像解析部72から出力された欠陥に関する情報に基づいて、シート状成形体2における欠陥情報を示す欠陥マップを作成するとともに、解析用画像入力部71、画像解析部72および表示部74を統括的に制御する。制御部73によって作成された欠陥マップは、表示部74に表示される。