特許第6202355号(P6202355)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東京精密の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6202355
(24)【登録日】2017年9月8日
(45)【発行日】2017年9月27日
(54)【発明の名称】位置検出装置及びレーザー加工装置
(51)【国際特許分類】
   H01L 21/301 20060101AFI20170914BHJP
   G01B 11/00 20060101ALI20170914BHJP
   B23K 26/00 20140101ALI20170914BHJP
   B23K 26/046 20140101ALI20170914BHJP
   B23K 26/53 20140101ALI20170914BHJP
【FI】
   H01L21/78 B
   G01B11/00 B
   B23K26/00 M
   B23K26/046
   B23K26/53
【請求項の数】7
【全頁数】49
(21)【出願番号】特願2017-108308(P2017-108308)
(22)【出願日】2017年5月31日
(62)【分割の表示】特願2016-572016(P2016-572016)の分割
【原出願日】2016年1月25日
【審査請求日】2017年6月1日
(31)【優先権主張番号】特願2015-14325(P2015-14325)
(32)【優先日】2015年1月28日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2015-14327(P2015-14327)
(32)【優先日】2015年1月28日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(72)【発明者】
【氏名】百村 和司
【審査官】 鈴木 和樹
(56)【参考文献】
【文献】 特開2008−058230(JP,A)
【文献】 特開平04−236307(JP,A)
【文献】 特開2010−046703(JP,A)
【文献】 特開2010−052014(JP,A)
【文献】 特開2008−170366(JP,A)
【文献】 特開平11−54421(JP,A)
【文献】 特開2004−282017(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/301
B23K 26/00
B23K 26/046
B23K 26/53
G01B 11/00
(57)【特許請求の範囲】
【請求項1】
波長の異なる複数の検出用レーザー光を被加工物のレーザー光照射面に向けて集光する集光レンズと、
前記被加工物のレーザー光照射面で反射した前記複数の検出用レーザー光の反射光を波長毎に検出する光検出手段と、
前記光検出手段で波長毎に検出された前記複数の検出用レーザー光の反射光に基づき、前記集光レンズの光軸方向における前記被加工物のレーザー光照射面の位置を検出する位置検出手段と、
を備える位置検出装置。
【請求項2】
前記位置検出手段は、前記光検出手段で波長毎に検出された前記複数の検出用レーザーのうち光強度が最も高い検出用レーザー光に基づき、前記被加工物のレーザー光照射面の位置を検出する、
請求項1に記載の位置検出装置。
【請求項3】
前記位置検出手段は、前記光検出手段で波長毎に検出された前記複数の検出用レーザー光の光強度を重み付け加算することによって前記被加工物のレーザー光照射面の位置を検出する、
請求項1に記載の位置検出装置。
【請求項4】
前記集光レンズと前記被加工物との間の距離を変化させることなく、前記集光レンズにより集光される前記複数の検出用レーザー光の集光点を前記光軸方向に移動させる集光点調整手段を備える、
請求項1から3のいずれか1項に記載の位置検出装置。
【請求項5】
前記集光点調整手段は、前記複数の検出用レーザー光の反射光の波長毎の色収差を補正する色収差補正手段を備える、
請求項4に記載の位置検出装置。
【請求項6】
前記位置検出手段により検出された前記被加工物のレーザー光照射面の位置に基づき、前記集光レンズと前記被加工物との間の距離を変化させる距離調整手段を備える、
請求項1から5のいずれか1項に記載の位置検出装置。
【請求項7】
請求項1から6のいずれか1項に記載の位置検出装置を備え、
前記集光レンズを介して前記被加工物の内部に加工用レーザー光を集光させることにより前記被加工物の内部に改質領域を形成するレーザー加工装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置や電子部品等が形成されたウェーハを個々のチップに分割するレーザーダイシング装置に関するものである。
【背景技術】
【0002】
従来、表面に半導体装置や電子部品等が形成されたウェーハを個々のチップに分割するには、細かなダイヤモンド砥粒で形成された厚さ30μm程度の薄い砥石により、ウェーハに研削溝を入れてウェーハをカットするダイシング装置が用いられていた。
【0003】
ダイシング装置では、薄い砥石(以下、ダイシングブレードと称する)を例えば30,000〜60,000rpmで高速回転させてウェーハを研削し、ウェーハを完全切断(フルカット)又は不完全切断(ハーフカット或いはセミフルカット)を行う。
【0004】
しかし、このダイシングブレードによる研削加工の場合、ウェーハが高脆性材料であるため脆性モード加工となり、ウェーハの表面や裏面にチッピングが生じ、このチッピングが分割されたチップの性能を低下させる要因になっていた。
【0005】
このような問題に対して、従来のダイシングブレードによる切断に替えて、ウェーハの内部に集光点を合わせてレーザー光を入射し、ウェーハ内部に多光子吸収による改質領域を形成して個々のチップに分割する技術が提案されている(例えば、特許文献1参照)。このような技術では、ウェーハの内部に形成する改質領域をウェーハの表面又は裏面(レーザー光照射面)から一定の深さに形成するため、オートフォーカス機構を用いてウェーハのレーザー光照射面の高さ位置(厚み方向位置)を検出してレーザー光の集光点の位置を高精度に制御する必要がある。
【0006】
特許文献1に開示された技術では、ウェーハ内部の所定深さに均一に改質領域(変質層)を形成するために、ウェーハのレーザー光照射面に検出用レーザー光(AF用レーザー光)を照射し、その反射光に基づいてウェーハのレーザー光照射面の高さ位置を検出し、ウェーハのレーザー光照射面の高さ位置に応じて加工用レーザー光の集光点位置を制御しながら加工を行っている。
【0007】
また、特許文献1に開示された技術では、検出用レーザー光の集光点位置を変位させる集光点位置変位手段を備えており、ウェーハのレーザー光照射面から深い位置に改質領域を形成する場合には、検出用レーザー光の集光点位置と加工用レーザー光の集光点位置との距離を調整することができるようになっている。これにより、ウェーハのレーザー光照射面に照射される検出用レーザー光の照射面積(スポット面積)を小さくすることができるので、ウェーハのレーザー光照射面で反射された検出用レーザー光の反射光の単位面積あたりの光量を低下させることなく、ウェーハのレーザー光照射面の高さ位置を正確に検出することが可能となる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2009−269074号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、上述したような技術では、ウェーハの内部に改質領域を形成するための加工用レーザー光は1μm以上の赤外線領域の波長の光が主に用いられ、加工領域を観察するための観察用光学系で用いられる観察光は可視領域の波長の光が主に用いられる。このため、ウェーハのレーザー光照射面の高さ位置を検出するための検出用レーザー光は、加工用レーザー光の波長域と観察光の波長域との間の波長域、すなわち、0.6〜1μm程度の波長の光が用いられる。
【0010】
また、上述したような技術では、ウェーハの表面(デバイス面)とは反対側の裏面側からレーザー光を照射して加工を行うのが一般的であるが、ウェーハの裏面には加工工程で種々の薄膜(例えば、酸化膜、窒化膜など)が形成されていることがある。この薄膜は意図して形成されたものではないので、ウェーハ毎に膜厚のばらつきがあり、さらにはウェーハの裏面の場所によるばらつきも大きいことがある。このため、ウェーハ毎やウェーハの裏面の場所によるばらつきによって検出用レーザー光の反射率が低くなる場合があり、オートフォーカス機構が正常に機能しない不具合が生じる問題がある。すなわち、ウェーハの裏面に形成された薄膜のウェーハ毎あるいは場所によるばらつきによって、オートフォーカス機構の動作に影響を及ぼしてしまい、ウェーハの表面の高さ位置の検出を迅速にかつ精度よく安定して行うことができない問題がある。
【0011】
なお、ウェーハWの裏面がレーザー光照射面となる場合だけでなく、ウェーハWの表面(デバイス面)がレーザー光照射面となる場合についても同様な問題が生じる可能性がある。
【0012】
本発明は、このような事情に鑑みてなされたもので、ウェーハのレーザー光照射面に形成された薄膜のばらつきによる影響を受けることなく、ウェーハのレーザー光照射面の高さ位置の検出を精度よく安定して行うことができるレーザーダイシング装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
上記目的を達成するために、本発明の第1態様に係るレーザーダイシング装置は、ウェーハを保持するテーブルと、テーブルに保持されたウェーハの内部に改質領域を形成するための加工用レーザー光を出射する加工用レーザー光源と、加工用レーザー光源から出射された加工用レーザー光をウェーハの内部に集光する集光レンズと、集光レンズを加工用レーザー光の光軸方向に移動させることにより集光レンズによって集光される加工用レーザー光の集光点をウェーハ厚み方向に変位させる集光レンズ駆動手段と、テーブルに保持されたウェーハのレーザー光照射面の高さ位置を検出する高さ位置検出手段と、高さ位置検出手段からの検出信号に基づいて集光レンズ駆動手段を制御する制御手段と、を備えるレーザーダイシング装置であって、高さ位置検出手段は、波長の異なる複数の検出用レーザー光を出力する検出用レーザー光出力手段と、検出用レーザー光出力手段から集光レンズに至るまでの光路である照射光路に配設され、集光レンズにより集光されウェーハのレーザー光照射面に照射され反射した複数の検出用レーザー光の反射光の一部を照射光路から分岐させる光路分岐手段と、光路分岐手段により分岐された複数の検出用レーザー光の反射光を波長毎に検出する光検出手段と、光検出手段で波長毎に検出された複数の検出用レーザー光の光量に基づき、ウェーハのレーザー光照射面の変位を示す変位信号を制御手段に送る変位信号生成手段と、検出用レーザー光の集光点をウェーハ厚み方向に調整する集光点調整光学系と、を備える。
【0014】
本発明の第2態様に係るレーザーダイシング装置は、第1態様において、集光点調整光学系は、照射光路上であって光路分岐手段と集光レンズとの間に配設される。
【0015】
本発明の第3態様に係るレーザーダイシング装置は、第1態様において、集光点調整光学系は、光路分岐手段から光検出手段に至るまでの光路である検出光路に配設される。
【0016】
本発明の第4態様に係るレーザーダイシング装置は、第1態様〜第3態様のいずれか1の態様において、検出用レーザー光出力手段は、複数の検出用レーザー光をそれぞれ出力する複数の検出用レーザー光源と、複数の検出用レーザー光源からそれぞれ出力された複数の検出用レーザー光を合成する光合成手段と、を有し、光検出手段は、光路分岐手段により分岐された複数の検出用レーザー光の反射光を波長毎に分割する波長分割手段と、波長分割手段によって分割された複数の検出用レーザー光の反射光を波長毎にそれぞれ受光する複数の検出器と、を有する。
【0017】
本発明の第5態様に係るレーザーダイシング装置は、第1態様〜第3態様のいずれか1の態様において、検出用レーザー光出力手段は、複数の検出用レーザー光を波長毎に時分割で出力する時分割出力手段であり、光検出手段は、時分割出力手段に同期して複数の検出用レーザー光の反射光を波長毎に時分割で検出する時分割検出手段である。
【0018】
本発明の第6態様に係るレーザーダイシング装置は、第1態様〜第5態様のいずれか1つの態様において、変位信号生成手段は、光検出手段で波長毎に検出された複数の検出用レーザー光の光量のうち最も高い光量が検出された波長の検出用レーザー光の光量に基づき、変位信号を得る。
【0019】
本発明の第7態様に係るレーザーダイシング装置は、第1態様〜第5態様のいずれか1つの態様において、変位信号生成手段は、光検出手段で波長毎に検出された複数の検出用レーザー光の光量のそれぞれに対し予め定めた基準に従って重み付け加算を行うことによって変位信号を得る。
【0020】
本発明の第8態様に係るレーザーダイシング装置は、第1態様〜第7態様のいずれかに1つの態様において、集光点調整光学系は、集光レンズ側から順に少なくとも正レンズ及び負レンズを有し、負レンズを照射光路に沿って移動させることにより、検出用レーザー光の集光点をウェーハ厚み方向に調整する。
【0021】
本発明の第9態様に係るレーザーダイシング装置は、第1態様〜第8態様のいずれかに1つの態様において、集光点調整光学系は、複数の検出用レーザー光の反射光の波長毎の色収差を補正する色収差補正手段を備える。
【発明の効果】
【0022】
本発明によれば、ウェーハのレーザー光照射面に形成された薄膜のばらつきによる影響を受けることなく、ウェーハの表面の高さ位置の検出を精度よく安定して行うことができる。その結果、ウェーハの表面から所定の加工深さに改質領域を精度よく形成することが可能となる。
【図面の簡単な説明】
【0023】
図1】第1の実施形態に係るレーザーダイシング装置の概略を示した構成図
図2A】ウェーハ内部の集光点近傍に形成される改質領域を説明する概念図
図2B】ウェーハ内部の集光点近傍に形成される改質領域を説明する概念図
図2C】ウェーハ内部の集光点近傍に形成される改質領域を説明する概念図
図3A】2分割フォトダイオードの受光面に形成される集光像の様子を示した図
図3B】2分割フォトダイオードの受光面に形成される集光像の様子を示した図
図3C】2分割フォトダイオードの受光面に形成される集光像の様子を示した図
図4】AF用レーザー光の集光点とウェーハの表面との位置関係を示した図
図5】AF信号の出力特性を示したグラフ
図6A】AF用レーザー光の集光点がウェーハ厚み方向に変化する様子を示した図
図6B】AF用レーザー光の集光点がウェーハ厚み方向に変化する様子を示した図
図6C】AF用レーザー光の集光点がウェーハ厚み方向に変化する様子を示した図
図7】第1の実施形態のレーザーダイシング装置を用いたダイシング方法の流れを示したフローチャート
図8図7に示すキャリブレーション動作の詳細な流れを示したフローチャート
図9図7に示すリアルタイム加工動作の詳細な流れを示したフローチャート
図10】第1の実施形態におけるAF信号の出力特性の一例を示した図
図11】シミュレーションによる評価結果(加工深さ毎のAF信号の出力特性)を示した図
図12】シミュレーションによる評価結果(加工深さ毎のAF信号の出力特性)を示した図
図13】シミュレーションによる評価結果(加工深さ毎のAF信号の出力特性)を示した図
図14】シミュレーションによる評価結果(加工深さ毎のAF信号の出力特性)を示した図
図15】シミュレーションによる評価結果(加工深さ毎のAF信号の出力特性)を示した図
図16】第1の実施形態に係るレーザーダイシング装置において、3波長のAF用レーザー光を用いた例を示した構成図
図17】第2の実施形態に係るレーザーダイシング装置の概略を示した構成図
図18】4分割フォトダイオードの受光面を示した図
図19】第2の実施形態におけるAF信号の出力特性を示した図
図20】第3の実施形態に係るレーザーダイシング装置の概略を示した構成図
図21】第3の実施形態におけるAF信号の出力特性を示した図
図22】第3の実施形態に係るレーザーダイシング装置の他の構成例を示した要部構成図
図23】第3の実施形態に係るレーザーダイシング装置の更に他の構成例を示した構成図
図24】第4の実施形態に係るレーザーダイシング装置の概略を示した構成図
図25】第5の実施形態に係るレーザーダイシング装置の概略を示した構成図
図26】第5の実施形態のレーザーダイシング装置を用いたダイシング方法の流れを示したフローチャート
図27図26に示すキャリブレーション動作の詳細な流れを示したフローチャート
図28図26に示すリアルタイム加工動作の詳細な流れを示したフローチャート
図29】第5の実施形態におけるAF信号の出力特性の一例を示した図
図30】第5の実施形態に係るレーザーダイシング装置において、3波長のAF用レーザー光を用いた例を示した構成図
図31】第6の実施形態に係るレーザーダイシング装置の概略を示した構成図
図32】第6の実施形態におけるAF信号の出力特性を示した図
図33】第6の実施形態に係るダイシング装置の他の構成例を示した要部構成図
図34】第6の実施形態に係るレーザーダイシング装置の他の構成例を示した要部構成図
図35】第7の実施形態に係るレーザーダイシング装置の概略を示した構成図
図36】第7の実施形態におけるAF信号の出力特性を示した図
図37】第8の実施形態に係るレーザーダイシング装置の概略を示した構成図
【発明を実施するための形態】
【0024】
以下、添付図面に従って本発明の実施の形態について説明する。
【0025】
(第1の実施形態)
まず、本発明の第1の実施形態について説明する。
【0026】
図1は、第1の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図1に示すように、レーザーダイシング装置10は、ステージ12、レーザーヘッド20、制御部50等で構成されている。
【0027】
ステージ12は、XYZθ方向に移動可能に構成され、ウェーハWを吸着保持する。ウェーハWは、表面(デバイス面)とは反対側の裏面がレーザー光照射面となるようにステージ12上に載置される。なお、ウェーハWの表面をレーザー光照射面としてもよい。後述する他の実施形態においても同様である。
【0028】
レーザーヘッド20は、ウェーハWの内部に改質領域を形成するための加工用レーザー光L1をウェーハWに対して照射する。
【0029】
制御部50は、CPU(Central Processing Unit)、メモリ、入出力回路部等からなり、レーザーダイシング装置10の各部の動作を制御する。
【0030】
レーザーダイシング装置10はこの他に、図示しないウェーハ搬送手段、操作板、テレビモニタ、及び表示灯等から構成されている。
【0031】
操作板には、レーザーダイシング装置10の各部の動作を操作するスイッチ類や表示装置が取り付けられている。テレビモニタは、図示しないCCD(Charge Coupled Device)カメラで撮像したウェーハ画像の表示、又はプログラム内容や各種メッセージ等を表示する。表示灯は、レーザーダイシング装置10の加工中、加工終了、非常停止等の稼働状況を表示する。
【0032】
次に、レーザーヘッド20の詳細構成について説明する。
【0033】
図1に示すように、レーザーヘッド20は、加工用レーザー光源100、コリメートレンズ102、ダイクロイックミラー104、集光レンズ106、AF装置(オートフォーカス装置)110等で構成されている。
【0034】
加工用レーザー光源100は、ウェーハWの内部に改質領域を形成するための加工用レーザー光L1を出射する。例えば、加工用レーザー光源100は、パルス幅が1μs以下であって、集光点におけるピークパワー密度が1×10(W/cm)以上となるレーザー光を出射する。
【0035】
加工用レーザー光源100から出射された加工用レーザー光L1は、コリメートレンズ102でコリメートされ、ダイクロイックミラー104を透過した後、集光レンズ106によりウェーハWの内部に集光される。加工用レーザー光L1の集光点のZ方向位置(ウェーハ厚み方向位置)は、第1アクチュエータ108によって集光レンズ106をZ方向(加工用レーザー光L1の光軸方向)に微小移動させることにより調節される。第1アクチュエータ108は、集光レンズ駆動手段の一例である。なお、詳細は後述するが、第1アクチュエータ108は、集光レンズ106とウェーハWのレーザー光照射面との距離が一定となるように、制御部50によって駆動が制御される。
【0036】
図2A図2Cは、ウェーハ内部の集光点近傍に形成される改質領域を説明する概念図である。図2Aは、ウェーハWの内部に入射された加工用レーザー光L1が集光点に改質領域Pを形成した状態を示し、図2Bは断続するパルス状の加工用レーザー光L1の下でウェーハWが水平方向に移動され、不連続な改質領域P、P、…が並んで形成された状態を表している。図2Cは、ウェーハWの内部に改質領域Pが多層に形成された状態を示している。
【0037】
図2Aに示すように、ウェーハWのレーザー光照射面から入射した加工用レーザー光L1の集光点がウェーハWの厚さ方向の内部に設定されていると、ウェーハWのレーザー光照射面を透過した加工用レーザー光L1は、ウェーハWの内部の集光点でエネルギーが集中し、ウェーハWの内部の集光点近傍に多光子吸収によるクラック領域、溶融領域、屈折率変化領域等の改質領域が形成される。図2Bに示すように、断続するパルス状の加工用レーザー光L1をウェーハWに照射して複数の改質領域P、P、…をダイシングストリートに沿って形成することで、ウェーハWは分子間力のバランスが崩れ、改質領域P、P、…を起点として自然に割断するか、或いは僅かな外力を加えることによって割断される。
【0038】
また、厚さの厚いウェーハWの場合は、改質領域Pの層が1層では割断できないので、図2Cに示すように、ウェーハWの厚さ方向に加工用レーザー光L1の集光点を移動し、改質領域Pを多層に形成させて割断する。
【0039】
なお、図2B図2Cに示した例では、断続するパルス状の加工用レーザー光L1で不連続な改質領域P、P、…を形成した状態を示したが、加工用レーザー光L1の連続波の下で連続的な改質領域Pを形成するようにしてもよい。不連続の改質領域Pを形成した場合は、連続した改質領域Pを形成した場合に比べて割断され難いので、ウェーハWの厚さや搬送中の安全等の状況によって、加工用レーザー光L1の連続波を用いるか、断続波を用いるかが適宜選択される。
【0040】
AF装置110は、AF用レーザー光(検出用レーザー光)L2をウェーハWに対して照射し、ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光を受光し、その受光した反射光に基づいて、ウェーハWのレーザー光照射面の高さ位置(Z方向位置)を検出する。AF装置110は、高さ位置検出手段の一例である。
【0041】
AF装置110は、AF用レーザー光L2を出力する光源部200と、光源部200から出力されたAF用レーザー光L2を集光レンズ106に導く照射光学系300と、集光レンズ106により集光されウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光を検出する検出光学系400と、検出光学系400で検出されたAF用レーザー光L2の反射光を利用してウェーハWのレーザー光照射面の高さ位置を示すAF信号を生成するAF信号処理部500と、を備えている。
【0042】
光源部200は、第1光源202、第2光源204、コリメートレンズ206、208、ダイクロイックミラー210、集光レンズ212等で構成されている。光源部200は、検出用レーザー光出力手段の一例である。
【0043】
第1光源202及び第2光源204は、例えばLD(Laser Diode)光源やSLD(Super Luminescent Diode)光源等からなり、互いに異なる波長のAF用レーザー光(検出用レーザー光)L2a、L2bをそれぞれ出射する。AF用レーザー光L2a、L2bは、加工用レーザー光L1とは異なる波長であってウェーハWのレーザー光照射面で反射可能な波長を有する。すなわち、AF用レーザー光L2aは第1波長域(例えば、620〜750nm)の波長を有するレーザー光(赤色レーザー光)であり、AF用レーザー光L2bは第1波長域とは異なる第2波長域(例えば、450〜495nm)の波長を有するレーザー光(青色レーザー光)である。第1光源202及び第2光源204は、複数の検出用レーザー光源の一例である。
【0044】
第1光源202及び第2光源204から出射されたAF用レーザー光L2a、L2bは、それぞれ、コリメートレンズ206、208でコリメートされ、ダイクロイックミラー210に導かれる。
【0045】
ダイクロイックミラー210は、コリメートレンズ206、208を介して入射されるAF用レーザー光L2a、L2bのうち、一方のAF用レーザー光L2aを透過し、他方のAF用レーザー光L2bを反射することにより、両方の光を同一光路に導く。ダイクロイックミラー210により同一光路に導かれたAF用レーザー光L2a、L2bの合成光は、集光レンズ212により集光されて光源光(AF用レーザー光L2)として光源部200から出力される。なお、ダイクロイックミラー210は、光合成手段の一例である。
【0046】
照射光学系300は、光ファイバ302、コリメートレンズ304、ナイフエッジ306、ハーフミラー308、フォーカス光学系310、ダイクロイックミラー104等で構成されている。
【0047】
光源部200から出力されたAF用レーザー光L2(AF用レーザー光L2a、L2bの合成光)は、光ファイバ302の入射端に入射され、光ファイバ302を経由して光ファイバ302の出射端から出射される。さらに、このAF用レーザー光L2は、コリメートレンズ304でコリメートされ、ナイフエッジ306によってその一部が遮光される。そして、ナイフエッジ306によって遮光されることなく進行した光は、ハーフミラー308で反射され、フォーカス光学系310を経由し、ダイクロイックミラー104で反射され、加工用レーザー光L1と同一光路に導かれる。さらに、このAF用レーザー光L2は、集光レンズ106により集光されてウェーハWに照射される。
【0048】
ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、集光レンズ106により屈折され、ダイクロイックミラー104で反射され、フォーカス光学系310を経由し、ハーフミラー308を透過し、照射光学系300の光路から分岐された光路上に設けられた検出光学系400に導かれる。
【0049】
なお、ハーフミラー308は、光路分岐手段の一例であり、照射光学系300の光路(照射光路)に配設され、ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光の一部を照射光学系300の光路から検出光学系400の光路(検出光路)に分岐させる。
【0050】
検出光学系400は、結像レンズ402、ダイクロイックミラー404、第1検出器406、第2検出器408等で構成されている。検出光学系400は、光検出手段の一例である。検出光学系400に入射したAF用レーザー光L2の反射光は、結像レンズ402を経由して、ダイクロイックミラー404に導かれる。
【0051】
ダイクロイックミラー404は、AF用レーザー光L2の反射光を特定の波長の光とそれ以外の波長の光に分割する波長分割手段である。すなわち、AF用レーザー光L2の反射光のうち、第1光源202から出射されたAF用レーザー光L2aの波長に相当する第1波長域の光は、ダイクロイックミラー404を透過し、第1検出器406に受光される。一方、第2光源204から出射されたAF用レーザー光L2bの波長に相当する第2波長域の光は、ダイクロイックミラー404で反射され、第2検出器408に受光される。
【0052】
第1検出器406及び第2検出器408は、2分割された受光素子(光電変換素子)を有する2分割フォトダイオードからなり、それぞれの波長域の光の集光像を分割して受光し、それぞれの光量に応じた出力信号(電気信号)をAF信号処理部500に出力する。
【0053】
なお、第1検出器406及び第2検出器408は、それぞれの波長域に対する色収差を考慮した位置に配置されており、同じ合焦位置を示すように調整されている。
【0054】
AF信号処理部500は、第1検出器406及び第2検出器408の少なくとも一方の検出器の各受光素子から出力された出力信号に基づいて、ウェーハWのレーザー光照射面の基準位置からのZ方向の変位(デフォーカス距離)を示す変位信号(検出信号)としてのAF信号(オートフォーカス信号)を生成して制御部50に出力する。なお、AF信号処理部500は、変位信号生成手段の一例である。
【0055】
ここで、ウェーハWのレーザー光照射面の変位の検出原理について説明する。
【0056】
図3A図3Cは、検出器(第1検出器406及び第2検出器408に相当)を構成する2分割フォトダイオード600の受光面に形成される集光像の様子を示した図である。なお、図3A図3Cは、図4においてウェーハWのレーザー光照射面がそれぞれh1、h2、h3で示す位置にあるときに、2分割フォトダイオード600の受光面に形成される集光像の様子を示している。
【0057】
まず、ウェーハWのレーザー光照射面がh2の位置にある場合(図4参照)、すなわち、ウェーハWのレーザー光照射面とAF用レーザー光L2の集光点とが一致している場合、図3Bに示すように、2分割フォトダイオード600の受光面には真ん中にシャープな像(真円)が形成される。このとき、2分割フォトダイオード600の受光素子600A、600Bで受光される光量は共に等しくなり、ウェーハWのレーザー光照射面は合焦位置にあることが分かる。
【0058】
一方、ウェーハWのレーザー光照射面がh1の位置にある場合(図4参照)、すなわち、ウェーハWのレーザー光照射面がAF用レーザー光L2の集光点よりも集光レンズ106に近い位置にある場合、図3Aに示すように、2分割フォトダイオード600の受光面には、受光素子600A側に半円状の集光像が形成され、その大きさ(ぼけ量)はウェーハWと集光レンズ106との距離に応じて変化する。
【0059】
また、ウェーハWのレーザー光照射面がh3の位置にある場合(図4参照)、すなわち、ウェーハWのレーザー光照射面がAF用レーザー光L2の集光点よりも集光レンズ106から遠い位置にある場合、図3Cに示すように、2分割フォトダイオード600の受光面には、受光素子600B側に半円状の集光像が形成され、その大きさ(ぼけ量)はウェーハWと集光レンズ106との距離に応じて変化する。
【0060】
このように、2分割フォトダイオード600の受光素子600A、600Bで受光される光量は、ウェーハWのレーザー光照射面の変位に応じて変化する。したがって、このような性質を利用してウェーハWのレーザー光照射面の変位を検出することができる。
【0061】
図5は、AF信号の出力特性を示したグラフであり、横軸はウェーハWのレーザー光照射面の基準位置からZ方向(ウェーハ厚み方向)の変位(デフォーカス距離)を示し、縦軸はAF信号の出力値を示している。なお、ウェーハWのレーザー光照射面の基準位置(原点)にAF用レーザー光L2の集光点が一致するように予め調整されているものとする。
【0062】
図5に示すように、AF信号の出力特性は、ウェーハWのレーザー光照射面の基準位置(原点)をゼロクロス点としたS字状の曲線となる。また、ウェーハWのレーザー光照射面の位置が、図中に矢印で示した範囲、すなわち、ウェーハWのレーザー光照射面の変位を検出可能な測定範囲(引き込み範囲)内にあるとき、ウェーハWのレーザー光照射面の変位とAF信号の出力との関係は、原点を通る単調増加曲線(又は単調減少曲線)となり、その大部分で略直線的な変化を示している。つまり、AF信号の出力がゼロであれば、ウェーハWのレーザー光照射面がAF用レーザー光L2の集光点と一致する合焦位置にあることが分かり、AF信号の出力がゼロでなければ、ウェーハWのレーザー光照射面の変位方向及び変位量を知ることができる。
【0063】
このような出力特性を有するAF信号は、ウェーハWのレーザー光照射面の基準位置からZ方向の変位を示すウェーハ変位情報としてAF信号処理部500で生成され、制御部50に出力される。
【0064】
ここで、本実施形態におけるAF信号処理部500は、第1検出器406及び第2検出器408でそれぞれ受光された光の総受光量が多い方の検出器から出力される出力信号を用いてAF信号Eを生成している。
【0065】
具体的には、第1検出器406を構成する2分割フォトダイオード600の受光素子600A、600Bから出力された出力信号をそれぞれA1、B1とし、第2検出器408を構成する2分割フォトダイオード600の受光素子600A、600Bから出力された出力信号をそれぞれA2、B2としたとき、第1検出器406における出力信号の和(A1+B1)が第2検出器408における出力信号の和(A2+B2)以上である場合には、AF信号Eを、次式(1)に従って求める。
【0066】
E=(A1−B1)/(A1+B1) ・・・(1)
一方、第1検出器406における出力信号の和(A1+B1)が第2検出器408における出力信号の和(A2+B2)未満である場合には、AF信号Eを、次式(2)に従って求める。
【0067】
E=(A2−B2)/(A2+B2) ・・・(2)
すなわち、本実施形態におけるAF信号処理部500では、AF信号Eを求めるための検出器を、第1検出器406及び第2検出器408のうち総受光量が多い方の検出器に切り替えて使用している。これにより、常に高い反射率の波長の光を用いてAF信号Eが生成されるので、ウェーハWのレーザー光照射面に照射されたAF用レーザー光L2の反射率が波長により変化しても、ウェーハWのレーザー光照射面に形成された薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置の検出を精度よく安定して行うことができる。
【0068】
制御部50は、AF信号処理部500から出力されたAF信号に基づいて、集光レンズ106とウェーハWのレーザー光照射面との距離が一定となるように、第1アクチュエータ108の駆動を制御する。これにより、ウェーハWのレーザー光照射面の変位に追従するように集光レンズ106がZ方向(ウェーハ厚み方向)に微小移動され、ウェーハWのレーザー光照射面から一定の距離(深さ)に加工用レーザー光L1の集光点が位置するようになるので、ウェーハWの内部の所望の位置に改質領域を形成することができる。なお、制御部50は、制御手段の一例である。
【0069】
以上のように構成されるAF装置110には、照射光学系300の光路にフォーカス光学系310が配設されている。具体的には、ダイクロイックミラー104とハーフミラー308との間の光路にフォーカス光学系310が配設されている。
【0070】
フォーカス光学系310は、集光点調整光学系の一例であり、加工用レーザー光L1の集光点とは独立してAF用レーザー光L2の集光点をZ方向(ウェーハ厚み方向)に調整する。このフォーカス光学系310は、少なくとも照射光学系300の光路に沿って移動可能に構成された移動レンズを含む複数のレンズからなり、本例では、被写体側(ウェーハW側)から順に、照射光学系300の光路に沿って移動不能に設けられた固定レンズ(正レンズ)312と、照射光学系300の光路に沿って移動可能に設けられた移動レンズ(負レンズ)314とから構成される。
【0071】
第2アクチュエータ316は、移動レンズ314を照射光学系300の光路に沿って移動させる。移動レンズ314が照射光学系300の光路に沿って移動すると、加工用レーザー光L1の集光点のZ方向位置は固定された状態で、移動レンズ314の移動方向及び移動量に応じてAF用レーザー光L2の集光点のZ方向位置が変化する。すなわち、加工用レーザー光L1の集光点とAF用レーザー光L2の集光点との相対的な距離が変化する。
【0072】
制御部50は、AF信号処理部500から出力されるAF信号に基づいて、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面に一致するように(具体的には、AF信号の出力がゼロとなるように)、第2アクチュエータ316の駆動を制御する。
【0073】
本実施形態のように、ダイクロイックミラー104によりAF用レーザー光L2が加工用レーザー光L1と同一光路に導かれる構成においては、改質領域の加工深さを変えるために集光レンズ106とウェーハWとの相対的な距離が変化すると、加工用レーザー光L1の集光点とともにAF用レーザー光L2の集光点もウェーハWに対するZ方向位置が変化する。
【0074】
例えば、図6Aに示すように、ウェーハWのレーザー光照射面から浅い位置に改質領域を形成する場合において、ウェーハWのレーザー光照射面にAF用レーザー光L2の集光点が一致していたとする。このような場合、図6Bに示すように、ウェーハWのレーザー光照射面から深い位置に改質領域を形成するために、集光レンズ106とウェーハWとの相対的な距離を変化させると、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面からZ方向(ウェーハ厚み方向)に大きくずれてしまう。そして、AF用レーザー光L2の集光点とウェーハWのレーザー光照射面との距離が測定範囲(引き込み範囲)を超えてしまうと、ウェーハWのレーザー光照射面の変位を検出することができなくなってしまう。特に、集光レンズ106は高NA(numerical aperture)レンズが用いられるため、ウェーハWのレーザー光照射面の変位を検出可能な測定範囲がAF用レーザー光L2の集光点(合焦位置)の近傍に限られるため、上記問題はより顕著なものとなる。
【0075】
かかる問題に対処するため、本実施形態のAF装置110では、加工用レーザー光L1の集光点の位置を変えることなく、AF用レーザー光L2の集光点の位置を変化させることができるようにするために、フォーカス光学系310が照射光学系300の光路上に設けられている。これにより、図6Aに示した状態から図6Bに示した状態のように、改質領域の加工深さを変化させるために集光レンズ106とウェーハWとの相対的な距離が変化する場合においても、上記のようにフォーカス光学系310の移動レンズ314を照射光学系300の光路に沿って移動させることにより、図6Cに示した状態のように、加工用レーザー光L1の集光点のZ方向位置を固定した状態で、AF用レーザー光L2の集光点をウェーハWのレーザー光照射面に一致させることが可能となる。
【0076】
したがって、改質領域の加工深さが変化する場合においても、加工用レーザー光L1の集光点とAF用レーザー光L2の集光点との間隔を調整することができるので、AF用レーザー光L2の集光点をウェーハWのレーザー光照射面に一致させることができ、ウェーハWのレーザー光照射面で反射されたAF用レーザー光L2の反射光の単位面積あたりの光量が低下することなく、ウェーハWのZ方向位置(高さ位置)を正確に検出することが可能となる。
【0077】
次に、本実施形態のレーザーダイシング装置10を用いたダイシング方法について説明する。図7は、本実施形態のレーザーダイシング装置10を用いたダイシング方法の流れを示したフローチャートである。
【0078】
図7に示すように、レーザーダイシング装置10は、後述するリアルタイム加工動作に先立って、AF信号の出力特性を測定するキャリブレーション動作を実行する(ステップS10)。
【0079】
キャリブレーション動作が完了した後、レーザーダイシング装置10は、ウェーハWのレーザー光照射面の変位に追従するように加工用レーザー光L1の集光点のZ方向位置を調整しながらウェーハWの内部に改質領域を形成するリアルタイム加工動作を実行する(ステップS12)。
【0080】
図8は、図7に示すキャリブレーション動作の詳細な流れを示したフローチャートである。
【0081】
まず、制御部50は、第2アクチュエータ316の駆動を制御して、フォーカス光学系310の移動レンズ314を改質領域の加工深さに応じた位置に移動させる(ステップS20)。なお、制御部50のメモリ部(不図示)には、改質領域の加工深さとフォーカス光学系310の移動レンズ314の位置との対応関係が保持されている。
【0082】
続いて、制御部50は、ステージ12の移動を制御して、ウェーハWのレーザー光照射面の基準位置を集光レンズ106の直下に移動させる(ステップS22)。なお、ウェーハWのレーザー光照射面の基準位置は、AF用レーザー光L2の集光点を一致させる位置であって、ウェーハWのレーザー光照射面のZ方向の変位の基準となる位置なので、ウェーハWのレーザー光照射面の段差が少ない部分(平滑面)であることが望ましく、例えば、ウェーハWの外周部を除く中央部分の所定位置を基準位置とする。
【0083】
続いて、制御部50は、第2アクチュエータ316の駆動を制御して、AF信号処理部500から出力されるAF信号がゼロとなるように、フォーカス光学系310の移動レンズ314を照射光学系300の光路に沿って移動させる(ステップS24)。これにより、図6Bに示すように、AF用レーザー光L2の集光点とウェーハWのレーザー光照射面の基準位置とにずれがある場合でも、図6Cに示すように、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面の基準位置と一致するように集光点調整が行われる。なお、制御部50は、メモリ部(不図示)に保持されているフォーカス光学系310の移動レンズ314の位置を、集光点調整後の移動レンズ314の位置(補正位置)に書き換える。
【0084】
このとき、AF信号処理部500では、第1検出器406及び第2検出器408のうち総受光量が多い方の検出器を構成する2分割フォトダイオード600の受光素子600A、600Bから出力された出力信号に基づいてAF信号を生成する。このため、ウェーハWのレーザー光照射面に形成された薄膜のばらつき(ウェーハW毎あるいは場所によるばらつき)による影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置を安定かつ精度よく検出することができる。
【0085】
続いて、制御部50は、第1アクチュエータ108の駆動を制御して、集光レンズ106をZ方向に沿って移動可能範囲の全体にわたって移動させながらAF信号処理部500から出力されるAF信号の出力特性を測定して、その出力特性をルックアップテーブルとしてメモリ部(不図示)に保持しておく(ステップS26)。
【0086】
なお、ウェーハWの内部に改質領域の層を複数形成する場合には、ステップS20からステップS26までの処理を改質領域の加工深さ毎に実行する。
【0087】
以上の処理により、制御部50は、図7のステップS12のリアルタイム加工動作において、メモリ部(不図示)に保持されたルックアップテーブルを参照することにより、AF信号処理部500から出力されるAF信号の出力値からウェーハWのレーザー光照射面の基準位置からのZ方向の変位(デフォーカス距離)を簡単に求めることができるので、リアルタイム加工動作における加工効率(スループット)を向上させることが可能となる。
【0088】
図9は、図7に示すリアルタイム加工動作の詳細な流れを示したフローチャートである。
【0089】
まず、制御部50は、図8のステップS20と同様に、第2アクチュエータ316の駆動を制御して、フォーカス光学系310の移動レンズ314を改質領域の加工深さに応じた位置に移動させる(ステップS30)。このとき、制御部50は、メモリ部(不図示)に保持されている移動レンズ314の位置(補正位置)に移動させる。これにより、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面の基準位置と一致し、AF装置110は、ウェーハWのレーザー光照射面の基準位置を基準としたZ方向の変位を検出することが可能となる。
【0090】
続いて、制御部50は、ステージ12の移動を制御して、ステージ12に吸着保持されたウェーハWを所定の加工開始位置に移動させる(ステップS32)。
【0091】
続いて、制御部50は、加工用レーザー光源100をONとした後、ウェーハWを水平方向(XY方向)に移動させながら、加工用レーザー光源100から出射された加工用レーザー光L1により、ダイシングストリートに沿ってウェーハWの内部に改質領域を形成する(ステップS34)。
【0092】
このとき、制御部50は、加工用レーザー光源100をONにするタイミングと略同時、或いはそれよりも先のタイミングで、第1光源202及び第2光源204をONとする。これにより、加工用レーザー光L1とAF用レーザー光L2(互いに波長の異なる2つのAF用レーザー光L2a、L2bの合成光)が集光レンズ106によりウェーハWに向かって集光される。そして、ウェーハWのレーザー光照射面に照射され反射したAF用レーザー光L2の反射光は、ダイクロイックミラー404で互いに異なる波長に分割され、分割された各々の光は第1検出器406及び第2検出器408にそれぞれ受光される。AF信号処理部500は、第1検出器406及び第2検出器408のうち総受光量が多い方の検出器から出力された出力信号に基づいて、ウェーハWのレーザー光照射面の基準位置からのZ方向の変位を示すAF信号を生成して制御部50に出力する。
【0093】
そして、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、第1アクチュエータ108の駆動を制御することによって、加工用レーザー光L1の集光点のZ方向位置を調整しながら、ウェーハWの内部に改質領域を形成する。
【0094】
続いて、制御部50は、ウェーハWの全てのダイシングストリートに対して改質領域の形成が終了しているか否かを判断する(ステップS36)。全てのダイシングストリートに対して改質領域の形成が終了していない場合(Noの場合)、次のダイシングストリートに移動し(ステップS38)、そのダイシングストリートについてステップS34からステップS36までの処理を繰り返す。一方、全てのダイシングストリートに対して改質領域の形成が終了した場合(Yesの場合)、次のステップS40に進む。
【0095】
続いて、制御部50は、全ての加工深さについて改質領域の形成が終了しているか否かを判断する(ステップS40)。全ての加工深さについて改質領域の形成が終了していない場合には、次の加工深さに移動し(ステップS42)、ステップS30からステップS40までの処理を繰り返す。一方、全ての加工深さについて改質領域の形成が終了した場合には、リアルタイム加工動作を終了する。
【0096】
このようにして、ウェーハの内部の所望の位置に改質領域を形成することにより、改質領域を起点としてウェーハWを複数のチップに分割することが可能となる。
【0097】
図10は、第1の実施形態におけるAF信号の出力特性の一例を示した図であり、改質領域の加工深さを0〜800μmの範囲で変化させたときの出力特性を示している。
【0098】
本実施形態では、改質領域の加工深さに応じてAF用レーザー光L2の集光点のZ方向位置がウェーハWのレーザー光照射面の基準位置と一致するように調節されるので、図10に示すように、各加工深さに対応するAF信号の出力特性は略揃ったものとなり、いずれもウェーハWのレーザー光照射面の基準位置(原点)をゼロクロス点としたS字状の曲線となる。したがって、このような出力特性を有するAF信号を用いてリアルタイム加工動作を実行することにより、改質領域の加工深さの変更に影響されることなく、ウェーハWのレーザー光照射面の変位を安定かつ高精度に検出することが可能となる。
【0099】
以上のとおり、本実施形態では、互いに波長の異なる2つのAF用レーザー光L2a、L2bを用いてウェーハWのレーザー光照射面の高さ位置を検出しているので、ウェーハWのレーザー光照射面に形成される薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置を安定かつ精度よく検出することが可能となる。
【0100】
また、本実施形態では、AF用レーザー光L2を集光レンズ106に導くための照射光学系300の光路上であってダイクロイックミラー104とハーフミラー308との間には、AF用レーザー光L2の集光点をZ方向(ウェーハ厚み方向)に調整する集光点調整光学系としてフォーカス光学系310が設けられている。このため、改質領域の加工深さの変化に伴い、集光レンズ106とウェーハWとの相対的距離が変化する場合でも、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面に一致させるように調整することができるので、ウェーハのレーザー光照射面から所定の加工深さに改質領域を精度よく形成することが可能となる。
【0101】
また、本実施形態では、本発明者が鋭意検討を重ねた結果、集光レンズ106とフォーカス光学系310との光学的距離とフォーカス引き込み範囲、フォーカス感度には相関があり、良好な結果を得るためには、この光学的距離をある範囲に保つことが必要であることを見出した。具体的には、集光レンズ106の射出瞳とフォーカス光学系310の固定レンズ(正レンズ)312との光学的距離Dが長すぎると加工深さ毎のAF信号の出力特性のばらつきが大きくなることから、光学的距離Dは120mm以下であることが好ましい。
【0102】
ここで、上述した本実施形態のレーザーダイシング装置10と実質的に等価なモデルを用いてシミュレーションを行い、光学的距離Dを変化させたときの加工深さ毎のAF信号の出力特性(AF特性)の変化について評価した結果について図11及び図12を参照して説明する。
【0103】
図11及び図12は、光学的距離Dをそれぞれ所定値に設定したときの加工深さ毎のAF信号の出力特性を示したものである。なお、Dの単位はmmとする(以下、同様とする)。
【0104】
図11はD=30とした場合であり、図12はD=90とした場合である。これらの図に示すように、光学的距離Dが長くなるにつれて、フォーカス引き込み範囲は広くなるものの、AF信号の出力特性のカーブの傾き(合焦位置(すなわち、デフォーカス距離=0)を中心とした比例関係にある略直線部分の傾き)が緩やかのものとなり、フォーカス感度が低下する傾向にある。また、加工深さ毎のAF信号の出力特性のばらつきが大きくなる。
【0105】
したがって、集光レンズ106の射出瞳とフォーカス光学系310の固定レンズ312との光学的距離Dは120mm以下であることが好ましい。これにより、フォーカス感度が高く、フォーカス引き込み範囲が広く、加工深さによらず安定したAF特性を得ることが可能となる。
【0106】
また、本実施形態では、フォーカス光学系310は、固定レンズ(正レンズ)312及び移動レンズ(負レンズ)314から構成されるが、その固定レンズ312の焦点距離は20mm以上80mm以下であることが好ましい。固定レンズ312の焦点距離が長すぎると移動レンズ314の移動量が大きくなりすぎる。また、固定レンズ312の焦点距離が短すぎると加工深さ毎のAF信号の出力特性のばらつきが大きくなる。したがって、これらの点を考慮すると、固定レンズ312の焦点距離は上記範囲であることが好ましく、移動レンズ314の移動量を小さくでき、かつ加工深さ毎のAF信号の出力特性のばらつきを小さくすることができる。
【0107】
また、本実施形態では、固定レンズ312の焦点距離(絶対値)と移動レンズ314との焦点距離(絶対値)との差が2mm以上15mm以下であることが好ましい。固定レンズ312と移動レンズ314との焦点距離の差が2mmよりも小さい場合には、ウェーハWのレーザー光照射面にAF用レーザー光L2の集光点を調整する際に固定レンズ312と移動レンズ314との距離が短くなりすぎるため、フォーカス光学系310を構成する上で困難となる。一方、この焦点距離の差が大きすぎると、移動レンズ314の焦点距離が小さくなり、収差上の観点から望ましくない。これらの点を考慮すると、固定レンズ312の焦点距離(絶対値)と移動レンズ314との焦点距離(絶対値)との差は2mm以上15mm以下であることが好ましく、フォーカス光学系310を容易に構成することができ、収差の発生を抑制することができる。
【0108】
また、本実施形態では、集光レンズ106により集光されウェーハWのレーザー光照射面に照射されるAF用レーザー光L2の集光像(ピンホール像)の直径(スポット径)Nは5μm以上50μm以下であることが好ましい。
【0109】
ここで、上述した本実施形態のレーザーダイシング装置10と実質的に等価なモデルを用いてシミュレーションを行い、スポット径Nを変化させたときの加工深さ毎のAF特性の変化について評価した結果について図13図15を参照して説明する。
【0110】
図13図15は、スポット径Nをそれぞれ所定値に設定したときの加工深さ毎のAF信号の出力特性を示したものである。なお、Nの単位はμmとする。また、光学的距離Dは60mmとした。
【0111】
図13は、N=10とした場合のAF信号の出力特性を示した図である。図13に示すように、N=10とした場合には、合焦位置(デフォーカス距離=0)付近でAF信号の出力特性のカーブが急激に変化し、合焦位置以外ではほぼ一定の値となっている。
【0112】
図14は、N=100とした場合のAF信号の出力特性を示した図である。図14に示すように、N=100とした場合には、N=10とした場合に比べて(図13参照)、合焦位置付近のAF信号の出力特性のカーブの変化が緩やかなものとなる。このことから、フォーカス引き込み範囲を拡大するためには、スポット径Nを大きくすればよいことが分かる。
【0113】
図15は、N=200とした場合のAF信号の出力特性を示した図である。図15に示すように、N=200とした場合には、AF信号の出力特性のカーブの振幅が減少し、そのカーブに変曲点が発生する現象が生じる。また、改質領域の加工深さが深くなるほど、AF信号の出力特性のカーブの傾き(合焦位置を中心とした比例関係にある略直線部分の傾き)が緩やかなものとなり、フォーカス感度が低下する問題も生じる。
【0114】
これらの結果から分かるように、スポット径Nは5μm以上50μm以下であることが好ましく、フォーカス感度が高く、フォーカス引き込み範囲が広く、加工深さによらず安定したAF特性を得ることが可能となる。
【0115】
このように本実施形態では、集光レンズ106の射出瞳とフォーカス光学系310との光学的距離や、集光レンズ106によるAF用レーザー光L2の集光像の直径(スポット径)を所望の範囲に設定することにより、AF感度が高く、引き込み範囲が広く、加工深さによらず安定したAF特性を得ることが可能となる。したがって、改質領域の加工深さによらず、ウェーハWのレーザー光照射面の高さ位置を迅速にかつ精度よく安定して検出することができる。その結果、ウェーハWのレーザー光照射面にばらつきがあっても、ウェーハWのレーザー光照射面から所定の加工深さに改質領域を精度よく形成することが可能となる。
【0116】
なお、本実施形態では、第1検出器406及び第2検出器408のうち総受光量の多い方の検出器から出力される出力信号を用いたが、これに限らず、第1検出器406及び第2検出器408でそれぞれ受光された光量に対し予め定めた基準に従って重み付け加算を行うことによってAF信号を得るようにしてもよい。例えば、第1検出器406で受光された光量をS1とし、第2検出器408で受光された光量をS2としたとき、S1、S2に対してそれぞれ重み係数α、β(但し、α、β>0)を乗じたものを加算したものを用いてもよい。また、S1、S2をそれぞれ二乗して加算したものを用いてもよいし、他の重み付けの方法を用いてもよい。
【0117】
また、本実施形態では、互いに波長が異なる2つのAF用レーザー光L2a、L2bが用いられるため、第1検出器406及び第2検出器408は、それぞれの波長域に対する色収差を考慮した位置に配置される構成としたが、これに限らず、例えば、色収差補正手段としてフォーカス光学系310内に貼り合わせレンズを含んでいてもよい。この場合、フォーカス光学系310は色収差補正手段として機能するので、図16に示す例のように、検出光学系400において、ダイクロイックミラー404、ならびに第2検出器408が不要となり、AF装置110の装置構成を簡素化することが可能となる。
【0118】
また、本実施形態では、互いに波長が異なる2つのAF用レーザー光L2a、L2bを用いてウェーハWのレーザー光照射面の高さ位置を検出する場合について説明したが、これに限らず、互いに波長が異なる3つ以上のAF用レーザー光を用いてもよい。例えば、図16の光源部200で示すように、異なる3種類の波長のレーザー光を出力するピッグテールタイプのLD(Laser Diode:202、204、205)を、レーザーコンバイナ201を介して1つのファイバに結合する。そして、LD202、204および205から出力されるレーザー光をレーザーコンバイナ201を介して出力することで、出力するレーザー光の波長を選択したり、レーザー光を混合して出力することが可能となる。
【0119】
また、本実施形態では、第1検出器406及び第2検出器408が2分割フォトダイオードで構成される例を示したが、これに限らず、光量バランスを測定できるもの(例えば、4分割フォトダイオード、2次元撮像素子等)を用いてもよい。
【0120】
また、本実施形態では、光ファイバ302を用いているが、レイアウト上の問題がなければ、コリメートレンズ304の前側焦点位置に光源像を直接作り、光ファイバ302を省略してもかまわない。
【0121】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。以下、第1の実施形態と共通する部分については説明を省略し、本実施形態の特徴的部分を中心に説明する。
【0122】
図17は、第2の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図17中、図1と共通又は類似する構成要素には同一の符号を付し、その説明を省略する。
【0123】
第2の実施形態は、ウェーハWのレーザー光照射面の高さ位置を検出する方法として、非点収差法を用いるものである。
【0124】
図17に示すように、AF装置110の光源部200から出力されたAF用レーザー光L2は、光ファイバ302を経由して、コリメートレンズ304でコリメートされ、その一部が遮光されることなく、ハーフミラー308で反射される。さらに、このAF用レーザー光L2は、フォーカス光学系310、ダイクロイックミラー104を経由して、集光レンズ106により集光されてウェーハWに照射される。ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、AF用レーザー光L2と同一光路を逆向きに進み、その光路上に配置されるハーフミラー308を透過し、照射光学系300の光路から分岐した光路に設けられた検出光学系400に導かれる。
【0125】
検出光学系400は、ダイクロイックミラー404、結像レンズ410、412、シリンドリカルレンズ414、416、第1検出器418、第2検出器420等で構成されている。
【0126】
ダイクロイックミラー404は、第1の実施形態と同様に、検出光学系400に導かれたAF用レーザー光L2の反射光を特定の波長の光とそれ以外の波長の光に分割する。すなわち、AF用レーザー光L2の反射光のうち、第1光源202から出射されたAF用レーザー光L2aの波長に相当する第1波長域の光は、ダイクロイックミラー404を透過し、結像レンズ410、シリンドリカルレンズ414を経由して、第1検出器418に受光される。一方、第2光源204から出射されたAF用レーザー光L2bの波長に相当する第2波長域の光は、ダイクロイックミラー404で反射され、結像レンズ412、シリンドリカルレンズ416を経由して、第2検出器420に受光される。なお、シリンドリカルレンズ414、416は、ダイクロイックミラー404で波長域毎に分割された光にそれぞれ非点収差を付与する非点収差付与手段である。
【0127】
第1検出器418及び第2検出器420は、4分割された受光素子を有する4分割フォトダイオードからなり、それぞれの波長域の光の集光像を分割して受光し、それぞれの光量に応じた出力信号をAF信号処理部500に出力する。
【0128】
非点収差法によるウェーハWのレーザー光照射面の変位の検出原理については公知であるため(例えば特開2009−152288号公報参照)、ここでは詳細な説明は省略するが、簡単に説明すれば、検出器(第1検出器418及び第2検出器420に相当)を構成する4分割フォトダイオードの受光面上に形成されるAF用レーザー光L2の反射光の集光像は、ウェーハWのレーザー光照射面とAF用レーザー光L2の集光点が一致している場合には真円となる。一方、ウェーハWのレーザー光照射面とAF用レーザー光L2の集光点がずれている場合には、ウェーハWのレーザー光照射面の変位方向に応じて集光像が縦方向又は横方向に引き伸ばされた楕円となり、その大きさはウェーハWのレーザー光照射面の変位量に依存する。したがって、この性質を利用することで、ウェーハWのレーザー光照射面の変位を検出することができる。
【0129】
図18は、4分割フォトダイオードの受光面を示した図である。同図に示すように、4分割フォトダイオード602は、4つの受光素子(光電変換素子)602A〜602Dを有し、各受光素子602A〜602Dは、AF用レーザー光L2の反射光の集光像を分割して受光し、それぞれの光量に応じた出力信号をAF信号処理部500に出力する。
【0130】
AF信号処理部500は、第1検出器418を構成する4分割フォトダイオード602の受光素子602A〜602Dから出力された出力信号をそれぞれA1〜D1とし、第2検出器420を構成する4分割フォトダイオード602の受光素子602A〜602Dから出力された出力信号をそれぞれA2〜D2としたとき、第1検出器418における出力信号の和(A1+B1+C1+D1)が第2検出器420における出力信号の和(A2+B2+C2+D2)以上である場合には、AF信号Eを、次式(3)に従って求める。
【0131】
E={(A1+C1)−(B1+D1)}/{(A1+C1)+(B1+D1)} ・・・(3)
一方、第1検出器418における出力信号の和(A1+B1+C1+D1)が第2検出器420における出力信号の和(A2+B2+C2+D2)未満である場合には、AF信号Eを、次式(4)に従って求める。
【0132】
E={(A2+C2)−(B2+D2)}/{(A2+C2)+(B2+D2)} ・・・(4)
かかる構成によれば、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、上述した第1の実施形態と同様に、第1アクチュエータ108や第2アクチュエータ316の駆動を制御することができるので、改質領域の加工深さに対する変更に影響を受けることなく、ウェーハWのレーザー光照射面の変位を追従するように加工用レーザー光L1の集光点を高精度に制御することができ、ウェーハWの内部の所望の位置に改質領域を高精度に形成することが可能となる。
【0133】
なお、第1検出器418及び第2検出器420は、4分割フォトダイオードに限らず、光量バランスを測定できるものであればよく、例えば、2次元撮像素子等を用いてもよい。
【0134】
図19は、第2の実施形態におけるAF信号の出力特性を示した図である。図19に示すように、第2の実施形態では、第1の実施形態におけるAF信号の出力特性(図10参照)に比べて加工深さ毎のばらつきが大きくなっているが、フォーカス引き込み範囲は比較的広く、AF信号の出力特性のカーブの傾き(合焦位置を中心とした比例関係にある略直線部分の傾き)も大きくフォーカス感度が高く、ウェーハWのレーザー光照射面の高さ位置を安定して検出することが可能なものとなっている。
【0135】
このように第2の実施形態においても、第1の実施形態と同様の効果が得られる。また、第2の実施形態では、集光レンズ106の射出瞳とフォーカス光学系310の固定レンズ312との光学的距離が50mm以下であることが好ましい。この光学的距離を上記範囲に設定することで、AF感度が高く、引き込み範囲を広く、加工深さによらず安定したAF特性を得ることが可能となる。
【0136】
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。以下、第1の実施形態と共通する部分については説明を省略し、本実施形態の特徴的部分を中心に説明する。
【0137】
図20は、第3の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図20中、図1と共通又は類似する構成要素には同一の符号を付し、その説明を省略する。
【0138】
第3の実施形態は、ウェーハWのレーザー光照射面の高さ位置を検出する方法として、中心強度法を用いるものである。なお、中心強度法とは、2つの検出器のいずれか一方の検出器で反射光の一部を受光し、他方の検出器で反射光の全部又は一部を受光し、それぞれの検出器における受光量を用いてウェーハWのレーザー光照射面の高さ位置を検出する方法である。
【0139】
図20に示すように、AF装置110の光源部200から出力されたAF用レーザー光L2は、第2の実施形態と同様の構成を有する照射光学系300の光路を経由して集光レンズ106に導かれ、集光レンズ106により集光されてウェーハWに照射される。ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、照射光学系300の光路を逆向きに進み、その光路上に配置されるハーフミラー308を透過し、照射光学系300の光路から分岐した光路に設けられた検出光学系400に導かれる。
【0140】
検出光学系400は、ダイクロイックミラー404、穴あきミラー422、425、結像レンズ426、428、第1検出器430a、430b、第2検出器432a、432b等で構成されている。
【0141】
ダイクロイックミラー404は、第1の実施形態と同様に、検出光学系400に導かれたAF用レーザー光L2の反射光を特定の波長とそれ以外の波長の光に分割する。すなわち、AF用レーザー光L2の反射光のうち、第1光源202から出射されたAF用レーザー光L2aの波長に相当する第1波長域の光は、ダイクロイックミラー404を透過し、その一部の光は穴あきミラー422の中央部分に形成される開口部を通過して第1検出器430aで受光され、残りの光は穴あきミラー422の周辺部分の反射面で反射されて結像レンズ426により集光されて第1検出器430bで受光される。一方、第2光源204から出射されたAF用レーザー光L2bの波長に相当する第2波長域の光は、ダイクロイックミラー404で反射され、その一部の光は穴あきミラー425の中央部分に形成される開口部を通過して第2検出器432aで受光され、残りの光は穴あきミラー425の周辺部分の反射面で反射されて結像レンズ428により集光されて第2検出器432bで受光される。
【0142】
第1検出器430a、430b及び第2検出器432a、432bは、受光した光量に応じた出力信号をAF信号処理部500に出力する。
【0143】
AF信号処理部500は、第1検出器430a、430b及び第2検出器432a、432bの少なくとも一方の検出器から出力された出力信号に基づいて、ウェーハWのレーザー光照射面の基準位置からのZ方向の変位(デフォーカス距離)を示すAF信号を生成して制御部50に出力する。
【0144】
ここで、ウェーハWのレーザー光照射面の変位の検出原理について説明する。なお、第1検出器430a、430bを用いた検出原理と第2検出器432a、432bの検出原理を用いた検出原理は同様なので、これらを代表して第1検出器430a、430bを用いた検出原理について説明する。
【0145】
ダイクロイックミラー404を透過した反射光のうち、一部の光は穴あきミラー422の開口部を通過して第1検出器430aで受光され、残りの光は穴あきミラー422の周辺部分の反射面で反射されて結像レンズ426により集光されて第1検出器430bで受光される。このため、第1検出器430a、430bで受光される反射光の光量の和(総受光量)は、ウェーハWのレーザー光照射面の高さ位置によらず常に一定であり、第1検出器430a、430bの出力の和は一定となる。一方、第1検出器430aに受光される反射光は、穴あきミラー422の開口部によって受光領域が中心部分に制限されるので、集光レンズ106からウェーハWのレーザー光照射面までの距離、すなわち、ウェーハWのレーザー光照射面の高さ位置(Z方向位置)によって受光量が変化する。そのため、第1検出器430aの出力は、AF用レーザー光L2が照射されるウェーハWのレーザー光照射面の高さ位置によって変化する。したがって、このような性質を利用することで、ウェーハWのレーザー光照射面の変位を検出することができる。
【0146】
AF信号処理部500では、第1検出器430a、430bから出力された出力信号をそれぞれPa、Pb、第2検出器432a、432bから出力された出力信号をそれぞれQa、Qbとしたとき、第1検出器430a、430bにおける出力信号の和(Pa+Pb)が第2検出器432a、432bにおける出力信号の和(Qa+Qb)以上である場合には、AF信号Eを、次式(5)に従って求める。
【0147】
E=(Pa+Pb)/Pa・・・(5)
一方、第1検出器430a、430bにおける出力信号の和(Pa+Pb)が第2検出器432a、432bにおける出力信号の和(Qa+Qb)未満である場合には、AF信号Eを、次式(6)に従って求める。
【0148】
E=(Qa+Qb)/Qa・・・(6)
すなわち、AF信号処理部500は、AF信号Eを求めるための検出器を、第1検出器430a、430b及び第2検出器432a、432bのうち総受光量が多い方の検出器に切り替えて使用している。これにより、常に高い反射率の波長の光を用いてAF信号Eが生成されるので、ウェーハWのレーザー光照射面に照射されたAF用レーザー光L2の反射率が波長により変化しても、ウェーハWのレーザー光照射面に形成された薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置の検出を精度よく安定して行うことができる。
【0149】
かかる構成によれば、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、上述した第1の実施形態と同様に、第1アクチュエータ108や第2アクチュエータ316の駆動を制御することができるので、改質領域の加工深さに対する変更に影響を受けることなく、ウェーハWのレーザー光照射面の変位を追従するように加工用レーザー光L1の集光点を高精度に制御することができ、ウェーハWの内部の所望の位置に改質領域を高精度に形成することが可能となる。
【0150】
図21は、第3の実施形態におけるAF信号の出力特性を示した図である。図21に示すように、第3の実施形態では、第1の実施形態におけるAF信号の出力特性(図10参照)に比べて加工深さ毎のばらつきが大きくなっているが、デフォーカス距離がマイナス方向(AF用レーザー光L2の集光点から集光レンズ106に向かう方向)のフォーカス引き込み範囲が広くなっており、ウェーハWのレーザー光入射面とAF用レーザー光L2の集光点とがずれている場合でも、ウェーハWのレーザー光照射面の高さ位置を安定して検出することが可能となる。
【0151】
このように第3の実施形態においても、第1の実施形態と同様の効果が得られる。また、第3の実施形態では、集光レンズ106の射出瞳と穴あきミラー422,425(受光領域規制手段)との光学的距離が20mm以上150mm以下であり、かつ集光レンズ106の射出瞳とフォーカス光学系310の固定レンズ312との光学的距離が120mm以下であることが好ましい。これらの光学的距離を上記範囲に設定することで、AF感度が高く、引き込み範囲を広く、加工深さによらず安定したAF特性を得ることが可能となる。
【0152】
なお、第3の実施形態では、受光領域規制手段である穴あきミラー422、425を用いたが、これに限らず、例えば、分割ミラーを用いてもよい。この場合、ダイクロイックミラー404で波長毎に分割されたAF用レーザー光L2の反射光を分割ミラーで2つの経路に分割し、分割された各々の反射光を第1検出器430a、430b及び第2検出器432a、432bでそれぞれ検出する。これにより、穴あきミラー422、425を用いる場合と同様にしてAF信号を求めることができ、ウェーハWのレーザー光照射面の高さ位置を検出することが可能となる。
【0153】
また、第3の実施形態では、図22に示すような構成を採用することもできる。すなわち、AF用レーザー光L2を集光レンズ106に導く照射光学系300の光路であってハーフミラー308とコリメートレンズ304との間には4f光学系318が配置されてもよい。4f光学系318は、第1リレーレンズ320と第2リレーレンズ322とから構成される。このような構成によれば、集光レンズ106の射出瞳と共役な面を集光レンズ106から物理的に離れた位置に配置することが可能となるので、照射光学系300に配置されるコリメートレンズ304等の配置自由度を高めることが可能となる。
【0154】
さらに第3の実施形態では、AF用レーザー光L2を検出する検出光学系400の構成として、第1検出器430a、430b及び第2検出器432a、432bを用いた構成を例に挙げて説明したが、必ずしもこのような構成に限定されるものではない。AF用レーザー光L2を検出する検出光学系400の構成として、例えば、図23に示すような構成を採用することもできる。
【0155】
図23は、第3の実施形態に係るダイシング装置の他の構成例を示した要部構成図である。図23に示した構成例においては、図20に示した穴あきミラー422、425に代えて、ハーフミラー434、436、マスク438、440が設けられている。
【0156】
この構成例によれば、ダイクロイックミラー404に導かれたAF用レーザー光L2の反射光のうち、ダイクロイックミラー404を透過した第1波長域の光の一部はハーフミラー434を透過して、光路上に中央開口を有するマスク438を介して第1検出器430aで受光され、残りの光はハーフミラー434で反射され、結像レンズ426により第1検出器430bに100%受光される。一方、ダイクロイックミラー404で反射された第2波長域の光の一部はハーフミラー436を透過して、光路上に中央開口を有するマスク440を介して第2検出器432aで受光され、残りの光はハーフミラー436で反射され、結像レンズ428により第2検出器432bに100%受光される。第1検出器430b、第2検出器432bに受光される反射光の光量は一定であるのに対し、第1検出器430a、第2検出器432aに受光される反射光の光量はウェーハWのレーザー光照射面の高さ位置によって変化する。この性質を利用することで、第3の実施形態と同様にして、ウェーハWのレーザー光照射面の高さ位置を検出することが可能となる。
【0157】
すなわち、AF信号処理部500では、第1検出器430a、430bから出力された出力信号をそれぞれPa、Pb、第2検出器432a、432bから出力された出力信号をそれぞれQa、Qbとしたとき、第1検出器430bにおける出力信号Pbが第2検出器432bにおける出力信号Qb以上である場合には、AF信号Eを、次式(7)に従って求める。
【0158】
E=Pb/Pa・・・(7)
一方、第1検出器430bにおける出力信号Pbが第2検出器432bにおける出力信号Qb未満である場合には、AF信号Eを、次式(8)に従って求める。
【0159】
E=Qb/Qa・・・(8)
かかる構成によれば、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、上述した第1の実施形態と同様に、第1アクチュエータ108や第2アクチュエータ316の駆動を制御することにより、改質領域の加工深さに対する変更に影響を受けることなく、ウェーハWのレーザー光照射面の変位を追従するように加工用レーザー光L1の集光点を高精度に制御することができ、ウェーハWの内部の所望の位置に改質領域を高精度に形成することが可能となる。
【0160】
(第4の実施形態)
次に、本発明の第4の実施形態について説明する。以下、第1の実施形態と共通する部分については説明を省略し、本実施形態の特徴的部分を中心に説明する。
【0161】
図24は、第4の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図24中、図1と共通又は類似する構成要素には同一の符号を付し、その説明を省略する。
【0162】
第1の実施形態では、AF装置110は、2つの検出器406、408を用いて波長が異なる2つのAF用レーザー光L2a、L2bの反射光を同時に検出していたのに対し、第4の実施形態では、波長が異なる2つのAF用レーザー光L2a、L2bを時間的に交互に出射して、ウェーハWのレーザー光入射面で反射したAF用レーザー光L2a、L2bの反射光を波長域毎に時分割的に交互に検出するものである。
【0163】
すなわち、AF装置110は、光源部200の第1光源202及び第2光源204のON/OFFを時分割的に交互に切り替え、その切替タイミングに同期してAF用レーザー光L2a、L2bの反射光を波長域毎に1つの検出器406で時分割的に検出できるように構成されている。なお、光源部200は、時分割出力手段の一例である。また、検出器406は、時分割検出手段の一例である。
【0164】
制御部50は、光源制御部52と検出制御部54とを備えている。光源制御部52は、第1光源202及び第2光源204のON/OFFの切り替えを制御する。検出制御部54は、光源制御部52における切替タイミングに同期して検出器406の検出動作(受光動作)を制御する。
【0165】
以上のような構成により、第4の実施形態においても、AF用レーザー光L2a、L2bの反射光の光量に応じた出力信号が検出器406から時分割的に交互に出力されるので、第1の実施形態と同様な効果を得ることができる。さらに第4の実施形態では、波長の異なる複数のAF用レーザー光を検出するために複数の検出器を備える必要がないので、装置構成を簡略化することが可能となる。
【0166】
(第5の実施形態)
次に、本発明の第5の実施形態について説明する。
【0167】
図25は、第5の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図25に示すように、レーザーダイシング装置10は、ステージ12、レーザーヘッド20、制御部50等で構成されている。
【0168】
ステージ12は、XYZθ方向に移動可能に構成され、ウェーハWを吸着保持する。ウェーハWは、表面(デバイス面)とは反対側の裏面がレーザー光照射面となるようにステージ12上に載置される。なお、ウェーハWの表面をレーザー光照射面としてもよい。後述する他の実施形態においても同様である。
【0169】
レーザーヘッド20は、ウェーハWの内部に改質領域を形成するための加工用レーザー光L1をウェーハWに対して照射する。
【0170】
制御部50は、CPU(Central Processing Unit)、メモリ、入出力回路部等からなり、レーザーダイシング装置10の各部の動作を制御する。
【0171】
レーザーダイシング装置10はこの他に、図示しないウェーハ搬送手段、操作板、テレビモニタ、及び表示灯等から構成されている。
【0172】
操作板には、レーザーダイシング装置10の各部の動作を操作するスイッチ類や表示装置が取り付けられている。テレビモニタは、図示しないCCD(Charge Coupled Device)カメラで撮像したウェーハ画像の表示、又はプログラム内容や各種メッセージ等を表示する。表示灯は、レーザーダイシング装置10の加工中、加工終了、非常停止等の稼働状況を表示する。
【0173】
次に、レーザーヘッド20の詳細構成について説明する。
【0174】
図25に示すように、レーザーヘッド20は、加工用レーザー光源100、コリメートレンズ102、ダイクロイックミラー104、集光レンズ106、AF装置(オートフォーカス装置)110等で構成されている。
【0175】
加工用レーザー光源100は、ウェーハWの内部に改質領域を形成するための加工用レーザー光L1を出射する。例えば、加工用レーザー光源100は、パルス幅が1μs以下であって、集光点におけるピークパワー密度が1×10(W/cm)以上となるレーザー光を出射する。
【0176】
加工用レーザー光源100から出射された加工用レーザー光L1は、コリメートレンズ102でコリメートされ、ダイクロイックミラー104を透過した後、集光レンズ106によりウェーハWの内部に集光される。加工用レーザー光L1の集光点のZ方向位置(ウェーハ厚み方向位置)は、第1アクチュエータ108によって集光レンズ106をZ方向(加工用レーザー光L1の光軸方向)に微小移動させることにより調節される。第1アクチュエータ108は、集光レンズ駆動手段の一例である。なお、詳細は後述するが、第1アクチュエータ108は、集光レンズ106とウェーハWのレーザー光照射面との距離が一定となるように、制御部50によって駆動が制御される。
【0177】
加工用レーザー光L1を用いた改質領域の形成は、図2A図2Cを用いて説明した例と同様に行うことができる。すなわち、図2Aに示すように、ウェーハWのレーザー光照射面から入射した加工用レーザー光L1の集光点がウェーハWの厚さ方向の内部に設定されていると、ウェーハWのレーザー光照射面を透過した加工用レーザー光L1は、ウェーハWの内部の集光点でエネルギーが集中し、ウェーハWの内部の集光点近傍に多光子吸収によるクラック領域、溶融領域、屈折率変化領域等の改質領域が形成される。図2Bに示すように、断続するパルス状の加工用レーザー光L1をウェーハWに照射して複数の改質領域P、P、…をダイシングストリートに沿って形成することで、ウェーハWは分子間力のバランスが崩れ、改質領域P、P、…を起点として自然に割断するか、或いは僅かな外力を加えることによって割断される。
【0178】
また、厚さの厚いウェーハWの場合は、改質領域Pの層が1層では割断できないので、図2Cに示すように、ウェーハWの厚さ方向に加工用レーザー光L1の集光点を移動し、改質領域Pを多層に形成させて割断する。
【0179】
なお、図2B図2Cに示した例では、断続するパルス状の加工用レーザー光L1で不連続な改質領域P、P、…を形成した状態を示したが、加工用レーザー光L1の連続波の下で連続的な改質領域Pを形成するようにしてもよい。不連続の改質領域Pを形成した場合は、連続した改質領域Pを形成した場合に比べて割断され難いので、ウェーハWの厚さや搬送中の安全等の状況によって、加工用レーザー光L1の連続波を用いるか、断続波を用いるかが適宜選択される。
【0180】
AF装置110は、AF用レーザー光(検出用レーザー光)L2をウェーハWに対して照射し、ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光を受光し、その受光した反射光に基づいて、ウェーハWのレーザー光照射面の高さ位置(Z方向位置)を検出する。AF装置110は、高さ位置検出手段の一例である。
【0181】
AF装置110は、AF用レーザー光L2を出力する光源部200と、光源部200から出力されたAF用レーザー光L2を集光レンズ106に導く照射光学系300と、集光レンズ106により集光されウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光を検出する検出光学系400と、検出光学系400で検出されたAF用レーザー光L2の反射光を利用してウェーハWのレーザー光照射面の高さ位置を示すAF信号を生成するAF信号処理部500と、を備えている。
【0182】
光源部200は、第1光源202、第2光源204、コリメートレンズ206、208、ダイクロイックミラー210、集光レンズ212等で構成されている。光源部200は、検出用レーザー光出力手段の一例である。
【0183】
第1光源202及び第2光源204は、例えばLD(Laser Diode)光源やSLD(Super Luminescent Diode)光源等からなり、互いに異なる波長のAF用レーザー光(検出用レーザー光)L2a、L2bをそれぞれ出射する。AF用レーザー光L2a、L2bは、加工用レーザー光L1とは異なる波長であってウェーハWのレーザー光照射面で反射可能な波長を有する。すなわち、AF用レーザー光L2aは第1波長域(例えば、620〜750nm)の波長を有するレーザー光(赤色レーザー光)であり、AF用レーザー光L2bは第1波長域とは異なる第2波長域(例えば、450〜495nm)の波長を有するレーザー光(青色レーザー光)である。第1光源202及び第2光源204は、複数の検出用レーザー光源の一例である。
【0184】
第1光源202及び第2光源204から出射されたAF用レーザー光L2a、L2bは、それぞれ、コリメートレンズ206、208でコリメートされ、ダイクロイックミラー210に導かれる。
【0185】
ダイクロイックミラー210は、コリメートレンズ206、208を介して入射されるAF用レーザー光L2a、L2bのうち、一方のAF用レーザー光L2aを透過し、他方のAF用レーザー光L2bを反射することにより、両方の光を同一光路に導く。ダイクロイックミラー210により同一光路に導かれたAF用レーザー光L2a、L2bの合成光は、集光レンズ212により集光されて光源光(AF用レーザー光L2)として光源部200から出力される。なお、ダイクロイックミラー210は、光合成手段の一例である。
【0186】
照射光学系300は、光ファイバ302、コリメートレンズ304、ナイフエッジ306、ハーフミラー308、4f光学系311、ダイクロイックミラー104等で構成されている。
【0187】
光源部200から出力されたAF用レーザー光L2(AF用レーザー光L2a、L2bの合成光)は、光ファイバ302の入射端に入射され、光ファイバ302を経由して光ファイバ302の出射端から出射される。さらに、このAF用レーザー光L2は、コリメートレンズ304でコリメートされ、ナイフエッジ306によってその一部が遮光される。そして、ナイフエッジ306によって遮光されることなく進行した光は、ハーフミラー308で反射され、4f光学系311を経由し、ダイクロイックミラー104で反射され、加工用レーザー光L1と同一光路に導かれる。さらに、このAF用レーザー光L2は、集光レンズ106により集光されてウェーハWに照射される。
【0188】
ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、集光レンズ106により屈折され、ダイクロイックミラー104で反射され、4f光学系311を経由し、ハーフミラー308を透過し、照射光学系300の光路から分岐された光路上に設けられた検出光学系400に導かれる。
【0189】
なお、ハーフミラー308は、光路分岐手段の一例であり、照射光学系300の光路(照射光路)に配設され、ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光の一部を照射光学系300の光路から検出光学系400の光路(検出光路)に分岐させる。
【0190】
検出光学系400は、フォーカス光学系403、ダイクロイックミラー404、結像レンズ407、409、第1検出器411、第2検出器413等で構成されている。検出光学系400は、光検出手段の一例である。検出光学系400に入射したAF用レーザー光L2の反射光は、フォーカス光学系403を経由してダイクロイックミラー404に導かれる。
【0191】
ダイクロイックミラー404は、AF用レーザー光L2の反射光を特定の波長の光とそれ以外の波長の光に分割する波長分割手段である。すなわち、AF用レーザー光L2の反射光のうち、第1光源202から出射されたAF用レーザー光L2aの波長に相当する第1波長域の光は、ダイクロイックミラー404を透過し、結像レンズ407を経由して、第1検出器411に受光される。一方、第2光源204から出射されたAF用レーザー光L2bの波長に相当する第2波長域の光は、ダイクロイックミラー404で反射され、結像レンズ409を経由して、第2検出器413に受光される。
【0192】
第1検出器411及び第2検出器413は、2分割された受光素子(光電変換素子)を有する2分割フォトダイオードからなり、それぞれの波長域の光の集光像を分割して受光し、それぞれの光量に応じた出力信号(電気信号)をAF信号処理部500に出力する。
【0193】
なお、第1検出器411及び第2検出器413は、それぞれの波長域に対する色収差を考慮した位置に配置されており、同じ合焦位置を示すように調整されている。
【0194】
AF信号処理部500は、第1検出器411及び第2検出器413の少なくとも一方の検出器の各受光素子から出力された出力信号に基づいて、ウェーハWのレーザー光照射面の基準位置からのZ方向の変位(デフォーカス距離)を示す変位信号(検出信号)としてのAF信号(オートフォーカス信号)を生成して制御部50に出力する。なお、AF信号処理部500は、変位信号生成手段の一例である。
【0195】
ウェーハWのレーザー光照射面の変位の検出については、図3図5を用いて説明した例と同様に行うことができる。
【0196】
まず、ウェーハWのレーザー光照射面がh2の位置にある場合(図4参照)、すなわち、ウェーハWのレーザー光照射面とAF用レーザー光L2の集光点とが一致している場合、図3Bに示すように、2分割フォトダイオード600の受光面には真ん中にシャープな像(真円)が形成される。このとき、2分割フォトダイオード600の受光素子600A、600Bで受光される光量は共に等しくなり、ウェーハWのレーザー光照射面は合焦位置にあることが分かる。
【0197】
一方、ウェーハWのレーザー光照射面がh1の位置にある場合(図4参照)、すなわち、ウェーハWのレーザー光照射面がAF用レーザー光L2の集光点よりも集光レンズ106に近い位置にある場合、図3Aに示すように、2分割フォトダイオード600の受光面には、受光素子600A側に半円状の集光像が形成され、その大きさ(ぼけ量)はウェーハWと集光レンズ106との距離に応じて変化する。
【0198】
また、ウェーハWのレーザー光照射面がh3の位置にある場合(図4参照)、すなわち、ウェーハWのレーザー光照射面がAF用レーザー光L2の集光点よりも集光レンズ106から遠い位置にある場合、図3Cに示すように、2分割フォトダイオード600の受光面には、受光素子600B側に半円状の集光像が形成され、その大きさ(ぼけ量)はウェーハWと集光レンズ106との距離に応じて変化する。
【0199】
このように、2分割フォトダイオード600の受光素子600A、600Bで受光される光量は、ウェーハWのレーザー光照射面の変位に応じて変化する。したがって、このような性質を利用してウェーハWのレーザー光照射面の変位を検出することができる。
【0200】
図5は、AF信号の出力特性を示したグラフであり、横軸はウェーハWのレーザー光照射面の基準位置からZ方向(ウェーハ厚み方向)の変位(デフォーカス距離)を示し、縦軸はAF信号の出力値を示している。なお、ウェーハWのレーザー光照射面の基準位置(原点)にAF用レーザー光L2の集光点が一致するように予め調整されているものとする。
【0201】
図5に示すように、AF信号の出力特性は、ウェーハWのレーザー光照射面の基準位置(原点)をゼロクロス点としたS字状の曲線となる。また、ウェーハWのレーザー光照射面の位置が、図中に矢印で示した範囲、すなわち、ウェーハWのレーザー光照射面の変位を検出可能な測定範囲(引き込み範囲)内にあるとき、ウェーハWのレーザー光照射面の変位とAF信号の出力との関係は、原点を通る単調増加曲線(又は単調減少曲線)となり、その大部分で略直線的な変化を示している。つまり、AF信号の出力がゼロであれば、ウェーハWのレーザー光照射面がAF用レーザー光L2の集光点と一致する合焦位置にあることが分かり、AF信号の出力がゼロでなければ、ウェーハWのレーザー光照射面の変位方向及び変位量を知ることができる。
【0202】
このような出力特性を有するAF信号は、ウェーハWのレーザー光照射面の基準位置からZ方向の変位を示すウェーハ変位情報としてAF信号処理部500で生成され、制御部50に出力される。
【0203】
ここで、本実施形態におけるAF信号処理部500は、第1検出器411及び第2検出器413でそれぞれ受光された光の総受光量が多い方の検出器から出力される出力信号を用いてAF信号Eを生成している。
【0204】
具体的には、第1検出器411を構成する2分割フォトダイオード600の受光素子600A、600Bから出力された出力信号をそれぞれA1、B1とし、第2検出器413を構成する2分割フォトダイオード600の受光素子600A、600Bから出力された出力信号をそれぞれA2、B2としたとき、第1検出器411における出力信号の和(A1+B1)が第2検出器413における出力信号の和(A2+B2)以上である場合には、AF信号Eを、次式(1)に従って求める。
【0205】
E=(A1−B1)/(A1+B1) ・・・(1)
一方、第1検出器411における出力信号の和(A1+B1)が第2検出器413における出力信号の和(A2+B2)未満である場合には、AF信号Eを、次式(2)に従って求める。
【0206】
E=(A2−B2)/(A2+B2) ・・・(2)
すなわち、本実施形態におけるAF信号処理部500では、AF信号Eを求めるための検出器を、第1検出器411及び第2検出器413のうち総受光量が多い方の検出器に切り替えて使用している。これにより、常に高い反射率の波長の光を用いてAF信号Eが生成されるので、ウェーハWのレーザー光照射面に照射されたAF用レーザー光L2の反射率が波長により変化しても、ウェーハWのレーザー光照射面に形成された薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置の検出を精度よく安定して行うことができる。
【0207】
制御部50は、AF信号処理部500から出力されたAF信号に基づいて、集光レンズ106とウェーハWのレーザー光照射面との距離が一定となるように、第1アクチュエータ108の駆動を制御する。これにより、ウェーハWのレーザー光照射面の変位に追従するように集光レンズ106がZ方向(ウェーハ厚み方向)に微小移動され、ウェーハWのレーザー光照射面から一定の距離(深さ)に加工用レーザー光L1の集光点が位置するようになるので、ウェーハWの内部の所望の位置に改質領域を形成することができる。なお、制御部50は、制御手段の一例である。
【0208】
以上のように構成されるAF装置110には、検出光学系400の光路(検出光路)にフォーカス光学系403が配設されている。具体的には、ハーフミラー308とダイクロイックミラー404との間にフォーカス光学系403が配設されている。
【0209】
フォーカス光学系403は、集光点調整光学系の一例であり、加工用レーザー光L1の集光点とは独立してAF用レーザー光L2の集光点をZ方向(ウェーハ厚み方向)に調整する。このフォーカス光学系403は、少なくとも検出光学系400の光路に沿って移動可能に構成された移動レンズを含む複数のレンズからなり、本例では、被写体側(ウェーハW側)から順に、検出光学系400の光路に沿って移動不能に設けられた固定レンズ(正レンズ)414と、検出光学系400の光路に沿って移動可能に設けられた移動レンズ(負レンズ)416とから構成される。
【0210】
第2アクチュエータ419は、移動レンズ416を検出光学系400の光路に沿って移動させる。移動レンズ416が検出光学系400の光路に沿って移動すると、加工用レーザー光L1の集光点のZ方向位置は固定された状態で、移動レンズ416の移動方向及び移動量に応じてAF用レーザー光L2の集光点のZ方向位置が変化する。すなわち、加工用レーザー光L1の集光点とAF用レーザー光L2の集光点との相対的な距離が変化する。
【0211】
制御部50は、AF信号処理部500から出力されるAF信号に基づいて、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面に一致するように(具体的には、AF信号の出力がゼロとなるように)、第2アクチュエータ419の駆動を制御する。
【0212】
本実施形態のように、ダイクロイックミラー104によりAF用レーザー光L2が加工用レーザー光L1と同一光路に導かれる構成においては、改質領域の加工深さを変えるために集光レンズ106とウェーハWとの相対的な距離が変化すると、加工用レーザー光L1の集光点とともにAF用レーザー光L2の集光点もウェーハWに対するZ方向位置が変化する。
【0213】
例えば、図6Aに示すように、ウェーハWのレーザー光照射面から浅い位置に改質領域を形成する場合において、ウェーハWのレーザー光照射面にAF用レーザー光L2の集光点が一致していたとする。このような場合、図6Bに示すように、ウェーハWのレーザー光照射面から深い位置に改質領域を形成するために、集光レンズ106とウェーハWとの相対的な距離を変化させると、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面からZ方向(ウェーハ厚み方向)に大きくずれてしまう。そして、AF用レーザー光L2の集光点とウェーハWのレーザー光照射面との距離が測定範囲(引き込み範囲)を超えてしまうと、ウェーハWのレーザー光照射面の変位を検出することができなくなってしまう。特に、集光レンズ106は高NAレンズが用いられるため、ウェーハWのレーザー光照射面の変位を検出可能な測定範囲がAF用レーザー光L2の集光点(合焦位置)の近傍に限られるため、上記問題はより顕著なものとなる。
【0214】
かかる問題に対処するため、本実施形態のAF装置110では、加工用レーザー光L1の集光点の位置を変えることなく、AF用レーザー光L2の集光点の位置を変化させることができるようにするために、フォーカス光学系403が検出光学系400の光路上に設けられている。これにより、図6Aに示した状態から図6Bに示した状態のように、改質領域の加工深さを変化させるために集光レンズ106とウェーハWとの相対的な距離が変化する場合においても、上記のようにフォーカス光学系403の移動レンズ416を検出光学系400の光路に沿って移動させることにより、図6Cに示した状態のように、加工用レーザー光L1の集光点のZ方向位置を固定した状態で、AF用レーザー光L2の集光点をウェーハWのレーザー光照射面に一致させることが可能となる。
【0215】
したがって、改質領域の加工深さが変化する場合においても、加工用レーザー光L1の集光点とAF用レーザー光L2の集光点との間隔を調整することができるので、AF用レーザー光L2の集光点をウェーハWのレーザー光照射面に一致させることができ、ウェーハWのレーザー光照射面で反射されたAF用レーザー光L2の反射光の単位面積あたりの光量が低下することなく、ウェーハWのZ方向位置(高さ位置)を正確に検出することが可能となる。
【0216】
また、本実施形態では、図25に示すように、フォーカス光学系403と集光レンズ106との間には4f光学系311が配設されている。4f光学系311は、第1リレーレンズ313と第2リレーレンズ315とから構成されており、第1リレーレンズ313と集光レンズ106との距離が第1リレーレンズ313の焦点距離f1と等しい位置に配され、第2リレーレンズ315とフォーカス光学系403との距離が第2リレーレンズ315の焦点距離f2と等しい位置に配され、第1リレーレンズ313と第2リレーレンズ315との距離がこれらの焦点距離の和(f1+f2)に等しい位置に配される。
【0217】
このような構成によれば、集光レンズ106の射出瞳と共役な面を集光レンズ106から物理的に離れた位置に配置することが可能となるので、集光レンズ106とフォーカス光学系403との光学的距離を所望の範囲に容易に設定することが可能となる。
【0218】
次に、本実施形態のレーザーダイシング装置10を用いたダイシング方法について説明する。図26は、本実施形態のレーザーダイシング装置10を用いたダイシング方法の流れを示したフローチャートである。
【0219】
図26に示すように、レーザーダイシング装置10は、後述するリアルタイム加工動作に先立って、AF信号の出力特性を測定するキャリブレーション動作を実行する(ステップS10)。
【0220】
キャリブレーション動作が完了した後、レーザーダイシング装置10は、ウェーハWのレーザー光照射面の変位に追従するように加工用レーザー光L1の集光点のZ方向位置を調整しながらウェーハWの内部に改質領域を形成するリアルタイム加工動作を実行する(ステップS12)。
【0221】
図27は、図26に示すキャリブレーション動作の詳細な流れを示したフローチャートである。
【0222】
まず、制御部50は、第2アクチュエータ419の駆動を制御して、フォーカス光学系403の移動レンズ416を改質領域の加工深さに応じた位置に移動させる(ステップS20)。なお、制御部50のメモリ部(不図示)には、改質領域の加工深さとフォーカス光学系403の移動レンズ416の位置との対応関係が保持されている。
【0223】
続いて、制御部50は、ステージ12の移動を制御して、ウェーハWのレーザー光照射面の基準位置を集光レンズ106の直下に移動させる(ステップS22)。なお、ウェーハWのレーザー光照射面の基準位置は、AF用レーザー光L2の集光点を一致させる位置であって、ウェーハWのレーザー光照射面のZ方向の変位の基準となる位置なので、ウェーハWのレーザー光照射面の段差が少ない部分(平滑面)であることが望ましく、例えば、ウェーハWの外周部を除く中央部分の所定位置を基準位置とする。
【0224】
続いて、制御部50は、第2アクチュエータ419の駆動を制御して、AF信号処理部500から出力されるAF信号がゼロとなるように、フォーカス光学系403の移動レンズ416を検出光学系400の光路に沿って移動させる(ステップS24)。これにより、図6Bに示すように、AF用レーザー光L2の集光点とウェーハWのレーザー光照射面の基準位置とにずれがある場合でも、図6Cに示すように、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面の基準位置と一致するように集光点調整が行われる。なお、制御部50は、メモリ部(不図示)に保持されているフォーカス光学系403の移動レンズ416の位置を、集光点調整後の移動レンズ416の位置(補正位置)に書き換える。
【0225】
このとき、AF信号処理部500では、第1検出器411及び第2検出器413のうち総受光量が多い方の検出器を構成する2分割フォトダイオード600の受光素子600A、600Bから出力された出力信号に基づいてAF信号を生成する。このため、ウェーハWのレーザー光照射面に形成された薄膜のばらつき(ウェーハW毎あるいは場所によるばらつき)による影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置を安定かつ精度よく検出することができる。
【0226】
続いて、制御部50は、第1アクチュエータ108の駆動を制御して、集光レンズ106をZ方向に沿って移動可能範囲の全体にわたって移動させながらAF信号処理部500から出力されるAF信号の出力特性を測定して、その出力特性をルックアップテーブルとしてメモリ部(不図示)に保持しておく(ステップS26)。
【0227】
なお、ウェーハWの内部に改質領域の層を複数形成する場合には、ステップS20からステップS26までの処理を改質領域の加工深さ毎に実行する。
【0228】
以上の処理により、制御部50は、図26のステップS12のリアルタイム加工動作において、メモリ部(不図示)に保持されたルックアップテーブルを参照することにより、AF信号処理部500から出力されるAF信号の出力値からウェーハWのレーザー光照射面の基準位置からのZ方向の変位(デフォーカス距離)を簡単に求めることができるので、リアルタイム加工動作における加工効率(スループット)を向上させることが可能となる。
【0229】
図28は、図26に示すリアルタイム加工動作の詳細な流れを示したフローチャートである。
【0230】
まず、制御部50は、図27のステップS20と同様に、第2アクチュエータ419の駆動を制御して、フォーカス光学系403の移動レンズ416を改質領域の加工深さに応じた位置に移動させる(ステップS30)。このとき、制御部50は、メモリ部(不図示)に保持されている移動レンズ416の位置(補正位置)に移動させる。これにより、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面の基準位置と一致し、AF装置110は、ウェーハWのレーザー光照射面の基準位置を基準としたZ方向の変位を検出することが可能となる。
【0231】
続いて、制御部50は、ステージ12の移動を制御して、ステージ12に吸着保持されたウェーハWを所定の加工開始位置に移動させる(ステップS32)。
【0232】
続いて、制御部50は、加工用レーザー光源100をONとした後、ウェーハWを水平方向(XY方向)に移動させながら、加工用レーザー光源100から出射された加工用レーザー光L1により、ダイシングストリートに沿ってウェーハWの内部に改質領域を形成する(ステップS34)。
【0233】
このとき、制御部50は、加工用レーザー光源100をONにするタイミングと略同時、或いはそれよりも先のタイミングで、第1光源202及び第2光源204をONとする。これにより、加工用レーザー光L1とAF用レーザー光L2(互いに波長の異なる2つのAF用レーザー光L2a、L2bの合成光)が集光レンズ106によりウェーハWに向かって集光される。そして、ウェーハWのレーザー光照射面に照射され反射したAF用レーザー光L2の反射光は、ダイクロイックミラー404で互いに異なる波長に分割され、分割された各々の光は第1検出器411及び第2検出器413にそれぞれ受光される。AF信号処理部500は、第1検出器411及び第2検出器413のうち総受光量が多い方の検出器から出力された出力信号に基づいて、ウェーハWのレーザー光照射面の基準位置からのZ方向の変位を示すAF信号を生成して制御部50に出力する。
【0234】
そして、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、第1アクチュエータ108の駆動を制御することによって、加工用レーザー光L1の集光点のZ方向位置を調整しながら、ウェーハWの内部に改質領域を形成する。
【0235】
続いて、制御部50は、ウェーハWの全てのダイシングストリートに対して改質領域の形成が終了しているか否かを判断する(ステップS36)。全てのダイシングストリートに対して改質領域の形成が終了していない場合(Noの場合)、次のダイシングストリートに移動し(ステップS38)、そのダイシングストリートについてステップS34からステップS36までの処理を繰り返す。一方、全てのダイシングストリートに対して改質領域の形成が終了した場合(Yesの場合)、次のステップS40に進む。
【0236】
続いて、制御部50は、全ての加工深さについて改質領域の形成が終了しているか否かを判断する(ステップS40)。全ての加工深さについて改質領域の形成が終了していない場合には、次の加工深さに移動し(ステップS42)、ステップS30からステップS40までの処理を繰り返す。一方、全ての加工深さについて改質領域の形成が終了した場合には、リアルタイム加工動作を終了する。
【0237】
このようにして、ウェーハの内部の所望の位置に改質領域を形成することにより、改質領域を起点としてウェーハWを複数のチップに分割することが可能となる。
【0238】
図29は、第5の実施形態におけるAF信号の出力特性の一例を示した図であり、改質領域の加工深さを0〜800μmの範囲で変化させたときの出力特性を示している。
【0239】
本実施形態では、改質領域の加工深さに応じてAF用レーザー光L2の集光点のZ方向位置がウェーハWのレーザー光照射面の基準位置と一致するように調節されるので、図29に示すように、各加工深さに対応するAF信号の出力特性は略揃ったものとなり、いずれもウェーハWのレーザー光照射面の基準位置(原点)をゼロクロス点としたS字状の曲線となる。したがって、このような出力特性を有するAF信号を用いてリアルタイム加工動作を実行することにより、改質領域の加工深さの変更に影響されることなく、ウェーハWのレーザー光照射面の変位を安定かつ高精度に検出することが可能となる。
【0240】
以上のとおり、本実施形態では、互いに波長の異なる2つのAF用レーザー光L2a、L2bを用いてウェーハWのレーザー光照射面の高さ位置を検出しているので、ウェーハWのレーザー光照射面に形成される薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置を安定かつ精度よく検出することが可能となる。
【0241】
また、本実施形態では、ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光を検出する検出光学系400の光路上であってハーフミラー308とダイクロイックミラー404との間には、AF用レーザー光L2の集光点をZ方向(ウェーハ厚み方向)に調整する集光点調整光学系としてフォーカス光学系403が設けられている。このため、改質領域の加工深さの変化に伴い、集光レンズ106とウェーハWとの相対的距離が変化する場合でも、AF用レーザー光L2の集光点がウェーハWのレーザー光照射面に一致させるように調整することができるので、ウェーハのレーザー光照射面から所定の加工深さに改質領域を精度よく形成することが可能となる。
【0242】
また、本実施形態では、本発明者が鋭意検討を重ねた結果、加工深さによらず安定したオートフォーカス特性(AF特性)を得る上で、集光レンズ106の射出瞳とフォーカス光学系403との光学的距離D0、集光レンズ106により集光されウェーハWのレーザー光照射面に照射されるAF用レーザー光L2の集光像の直径(スポット径)Nが重要なパラメータであることを見出した。具体的には、光学的距離D0を90mm未満(すなわち、D0<90)とすることで、加工深さによらず安定したAF特性を得ることができる。また、スポット径Nを0.002mmより大きく、かつ0.2mmより小さく(すなわち、0.002<N<0.2)とすることで、AF感度が高く、引き込み範囲を広くすることが可能となる。したがって、改質領域の加工深さによらず、ウェーハWのレーザー光照射面の高さ位置を迅速にかつ精度よく安定して検出することができる。その結果、ウェーハWのレーザー光照射面にばらつきがあっても、ウェーハWのレーザー光照射面から所定の加工深さに改質領域を精度よく形成することが可能となる。
【0243】
なお、本実施形態では、第1検出器411及び第2検出器413のうち総受光量の多い方の検出器から出力される出力信号を用いたが、これに限らず、第1検出器411及び第2検出器413でそれぞれ受光された光量に対し予め定めた基準に従って重み付け加算を行うことによってAF信号を得るようにしてもよい。例えば、第1検出器411で受光された光量をS1とし、第2検出器413で受光された光量をS2としたとき、S1、S2に対してそれぞれ重み係数α、β(但し、α、β>0)を乗じたものを加算したものを用いてもよい。また、S1、S2をそれぞれ二乗して加算したものを用いてもよいし、他の重み付けの方法を用いてもよい。
【0244】
また、本実施形態では、互いに波長が異なる2つのAF用レーザー光L2a、L2bが用いられるため、第1検出器411及び第2検出器413は、それぞれの波長域に対する色収差を考慮した位置に配置される構成としたが、これに限らず、例えば、色収差補正手段としてフォーカス光学系403内に貼り合わせレンズを含んでいてもよい。この場合、フォーカス光学系403は色収差補正手段として機能するので、第1検出器411及び第2検出器413の位置調整が不要となり、AF装置110の装置構成を簡素化することが可能となる。
【0245】
図30は、第5の実施形態で、3波長のAF用レーザー光を用いた例を示す構成図である。図30に示す例では、光源部200は、異なる3種類の波長のレーザー光を出力するピッグテールタイプのLD(Laser Diode:202、204、205)を、レーザーコンバイナ201を介して1つのファイバに結合する。そして、LD202、204および205から出力されるレーザー光をレーザーコンバイナ201を介して出力することで、出力するレーザー光の波長を選択したり、レーザー光を混合して出力することが可能となる。これにより、検出光学系400において、ダイクロイックミラー404、結像レンズ409および第2検出器413が不要となる。
【0246】
また、本実施形態では、互いに波長が異なる2つのAF用レーザー光L2a、L2bを用いてウェーハWのレーザー光照射面の高さ位置を検出する場合について説明したが、これに限らず、互いに波長が異なる3つ以上のAF用レーザー光を用いてもよい。
【0247】
また、本実施形態では、第1検出器411及び第2検出器413が2分割フォトダイオードで構成される例を示したが、これに限らず、光量バランスを測定できるもの(例えば、4分割フォトダイオード、2次元撮像素子等)を用いてもよい。
【0248】
また、本実施形態では、光ファイバ302を用いているが、レイアウト上の問題がなければ、コリメートレンズ304の前側焦点位置に光源像を直接作り、光ファイバ302を省略してもかまわない。
【0249】
(第6の実施形態)
次に、本発明の第6の実施形態について説明する。以下、第5の実施形態と共通する部分については説明を省略し、本実施形態の特徴的部分を中心に説明する。
【0250】
図31は、第6の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図31中、図25と共通又は類似する構成要素には同一の符号を付し、その説明を省略する。
【0251】
第6の実施形態は、ウェーハWのレーザー光照射面の高さ位置を検出する方法として、中心強度法を用いるものである。なお、中心強度法とは、2つの検出器のいずれか一方の検出器で反射光の一部を受光し、他方の検出器で反射光の全部又は一部を受光し、それぞれの検出器における受光量を用いてウェーハWのレーザー光照射面の高さ位置を検出する方法である。
【0252】
図31に示すように、AF装置110の光源部200から出力されたAF用レーザー光L2は、光ファイバ302を経由して、コリメートレンズ304でコリメートされ、その一部が遮光されることなく、ハーフミラー308で反射される。さらに、このAF用レーザー光L2は、ダイクロイックミラー104で反射され、集光レンズ106により集光されてウェーハWに照射される。ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、AF用レーザー光L2と同一光路を逆向きに進み、その光路上に配置されるハーフミラー308を透過し、照射光学系300の光路から分岐した光路に設けられた検出光学系400に導かれる。
【0253】
検出光学系400は、フォーカス光学系403、ダイクロイックミラー404、穴あきミラー421、422、結像レンズ424、426、第1検出器428a、428b、第2検出器431a、431b等で構成されている。
【0254】
ダイクロイックミラー404は、第1の実施形態と同様に、検出光学系400に導かれフォーカス光学系403を経由して入射したAF用レーザー光L2の反射光を特定の波長の光とそれ以外の波長の光に分割する。すなわち、AF用レーザー光L2の反射光のうち、第1光源202から出射されたAF用レーザー光L2aの波長に相当する第1波長域の光は、ダイクロイックミラー404を透過し、その一部の光は穴あきミラー421の中央部分に形成される開口部を通過して第1検出器428aで受光され、残りの光は穴あきミラー421の周辺部分の反射面で反射されて結像レンズ426により集光されて第1検出器428bで受光される。一方、第2光源204から出射されたAF用レーザー光L2bの波長に相当する第2波長域の光は、ダイクロイックミラー404で反射され、その一部の光は穴あきミラー422の中央部分に形成される開口部を通過して第2検出器431aで受光され、残りの光は穴あきミラー422の周辺部分の反射面で反射されて結像レンズ426により集光されて第2検出器431bで受光される。
【0255】
第1検出器428a、428b及び第2検出器431a、431bは、受光した光量に応じた出力信号をAF信号処理部500に出力する。
【0256】
AF信号処理部500は、第1検出器428a、428b及び第2検出器431a、431bの少なくとも一方の検出器から出力された出力信号に基づいて、ウェーハWのレーザー光照射面の基準位置からのZ方向の変位(デフォーカス距離)を示すAF信号を生成して制御部50に出力する。
【0257】
ここで、ウェーハWのレーザー光照射面の変位の検出原理について説明する。なお、第1検出器428a、428bを用いた検出原理と第2検出器431a、431bの検出原理を用いた検出原理は同様なので、これらを代表して第1検出器428a、428bを用いた検出原理について説明する。
【0258】
ダイクロイックミラー404を透過した反射光のうち、一部の光は穴あきミラー421の開口部を通過して第1検出器428aで受光され、残りの光は穴あきミラー421の周辺部分の反射面で反射されて結像レンズ424により集光されて第1検出器428bで受光される。このため、第1検出器428a、428bで受光される反射光の光量の和(総受光量)は、ウェーハWのレーザー光照射面の高さ位置によらず常に一定であり、第1検出器428a、428bの出力の和は一定となる。一方、第1検出器428aに受光される反射光は、穴あきミラー421の開口部によって受光領域が中心部分に制限されるので、集光レンズ106からウェーハWのレーザー光照射面までの距離、すなわち、ウェーハWのレーザー光照射面の高さ位置(Z方向位置)によって受光量が変化する。そのため、第1検出器428aの出力は、AF用レーザー光L2が照射されるウェーハWのレーザー光照射面の高さ位置によって変化する。したがって、このような性質を利用することで、ウェーハWのレーザー光照射面の変位を検出することができる。
【0259】
AF信号処理部500では、第1検出器428a、428bから出力された出力信号をそれぞれPa、Pb、第2検出器431a、431bから出力された出力信号をそれぞれQa、Qbとしたとき、第1検出器428a、428bにおける出力信号の和(Pa+Pb)が第2検出器431a、431bにおける出力信号の和(Qa+Qb)以上である場合には、AF信号Eを、次式()に従って求める。
【0260】
E=(Pa+Pb)/Pa・・・(
一方、第1検出器428a、428bにおける出力信号の和(Pa+Pb)が第2検出器431a、431bにおける出力信号の和(Qa+Qb)未満である場合には、AF信号Eを、次式()に従って求める。
【0261】
E=(Qa+Qb)/Qa・・・(
すなわち、AF信号処理部500は、AF信号Eを求めるための検出器を、第1検出器428a、428b及び第2検出器431a、431bのうち総受光量が多い方の検出器に切り替えて使用している。これにより、常に高い反射率の波長の光を用いてAF信号Eが生成されるので、ウェーハWのレーザー光照射面に照射されたAF用レーザー光L2の反射率が波長により変化しても、ウェーハWのレーザー光照射面に形成された薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置の検出を精度よく安定して行うことができる。
【0262】
かかる構成によれば、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、上述した第1の実施形態と同様に、第1アクチュエータ108や第2アクチュエータ419の駆動を制御することができるので、改質領域の加工深さに対する変更に影響を受けることなく、ウェーハWのレーザー光照射面の変位を追従するように加工用レーザー光L1の集光点を高精度に制御することができ、ウェーハWの内部の所望の位置に改質領域を高精度に形成することが可能となる。
【0263】
図32は、第6の実施形態におけるAF信号の出力特性を示した図である。図32に示すように、第6の実施形態では、第5の実施形態と同様に、各加工深さに対応するAF信号の出力特性は略揃ったものとなり、いずれもウェーハWのレーザー光照射面の基準位置(原点)で一定の出力値を示すほぼ直線状の特性となる。したがって、このような出力特性を有するAF信号を用いてリアルタイム加工動作を実行することにより、改質領域の加工深さの変更に影響されることなく、ウェーハWのレーザー光照射面の変位を安定かつ高精度に検出することが可能となる。
【0264】
このように第6の実施形態においても、第5の実施形態と同様の効果が得られる。また、第6の実施形態では、集光レンズ106と穴あきミラー421、422(受光領域規制手段)との光学的距離が20mm以上160mm以下であり、かつ集光レンズ106とフォーカス光学系403の固定レンズ414との光学的距離が120mm以下であることが好ましい。これらの光学的距離を上記範囲に設定することで、AF感度が高く、引き込み範囲を広く、加工深さによらず安定したAF特性を得ることが可能となる。
【0265】
なお、第6の実施形態では、受光領域規制手段である穴あきミラー421、422を用いたが、これに限らず、例えば、分割ミラーを用いてもよい。この場合、ダイクロイックミラー404で波長毎に分割されたAF用レーザー光L2の反射光を分割ミラーで2つの経路に分割し、分割された各々の反射光を第1検出器428a、428b及び第2検出器431a、431bでそれぞれ検出する。これにより、穴あきミラー421、422を用いる場合と同様にしてAF信号を求めることができ、ウェーハWのレーザー光照射面の高さ位置を検出することが可能となる。
【0266】
また、第6の実施形態では、AF用レーザー光L2を検出する検出光学系400の構成として、第1検出器428a、428b及び第2検出器431a、431bを用いた構成を例に挙げて説明したが、必ずしもこのような構成に限定されるものではない。AF用レーザー光L2を検出する検出光学系400の構成として、例えば、図33に示すような構成を採用することもできる。
【0267】
図33は、第の実施形態に係るダイシング装置の他の構成例を示した要部構成図である。図33に示した構成例においては、図31に示した穴あきミラー421、422に代えて、ハーフミラー432、434、マスク437、438が設けられている。
【0268】
この構成例によれば、ダイクロイックミラー404に導かれたAF用レーザー光L2の反射光のうち、ダイクロイックミラー404を透過した第1波長域の光の一部はハーフミラー432を透過して、光路上に中央開口を有するマスク437を介して第1検出器428aで受光され、残りの光はハーフミラー432で反射され、結像レンズ424により第1検出器428bに100%受光される。一方、ダイクロイックミラー404で反射された第2波長域の光の一部はハーフミラー434を透過して、光路上に中央開口を有するマスク438を介して第2検出器431aで受光され、残りの光はハーフミラー434で反射され、結像レンズ426により第2検出器431bに100%受光される。第1検出器428b、第2検出器431bに受光される反射光の光量は一定であるのに対し、第1検出器428a、第2検出器431aに受光される反射光の光量はウェーハWのレーザー光照射面の高さ位置によって変化する。この性質を利用することで、第2の実施形態と同様にして、ウェーハWのレーザー光照射面の高さ位置を検出することが可能となる。
【0269】
すなわち、AF信号処理部500では、第1検出器428a、428bから出力された出力信号をそれぞれPa、Pb、第2検出器431a、431bから出力された出力信号をそれぞれQa、Qbとしたとき、第1検出器428bにおける出力信号Pbが第2検出器431bにおける出力信号Qb以上である場合には、AF信号Eを、次式()に従って求める。
【0270】
E=Pb/Pa・・・(
一方、第1検出器428bにおける出力信号Pbが第2検出器431bにおける出力信号Qb未満である場合には、AF信号Eを、次式()に従って求める。
【0271】
E=Qb/Qa・・・(
かかる構成によれば、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、上述した第5の実施形態と同様に、第1アクチュエータ108や第2アクチュエータ419の駆動を制御することにより、改質領域の加工深さに対する変更に影響を受けることなく、ウェーハWのレーザー光照射面の変位を追従するように加工用レーザー光L1の集光点を高精度に制御することができ、ウェーハWの内部の所望の位置に改質領域を高精度に形成することが可能となる。
【0272】
また、第6の実施形態では、図34に示すような構成を採用することもできる。すなわち、ダイクロイックミラー104とハーフミラー308との間にハーフミラー441が配置されている。ハーフミラー441は、光路分岐手段の一例であり、照射光学系300の光路に配設され、ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光の一部を照射光学系300の光路から検出光学系400の光路に分岐させる。
【0273】
AF装置110の光源部200から出力されたAF用レーザー光L2は、照射光学系300の光路を経由して集光レンズ106に導かれ、集光レンズ106により集光されてウェーハWに照射される。ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、AF用レーザー光L2と同一光路を逆向きに進み、その光路上に配置されるハーフミラー441で反射され、照射光学系300の光路から分岐した光路に設けられた検出光学系400に導かれる。
【0274】
検出光学系400に導かれたAF用レーザー光L2の反射光は、第の実施形態と同様に、フォーカス光学系403を経由し、ダイクロイックミラー404で波長毎に分割される。すなわち、ダイクロイックミラー404に導かれたAF用レーザー光L2の反射光のうち、ダイクロイックミラー404を透過した第1波長域の光の一部は穴あきミラー421の中央部分に形成される開口部を通過して第1検出器428aで受光され、残りの光は穴あきミラー421の周辺部分の反射面で反射されて結像レンズ424により集光されて第1検出器428bで受光される。同様に、ダイクロイックミラー404で反射された第2波長域の光の一部は穴あきミラー422の中央部分に形成される開口部を通過して第2検出器431aで受光され、残りの光は穴あきミラー422の周辺部分の反射面で反射されて結像レンズ426により集光されて第2検出器431bで受光される。
【0275】
このような構成においても、上述した第の実施形態と同様にしてウェーハWのレーザー光照射面の高さ位置を検出することができるので、ウェーハWのレーザー光照射面に形成される薄膜のばらつきによる影響を受けることなく、ウェーハWのレーザー光照射面の高さ位置を正確に検出することが可能となる。したがって、ウェーハのレーザー光照射面から所定の加工深さに改質領域を精度よく形成することが可能となる。
【0276】
(第7の実施形態)
次に、本発明の第7の実施形態について説明する。以下、第5の実施形態と共通する部分については説明を省略し、本実施形態の特徴的部分を中心に説明する。
【0277】
図35は、第7の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図35中、図25と共通又は類似する構成要素には同一の符号を付し、その説明を省略する。
【0278】
第7の実施形態は、ウェーハWのレーザー光照射面の高さ位置を検出する方法として、非点収差法を用いるものである。
【0279】
図35に示すように、AF装置110の光源部200から出力されたAF用レーザー光L2は、第の実施形態と同様な構成を有する照射光学系300の光路を経由して集光レンズ106に導かれ、集光レンズ106により集光されてウェーハWに照射される。ウェーハWのレーザー光照射面で反射したAF用レーザー光L2の反射光は、AF用レーザー光L2と同一光路を逆向きに進み、その光路上に配置されるハーフミラー308を透過し、照射光学系300の光路から分岐した光路に設けられた検出光学系400に導かれる。
【0280】
検出光学系400は、フォーカス光学系403、ダイクロイックミラー404、結像レンズ407、409、シリンドリカルレンズ442、444、第1検出器446、第2検出器448等で構成されている。
【0281】
ダイクロイックミラー404は、第5の実施形態と同様に、検出光学系400に導かれフォーカス光学系403を経由して入射したAF用レーザー光L2の反射光を特定の波長の光とそれ以外の波長の光に分割する。すなわち、AF用レーザー光L2の反射光のうち、第1光源202から出射されたAF用レーザー光L2aの波長に相当する第1波長域の光は、ダイクロイックミラー404を透過し、結像レンズ407、シリンドリカルレンズ442を経由して、第1検出器446に受光される。一方、第2光源204から出射されたAF用レーザー光L2bの波長に相当する第2波長域の光は、ダイクロイックミラー404で反射され、結像レンズ409、シリンドリカルレンズ444を経由して、第2検出器448に受光される。なお、シリンドリカルレンズ442、444は、ダイクロイックミラー404で波長域毎に分割された光にそれぞれ非点収差を付与する非点収差付与手段である。
【0282】
第1検出器446及び第2検出器448は、4分割された受光素子を有する4分割フォトダイオードからなり、それぞれの波長域の光の集光像を分割して受光し、それぞれの光量に応じた出力信号をAF信号処理部500に出力する。
【0283】
非点収差法によるウェーハWのレーザー光照射面の変位の検出原理については公知であるため(例えば特開2009−152288号公報参照)、ここでは詳細な説明は省略するが、簡単に説明すれば、検出器(第1検出器446及び第2検出器448に相当)を構成する4分割フォトダイオードの受光面上に形成されるAF用レーザー光L2の反射光の集光像は、ウェーハWのレーザー光照射面とAF用レーザー光L2の集光点が一致している場合には真円となる。一方、ウェーハWのレーザー光照射面とAF用レーザー光L2の集光点がずれている場合には、ウェーハWのレーザー光照射面の変位方向に応じて集光像が縦方向又は横方向に引き伸ばされた楕円となり、その大きさはウェーハWのレーザー光照射面の変位量に依存する。したがって、この性質を利用することで、ウェーハWのレーザー光照射面の変位を検出することができる。
【0284】
図1に示した例と同様に、4分割フォトダイオード602は、4つの受光素子(光電変換素子)602A〜602Dを有し、各受光素子602A〜602Dは、AF用レーザー光L2の反射光の集光像を分割して受光し、それぞれの光量に応じた出力信号(電気信号)をAF信号処理部500に出力する。
【0285】
AF信号処理部500は、第1検出器446を構成する4分割フォトダイオード602の受光素子602A〜602Dから出力された出力信号をそれぞれA1〜D1とし、第2検出器448を構成する4分割フォトダイオード602の受光素子602A〜602Dから出力された出力信号をそれぞれA2〜D2としたとき、第1検出器446における出力信号の和(A1+B1+C1+D1)が第2検出器448における出力信号の和(A2+B2+C2+D2)以上である場合には、AF信号Eを、次式()に従って求める。
【0286】
E={(A1+C1)−(B1+D1)}/{(A1+C1)+(B1+D1)} ・・・(
一方、第1検出器446における出力信号の和(A1+B1+C1+D1)が第2検出器448における出力信号の和(A2+B2+C2+D2)未満である場合には、AF信号Eを、次式()に従って求める。
【0287】
E={(A2+C2)−(B2+D2)}/{(A2+C2)+(B2+D2)} ・・・(
かかる構成によれば、制御部50は、AF信号処理部500から出力されるAF信号に基づいて、上述した第の実施形態と同様に、第1アクチュエータ108や第2アクチュエータ419の駆動を制御することができるので、改質領域の加工深さに対する変更に影響を受けることなく、ウェーハWのレーザー光照射面の変位を追従するように加工用レーザー光L1の集光点を高精度に制御することができ、ウェーハWの内部の所望の位置に改質領域を高精度に形成することが可能となる。
【0288】
なお、第1検出器446及び第2検出器448は、4分割フォトダイオードに限らず、光量バランスを測定できるものであればよく、例えば、2次元撮像素子等を用いてもよい。
【0289】
図36は、第7の実施形態におけるAF信号の出力特性を示した図である。図36に示すように、第7の実施形態では、第の実施形態におけるAF信号の出力特性(図29参照)に比べて加工深さ毎のばらつきはあるものの全体的なばらつきは小さくなっている。また、フォーカス引き込み範囲は比較的広く、AF信号の出力特性のカーブの傾き(合焦位置を中心とした比例関係にある略直線部分の傾き)も大きくフォーカス感度が高く、ウェーハWのレーザー光照射面の高さ位置を安定して検出することが可能なものとなっている。
【0290】
このように第7の実施形態においても、第の実施形態と同様の効果が得られる。また、第7の実施形態では、集光レンズ106の射出瞳とフォーカス光学系403の固定レンズ414との光学的距離が50mm以下であることが好ましい。この光学的距離を上記範囲に設定することで、AF感度が高く、引き込み範囲を広く、加工深さによらず安定したAF特性を得ることが可能となる。
【0291】
(第8の実施形態)
次に、本発明の第8の実施形態について説明する。以下、第5の実施形態と共通する部分については説明を省略し、本実施形態の特徴的部分を中心に説明する。
【0292】
図37は、第8の実施形態に係るレーザーダイシング装置の概略を示した構成図である。図37中、図25と共通又は類似する構成要素には同一の符号を付し、その説明を省略する。
【0293】
第5の実施形態では、AF装置110は、2つの検出器411、413を用いて波長が異なる2つのAF用レーザー光L2a、L2bの反射光を同時に検出していたのに対し、第8の実施形態では、波長が異なる2つのAF用レーザー光L2a、L2bを時間的に交互に出射して、ウェーハWのレーザー光入射面で反射したAF用レーザー光L2a、L2bの反射光を波長域毎に時分割的に交互に検出するものである。
【0294】
すなわち、AF装置110は、第1光源202及び第2光源204のON/OFFを時分割的に交互に切り替え、その切替タイミングに同期してAF用レーザー光L2a、L2bの反射光を波長域毎に1つの検出器411で時分割的に検出できるように構成されている。なお、光源部200は、時分割出力手段の一例である。また、検出器411は、時分割検出手段の一例である。
【0295】
制御部50は、光源制御部52と検出制御部54とを備えている。光源制御部52は、第1光源202及び第2光源204のON/OFFの切り替えを制御する。検出制御部54は、光源制御部52における切替タイミングに同期して検出器411の検出動作(受光動作)を制御する。
【0296】
以上のような構成により、第8の実施形態においても、AF用レーザー光L2a、L2bの反射光の光量に応じた出力信号が検出器411から時分割的に交互に出力されるので、第の実施形態と同様な効果を得ることができる。さらに第8の実施形態では、波長の異なる複数のAF用レーザー光を検出するために複数の検出器を備える必要がないので、装置構成を簡略化することが可能となる。
【0297】
なお、第4および第8の実施形態では、ウェーハWのレーザー光照射面の高さ位置を検出する方法として、ナイフエッジ法を適用した場合を例に挙げて説明したが、必ずしもこのような構成に限定されるものではない。ウェーハWのレーザー光照射面の高さ位置を検出する方法として、上述した第2、第3、第6および第7の実施形態のように、非点収差法や中心強度法を採用することもできる。
【0298】
以上、本発明の実施形態について説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
【符号の説明】
【0299】
10…レーザーダイシング装置、12…ステージ、20…レーザーヘッド、50…制御部、100…加工用レーザー光源、102…コリメートレンズ、104…ダイクロイックミラー、106…集光レンズ、108…第1アクチュエータ、110…AF装置、200…光源部、202…第1光源、204…第2光源、205…第3光源、210…ダイクロイックミラー、300…照射光学系、302…光ファイバ、304…コリメートレンズ、308…ハーフミラー、310…フォーカス光学系、311…4f光学系、400…検出光学系、404…ダイクロイックミラー、411…第1検出器、413…第2検出器、500…AF信号処理部、L1…加工用レーザー光、L2…AF用レーザー光、LC…レーザーコンバイナ
【要約】
【課題】被加工物の位置を精度よく安定して検出することができる位置検出装置及びレーザー加工装置を提供する。
【解決手段】波長の異なる複数の検出用レーザー光を被加工物に向けて集光する集光レンズと、前記被加工物で反射した前記複数の検出用レーザー光の反射光を波長毎に検出する光検出手段と、前記光検出手段で波長毎に検出された前記複数の検出用レーザー光の反射光に基づき、前記集光レンズの光軸方向における前記被加工物の位置を検出する位置検出手段と、を備える。
【選択図】図1
図1
図2A
図2B
図2C
図3A
図3B
図3C
図4
図5
図6A
図6B
図6C
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37