【実施例】
【0054】
次に本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、各例における諸特性は下記の方法に従って測定した。
(1)表面修飾剤の金属酸化物微粒子に対する表面修飾量
表面修飾量は、ICP発光分析装置を使用して、測定した。
(2)複合体の屈折率の測定
メトリコン社製のプリズムカプラー Model12010を使用して、プリズムカップリング法により、594nmの波長における複合体の屈折率を測定した。
(3)複合体の透明性の評価
得られた複合体の厚みを1mmに研磨し、日立ハイテクノロジーズ社製の紫外可視分光光度計 U-3900H(φ60mm積分球を装着)を使用して、700nmの波長における複合体の透過率を測定した。
(4)金属酸化物微粒子の平均一次粒子径
金属酸化物微粒子の平均一次粒子径を、透過型電子顕微鏡(FE−TEM、日本電子社製 JEM−2100F)にて粒子を観察し、500個の長径を測定し、これらの平均値を算出することで求めた。
(5)表面修飾金属酸化物微粒子含有分散液の平均分散粒径
表面修飾金属酸化物微粒子含有分散液の平均分散粒径(D50)を、動的光散乱式粒子径分布測定装置(Malvern社製)を用いて測定した。データ解析条件として粒子径基準を体積基準とした。
(6)表面修飾金属酸化物微粒子含有複合体の観察
得られた透明複合体から、膜厚約100nmの薄い試験片を切り出し、この薄い透明複合体を透過型電子顕微鏡(FE−TEM、日本電子社製 JEM−2100F)にて観察した。
【0055】
[実施例1]
「表面修飾金属酸化物微粒子の作製」
ジルコニア微粒子の水分散液(平均一次粒子径5nm)と、ベンジルトリエトキシシランを含有するメタノール溶液とを、ジルコニアとベンジルトリエトキシシランの質量比が100:50(ジルコニア粒子100質量部に対して50質量部)となるように撹拌混合した。
次いで、固液分離で表面修飾されたジルコニア微粒子を回収し、乾燥させて、実施例1のベンジルトリエトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、35質量部であった。
【0056】
[実施例2]
「表面修飾金属酸化物微粒子の作製」
実施例1において、ベンジルトリエトキシシランの替わりに、フェニルエチルトリメトキシシランを用いた以外は実施例1と同様にして、実施例2のフェニルエチルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、36質量部であった。
【0057】
[実施例3]
「表面修飾金属酸化物微粒子の作製」
実施例1において、ベンジルトリエトキシシランの替わりに、フェニルプロピルトリメトキシシランを用いた以外は実施例1と同様にして、実施例3のフェニルプロピルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、36質量部であった。
【0058】
[実施例4]
「表面修飾金属酸化物微粒子の作製」
実施例1において、平均一次粒子径が5nmのジルコニア水分散液の替わりに、平均一次粒子径が5nmのチタニア微粒子の水分散液を用い、ベンジルトリエトキシシランの替わりに、フェニルエチルトリメトキシシランを用いた以外は実施例1と同様にして、実施例4のフェニルエチルトリメトキシシランで表面修飾された表面修飾チタニア微粒子を得た。
チタニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、37質量部であった。
【0059】
[比較例1]
実施例1において、ベンジルトリエトキシシランの替わりに、トリルトリメトキシシランを用いた以外は実施例1と同様にして、比較例1のトリルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、35質量部であった。
【0060】
[比較例2]
実施例1において、ベンジルトリエトキシシランの替わりに、エチルフェニルエチルトリメトキシシランを用いた以外は実施例1と同様にして、比較例2のエチルフェニルエチルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、38質量部であった。
【0061】
[比較例3]
実施例1において、ベンジルトリエトキシシランの替わりに、ベンゾイロキシプロピルトリメトキシシランを用いた以外は実施例1と同様にして、比較例3のベンゾイロキシプロピルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、37質量部であった。
【0062】
[比較例4]
実施例1において、ベンジルトリエトキシシランの替わりに、フェニルアミノプロピルトリメトキシシランを用いた以外は実施例1と同様にして、比較例4のフェニルアミノプロピルトリメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得た。
ジルコニア微粒子100質量部に対する表面修飾量をICP発光分析により測定した結果、36質量部であった。
【0063】
[実施例5]
<表面修飾金属酸化物微粒子含有分散液の作製>
実施例1で得られた表面修飾ジルコニア微粒子0.8質量部と、トルエン10質量部を混合して、実施例5の透明な分散液を得た。
得られた分散液の平均分散粒径は、5nm以上かつ20nm以下であった。
【0064】
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
得られた透明な分散液10.8質量部と、フルオレン骨格を有するエポキシ樹脂(大阪瓦斯社製、オグソールEG200、屈折率1・60)と、メチルヘキサヒドロ無水フタル酸と、ホスホニウム塩系化合物(サンアプロ社製、U−CAT5003)とを質量比で100:50:0.05となるように混合した混合物1.2質量部とを混合して(表面修飾金属酸化物微粒子と樹脂の質量比は40:60)、実施例5の透明な樹脂組成物を得た。
【0065】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を、型に均一になるように注入した。次いで150℃で樹脂組成物を加熱硬化させ、実施例5の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0066】
[実施例6]
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、実施例2で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、実施例6の透明な分散液と、実施例6の透明な樹脂組成物と、実施例6の透明な複合体を得た。
分散液中における表面修飾ジルコニア微粒子の平均分散粒径は、5nm以上かつ20nm以下であった。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0067】
[実施例7]
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、実施例3で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、実施例7の透明な分散液と、実施例7の透明な樹脂組成物と、実施例7の透明な複合体を得た。
分散液中における表面修飾ジルコニア微粒子の平均分散粒径は、5nm以上かつ20nm以下であった。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0068】
[実施例8]
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、実施例4で得られた表面修飾チタニア微粒子を用いた以外は実施例5と同様にして、実施例8の透明な分散液と、実施例8の透明な樹脂組成物と、実施例8の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にチタニア微粒子が均一に分散されていることが確認された。
分散液中における表面修飾チタニア微粒子の平均分散粒径は、5nm以上かつ20nm以下であった。
【0069】
[比較例5]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例1で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例5の透明な分散液と、比較例5の透明な樹脂組成物を得た。
【0070】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させた。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例5の半透明な複合体を得た。
トルエンを留去させたあとに樹脂組成物の粘性が高くなったことにより、芳香環上にメチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子は、成形性に劣り、透明性も優れないことが確認された。
複合体をFE−TEMで観察した結果、複合体中で、ジルコニア微粒子の凝集体が形成されているのが確認された。
【0071】
[比較例6]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例2で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例6の透明な分散液と、比較例6の透明な樹脂組成物を得た。
【0072】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させたところ、樹脂組成物が白濁した。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例6の複合体を得た。
【0073】
トルエンを留去させたところで、樹脂組成物が白濁し、かつ、樹脂組成物の粘性が高くなったことにより、芳香環上にエチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子が、成形性にも透明性にも劣ることが確認された。
複合体をFE−TEMで観察した結果、複合体中で、ジルコニア微粒子の凝集体が形成されているのが確認された。
【0074】
[比較例7]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例3で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例7の透明な分散液と、比較例7の透明な樹脂組成物を得た。
【0075】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例7の白色で失透した複合体を得た。
150℃の加熱で白濁したことより、芳香環とケイ素の間にエステル結合を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性に劣ることが確認された。
複合体をFE−TEMで観察した結果、複合体中で、ジルコニア微粒子の凝集体が形成されているのが確認された。
【0076】
[比較例8]
<表面修飾金属酸化物微粒子含有分散液及び表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5において、実施例1で得られた表面修飾ジルコニア微粒子の替わりに、比較例4で得られた表面修飾ジルコニア微粒子を用いた以外は実施例5と同様にして、比較例8の透明な分散液と、比較例8の透明な樹脂組成物を得た。
【0077】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例8の赤紫色の透明な複合体を得た。
150℃の加熱で着色したことより、芳香環とケイ素の間にイミノ基(=NH)を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性にやや劣り、また着色する点で劣ることが確認された。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0078】
[実施例9]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例5で得られた透明な分散液10.8質量部と、ビスフェノールA骨格を有するエポキシ樹脂(三菱化学社製、jER828、屈折率1.55)と、メチルヘキサヒドロ無水フタル酸と、ホスホニウム塩系化合物(サンアプロ社製、U−CAT5003)とを質量比で100:90:0.05となるように混合した混合物1.2質量部を混合して(表面修飾金属酸化物微粒子と樹脂の質量比は40:60)、実施例9の透明な樹脂組成物を得た。
【0079】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させ、実施例9の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0080】
[実施例10]
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、実施例6で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、実施例10の透明な樹脂組成物と、実施例10の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0081】
[実施例11]
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、実施例7で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、実施例11の透明な樹脂組成物と、実施例11の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にジルコニア微粒子が均一に分散されていることが確認された。
【0082】
[実施例12]
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、実施例8で得られた表面修飾チタニア微粒子含有分散液を用いた以外は実施例9と同様にして、実施例12の透明な樹脂組成物と、実施例12の透明な複合体を得た。
複合体をFE−TEMで観察した結果、複合体中にチタニア微粒子が均一に分散されていることが確認された。
【0083】
[比較例9]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例9において、実施例1で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例5で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、比較例9の透明な樹脂組成物を得た。
【0084】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させた。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例9の半透明な複合体を得た。
トルエンを留去させたあとに樹脂組成物の粘性が高くなったことにより、芳香環上にメチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子は、成形性に劣り、透明性も優れないことが確認された。
【0085】
[比較例10]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例6で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、比較例10の透明な樹脂組成物を得た。
【0086】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させたところ、樹脂組成物が白濁した。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上となるように樹脂組成物を注入したが、樹脂組成物の粘性が高すぎて流動性を有しないため、型に均一に充填することができなかった。次いで150℃で樹脂組成物を加熱硬化させ、比較例10の複合体を得た。
【0087】
トルエンを留去させたところ、樹脂組成物が白濁し、かつ、樹脂組成物の粘性が高くなったことにより、芳香環上にエチル基を有する表面修飾剤を表面修飾させたジルコニア微粒子が、成形性にも透明性にも劣ることが確認された。
【0088】
[比較例11]
<表面修飾金属酸化物微粒子含有樹脂組成物の作製>
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例7で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例5と同様にして、比較例11の透明な樹脂組成物を得た。
【0089】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させたところ、樹脂組成物が白濁した。次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例11の白濁した複合体を得た。
150℃の加熱で白濁したことより、芳香環とケイ素の間にエステル結合を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性に劣ることが確認された。
【0090】
[比較例12]
<表面修飾酸化物粒子含有樹脂組成物の作製>
実施例9において、実施例5で得られた表面修飾ジルコニア微粒子含有分散液の替わりに、比較例8で得られた表面修飾ジルコニア微粒子含有分散液を用いた以外は実施例9と同様にして、比較例12の透明な樹脂組成物を得た。
【0091】
<表面修飾金属酸化物微粒子含有複合体の作製>
得られた樹脂組成物からトルエンを留去させ、次いで、20mmφのテフロン(登録商標)製の型に、乾燥膜厚が1mm以上になるように、この樹脂組成物を注入した。次いで150℃で樹脂組成物を加熱硬化させたところ、比較例12の赤紫色の透明な複合体を得た。
150℃の加熱で着色したことより、芳香環とケイ素の間にアミノ基を有する表面修飾剤を表面修飾させたジルコニア微粒子が、透明性に劣ることが確認された。
【0092】
[比較例13]
実施例1において、ベンジルトリエトキシシランの替わりに、(フェニルエチル)メチルジメトキシシランを用いた以外は実施例1と同様にして、(フェニルエチル)メチルジメトキシシランで表面修飾された表面修飾ジルコニア微粒子を得ようと試みた。
実施例1〜4及び比較例1〜4では、上記撹拌混合時間が0.5時間〜6時間程度で表面修飾金属酸化物微粒子を得ることができたが、比較例13では、12時間以上経過しても表面修飾金属酸化物微粒子を得ることができなかった。
【0093】
[評価]
実施例5〜12、比較例5〜12の複合体の評価結果を、表1に示す。
【0094】
【表1】
【0095】
表1の結果より、一般式(1)の条件を満たす表面修飾剤を用いた有機無機複合材料では、所望の特性が得られたのに対して、一般式(1)の条件に満たない表面修飾剤を用いた有機無機複合材料では、白濁や着色などの不具合が生じることが確認された。