特許第6230018号(P6230018)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • 6230018-イオン注入装置及びイオン注入方法 図000002
  • 6230018-イオン注入装置及びイオン注入方法 図000003
  • 6230018-イオン注入装置及びイオン注入方法 図000004
  • 6230018-イオン注入装置及びイオン注入方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6230018
(24)【登録日】2017年10月27日
(45)【発行日】2017年11月15日
(54)【発明の名称】イオン注入装置及びイオン注入方法
(51)【国際特許分類】
   H01J 37/317 20060101AFI20171106BHJP
   H01J 37/20 20060101ALI20171106BHJP
【FI】
   H01J37/317 B
   H01J37/20 E
   H01J37/20 A
【請求項の数】8
【全頁数】12
(21)【出願番号】特願2013-174232(P2013-174232)
(22)【出願日】2013年8月26日
(65)【公開番号】特開2015-43272(P2015-43272A)
(43)【公開日】2015年3月5日
【審査請求日】2016年5月23日
(73)【特許権者】
【識別番号】000231464
【氏名又は名称】株式会社アルバック
(74)【代理人】
【識別番号】100104215
【弁理士】
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100117330
【弁理士】
【氏名又は名称】折居 章
(72)【発明者】
【氏名】隣 嘉津彦
(72)【発明者】
【氏名】横尾 秀和
(72)【発明者】
【氏名】福井 了太
(72)【発明者】
【氏名】山崎 嘉文
(72)【発明者】
【氏名】山崎 喜太郎
【審査官】 鳥居 祐樹
(56)【参考文献】
【文献】 特開昭60−167421(JP,A)
【文献】 特開2009−070886(JP,A)
【文献】 特開平10−135146(JP,A)
【文献】 特開平01−008270(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/317
H01J 37/20
H01L 21/265
H01L 21/68
(57)【特許請求の範囲】
【請求項1】
イオンビームを出射可能に構成されたビーム照射源と、
基板を保持可能に構成された保持面と前記保持面上の基板を加熱する温度調節機構とをそれぞれ有する複数のプラテンと、
前記保持面各々の法線が第1の平面と平行となるように前記複数のプラテンを支持する支持部材と、
前記支持部材に接続され前記第1の平面と垂直な第1の軸方向に延びる回転軸を有し、前記複数のプラテンの何れか1つを前記イオンビームの照射位置へ配置可能に構成された回転機構部と
を具備するイオン注入装置。
【請求項2】
請求項1に記載のイオン注入装置であって、
前記第1の軸方向と直交する第2の軸方向に前記支持部材を往復移動させることが可能な直線移動機構部をさらに具備する
イオン注入装置。
【請求項3】
請求項2に記載のイオン注入装置であって、
前記ビーム照射源は、前記第1の軸方向に前記イオンビームを走査することが可能なビーム走査部を有する
イオン注入装置。
【請求項4】
請求項2に記載のイオン注入装置であって、
前記ビーム照射源は、前記第1の平面に直交する第2の平面に平行なリボン状のイオンビームを出射可能に構成される
イオン注入装置。
【請求項5】
請求項1からのいずれか1項に記載のイオン注入装置であって、
前記複数のプラテンは、前記回転軸に関して回転対称な位置に配置される
イオン注入装置。
【請求項6】
請求項1から5のいずれか1項に記載のイオン注入装置を用いたイオン注入方法であって、
前記複数のプラテンは、第1のプラテンを含み、
前記第1のプラテンの前記保持面上の基板を、前記温度調節機構により前記照射位置でない位置で加熱する第1の加熱工程と、
前記第1の加熱工程で加熱された基板を、前記回転機構部により前記照射位置へ配置する配置工程と、
前記配置工程で前記照射位置へ配置された基板に、前記ビーム照射源により前記イオンビームを照射するイオンビーム照射工程と
を有する
イオン注入方法。
【請求項7】
請求項6に記載のイオン注入方法であって、
前記複数のプラテンは、第2のプラテンを含み、
前記配置工程により前記第1のプラテンの前記保持面上の基板を前記照射位置へ配置している間に、前記第2のプラテンの前記保持面上の基板を、前記温度調節機構により前記照射位置でない位置で加熱する第2の加熱工程
を有する
イオン注入方法。
【請求項8】
請求項1から5のいずれか1項に記載のイオン注入装置を用いたイオン注入方法であって、
前記複数のプラテンは、第1のプラテンと第2のプラテンを含み、
前記第1のプラテンの前記保持面上の基板を、前記第2のプラテンの前記保持面上の基板とは異なる温度に、前記温度調節機構により加熱する加熱工程と、
前記加熱工程で加熱された基板に、前記ビーム照射源により前記イオンビームを照射するイオンビーム照射工程と
を有する
イオン注入方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイスの製造に用いられるイオン注入装置に関する。
【背景技術】
【0002】
イオン源からのイオンを所望のエネルギに加速し半導体基板等の固体表面に注入する、種々のタイプのイオン注入装置が知られている。例えば下記特許文献1には、イオンを生成するイオン源から所望のイオン種を引き出し、所望のエネルギに加速又は減速し、走査器により基板の注入面にイオンビームを少なくとも一次元の面内で走査し、平行化装置により平行化して注入するイオン注入装置が開示されている。
【0003】
一方、近年においては、半導体基板としてSi基板だけでなく、SiC基板も用いられ始めている。SiCは、Siと比較して、電力損失が低く、耐圧、熱伝導特性も高いことから、主に、次世代パワーデバイス向けとして期待されている。例えば下記特許文献2には、SiC基板を用いたパワーMOSトランジスタの製造方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−351312号公報
【特許文献2】特開2011−138952号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
SiC基板を用いたパワーデバイスの生産においては、イオン注入工程で生じるダメージ(結晶欠陥)を回避するために基板を250℃以上の高温に加熱して注入する必要がある。したがって注入前の基板の昇温(予熱)に時間を要するため、処理の待ち時間が長くなり、スループットの悪化を招いていた。また、異なる温度でイオン注入を行う場合、基板を保持するプラテンの温度を変更する待機時間がスループットの悪化を招いていた。
【0006】
以上のような事情に鑑み、本発明の目的は、装置稼働率の向上を実現することができるイオン注入装置を提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明の一形態に係るイオン注入装置は、ビーム照射源と、複数のプラテンと、支持部材と、回転機構部とを具備する。
前記ビーム照射源は、イオンビームを出射可能に構成される。
前記複数のプラテンは、基板を保持可能に構成された保持面をそれぞれ有する。
前記支持部材は、前記保持面各々の法線が第1の平面と平行となるように前記複数のプラテンを支持する。
前記回転機構部は、前記支持部材に接続され前記第1の平面と垂直な第1の軸方向に延びる回転軸を有し、前記複数のプラテンの何れか1つを前記イオンビームの照射位置へ配置可能に構成される。
【図面の簡単な説明】
【0008】
図1】本発明の第1の実施形態に係るイオン注入装置を示す概略構成図である。
図2】上記イオン注入装置におけるプラテンユニットの構成を概略的に示す部分破断斜視図である。
図3】上記プラテンユニットの要部の側面図である。
図4】本発明の第2の実施形態に係るイオン注入装置におけるプラテンユニットの要部の側面図である。
【発明を実施するための形態】
【0009】
本発明の一実施形態に係るイオン注入装置は、ビーム照射源と、複数のプラテンと、支持部材と、回転機構部とを具備する。
上記ビーム照射源は、イオンビームを出射可能に構成される。
上記複数のプラテンは、基板を保持可能に構成された保持面をそれぞれ有する。
上記支持部材は、上記保持面各々の法線が第1の平面と平行となるように上記複数のプラテンを支持する。
上記回転機構部は、上記支持部材に接続され前記第1の平面と垂直な第1の軸方向に延びる回転軸を有し、上記複数のプラテンの何れか1つを上記イオンビームの照射位置へ配置可能に構成される。
【0010】
上記イオン注入装置は、複数のプラテンを有しており、回転機構部によって任意のプラテンをイオンビームの照射位置へ配置可能に構成されている。これにより、一度に複数の基板を保持することができるため、例えば、一のプラテンに保持された基板にイオンを注入している間に、他のプラテンに保持された処理前の基板を昇温させることが可能となる。したがって上記イオン注入装置によれば、基板の前処理あるいは後処理に要する待ち時間を短縮できるため、高温下で実施されるイオン注入工程のスループットが高まり、装置稼働率の向上を実現することができる。
【0011】
上記複数のプラテンは、上記回転軸に関して回転対称な位置に配置されてもよい。
これにより回転機構部による回転軸の回転操作のみで各プラテンをイオンビームの照射位置へ配置することができる。したがって例えば、ビーム照射源によってプラテン毎に照射位置を変更する必要がなくなり、一定の照射位置で各プラテン上の基板にイオンを注入することができる。
【0012】
上記イオン注入装置は、上記第1の軸方向と直交する第2の軸方向に上記支持部材を往復移動させることが可能な直線移動機構部をさらに具備してもよい。
これにより基板に入射するイオンを上記第2の軸方向に沿って走査することができる。したがって例えば、ビーム照射源から出射されるイオンビームが上記第1の軸方向に走査される場合、あるいは上記第1の平面に直交する第2の平面に平行なリボン状のイオンビームである場合、基板の全面にイオンビームを照射することが可能となる。
【0013】
上記複数のプラテン各々は、上記保持面の温度を調節可能な温度調節機構をさらに有してもよい。
温度調節機構は、保持面を加熱するヒータユニットであってもよいし、保持面を冷却する冷却ユニットであってもよい。また、各プラテンが同一の温度調節機構を有する場合に限られず、一方のプラテンがヒータユニットを、他方のプラテンが冷却ユニットをそれぞれ有してもよい。これにより例えば、一台の装置で、高温でイオン注入行うプロセスと、常温でイオン注入を行うプロセスとを実施することが可能となる。
【0014】
プラテンの数は特に限定されず、典型的には、2〜4個のプラテンを含む。プラテンが2つの場合、各々のプラテンは回転軸のまわりに180°の間隔をあけて配置される。プラテンが3つの場合、各々のプラテンは回転軸のまわりに120°の間隔をあけて配置される。同様に、プラテンの数が4つの場合、各々のプラテンは回転軸のまわりに90°の間隔をあけて配置される。
【0015】
以下、図面を参照しながら、本発明の実施形態を説明する。
【0016】
<第1の実施形態>
図1は本発明の第1の実施形態に係るイオン注入装置を示す概略構成図である。以下、イオン注入装置100の全体構成について説明する。
【0017】
[イオン注入装置]
イオン注入装置100は、イオン源10と、質量分離器20と、質量分離スリット30と、加速管40と、四重極レンズ50と、走査器60と、平行化装置70と、エンドステーション80とを有する。エンドステーション80は、後述するように、イオン注入処理を受けるべき基板Sを保持するプラテンユニット200を有する。
【0018】
イオン源10は、原子や分子から電子を剥ぎ取ってイオン1Aを生成する装置である。質量分離器20は、イオンや電子等の荷電粒子が磁場又は電場中で偏向される性質を利用して、磁場あるいは電場、又はその双方を発生して、基板S中に注入したいイオン種1Bを特定するための装置である。
【0019】
加速管40は、質量分離スリット30を通過した所望のイオン種1Bを加速又は減速する装置である。加速管40は、典型的には軸対称に構成され、等間隔に並べられた複数の電極対を有し、それら電極対に等しい高電圧を印加して、静電界の作用により、イオン1Bを所望の注入エネルギに加速又は減速する。四重極レンズ50は、加速管40を通過したイオンのビーム形状を調整するためのものである。
【0020】
走査器60は、四重極レンズ50を通過したビーム状のイオン(以下、イオンビームともいう。)1Cの進行方向と直交する方向に一様な外部電界を発生し、この電界の極性や強度を変化させることによりイオン1Cの偏向角度を制御する。本実施形態では、走査器60は、平行化装置70の入力段に向けて所定方向にイオンビーム1Cを走査する。
【0021】
平行化装置70は、イオンビーム1Cを構成する各イオンの経路の違いによるビームの広がりを抑えつつ、一軸方向に走査された、基板Sの基板Sの表面に対して直角又はほぼ直角に入射するイオンビーム1Dを形成するための装置である。平行化装置70は、荷電粒子であるイオン1Cが磁場中で偏向される性質を利用したものであり、典型的には電磁石を含む。平行化装置70は、後述するようにイオンビーム1DをX軸方向(第1の軸方向)に走査するビーム走査部として機能する。
【0022】
エンドステーション80は、イオン源10、質量分離器20、質量分離スリット30、加速管40、四重極レンズ50、走査器60及び平行化装置70を含むビーム照射源から出射されたイオンビーム1Dの照射を受ける基板Sを収容する。典型的には、基板Sの表面にはレジストマスク又は無機マスクが形成されており、当該マスクの開口部から露出する基板領域に所定のイオンが所定の深さで所定のドーズ量だけ注入される。基板Sとしては、例えば、Si基板、SiC基板、ガラス基板等が含まれる。
【0023】
さらに図示せずとも、例えば平行化装置70とエンドステーション80との間に、イオンビームを遮断するシャッタ装置や、ビーム電流を計測するファラデーカップ等が設けられてもよい。
【0024】
上記ビーム照射源を構成する各装置及びエンドステーション80の内部は、図示せずとも、真空排気装置によって所定の真空雰囲気に維持される。エンドステーション80は、基板Sを保持するプラテンユニット200を有する。以下、プラテンユニット200の詳細について説明する。
【0025】
[プラテンユニット]
図2はプラテンユニット200の構成を概略的に示す部分破断斜視図である。図3は、プラテンユニット200の要部の側面図である。各図においてX軸、Y軸及びZ軸は、相互に直交する3軸方向を示している。
【0026】
プラテンユニット200は、複数のプラテン21,22と、支持部材24と、回転機構部25とを有する。
【0027】
本実施形態のプラテンユニット200は、複数のプラテンとして、第1のプラテン21と第2のプラテン22とを有する。第1及び第2のプラテン21,22は同様に構成され、それぞれ1枚の基板Sを保持可能に構成された円形の保持面21a,22aを有する。
【0028】
保持面21a,22aの大きさは、基板Sよりも大きく形成されているが、これに限られず、基板Sと同等以下の大きさで形成されてもよい。基板Sの保持機構は特に限定されず、本実施形態では静電チャック機構が採用されるが、これ以外にもメカニカルチャック機構が採用されてもよい。
【0029】
第1及び第2のプラテン21,22は、保持面21a,22aの温度を調節可能な温度調節機構21b,22bをそれぞれ有する。温度調節機構21b,22bは、保持面21a,21bを加熱するヒータユニットであってもよいし、保持面21a,22aを冷却する冷却ユニットであってもよい。本実施形態では、温度調節機構21b,22bはそれぞれ、ヒータユニットで構成される。
【0030】
保持面21a,22aの加熱温度は特に限定されず、基板の種類やイオン注入条件等に応じて適宜設定可能である。本実施形態では、基板SにSiC基板が用いられ、加熱温度は例えば250℃〜800℃の範囲で調節される。
【0031】
支持部材24は、第1のプラテン21と第2のプラテン22との間に配置され、第1及び第2のプラテン21,22を一体的に支持する。第1及び第2のプラテン21,22は、各々保持面21a,22aがYZ平面(第1の平面)と平行となるように支持部材24に支持される。
【0032】
支持部材24には、回転機構部25の回転軸25aが接続されており、支持部材24は、回転軸25aのまわりに回転可能に構成される。第1及び第2のプラテン21,22は、回転軸25aに関して回転対称な位置に配置されている。
【0033】
本実施形態では、第1及び第2のプラテン21,22は、回転軸25aのまわりに180°の間隔をあけて配置されている。各々の保持面21a,22aは、相互に反対側に向けられており、保持面21a,22aの各々の法線は、Y軸方向に平行な同一の直線上に配置されている。
【0034】
回転機構部25は、支持部材24に接続される回転軸25aを有する。回転軸25aは、X軸方向(第1の軸方向)に延び、支持部材24を介して第1及び第2のプラテン21,22をX軸まわりに回転可能に支持する。回転機構部25は、第1及び第2のプラテン21,22のうち何れか1つをイオンビーム1Dの照射位置へ配置可能に構成される。
【0035】
ここで、図1に示すように、平行化装置70からイオンビーム1DがY軸方向に直線的に出射されるとすると、イオンビーム1Dの照射位置は、イオンビーム1Dが保持面21a又は保持面22aに対して所定の角度で入射する位置に設定される。本実施形態では、イオンビーム1Dの照射位置は、保持面21a又は保持面22aに対してイオンビーム1Dが垂直に入射する位置に設定される。
【0036】
回転機構部25は、典型的には電磁モータで構成され、好ましくは、回転軸25aの回転角度を高精度に制御可能なパルスモータで構成される。回転機構部25は、エンドステーション80の内部に設置された基台27に支持されており、イオン注入装置100全体の機能を制御するコントローラ(図示略)によって駆動制御される。
【0037】
プラテンユニット200は、直線移動機構部26をさらに有する。直線移動機構部26は、Z軸方向に支持部材24、第1及び第2のプラテン21,22を往復移動させることが可能に構成される。
【0038】
本実施形態において直線移動機構部26は、基台27の上に配置されており、回転機構部25を支持する送りネジ26aを有する。回転機構部25は、送りネジ26aが螺合するナット部25bを有する。送りネジ26aはZ軸方向に延びる軸状部材であり、Z軸まわりに回転可能に構成される。これにより直線移動機構部26は、送りネジ26aの回転方向および回転量を制御することで、回転機構部25、支持部材24、第1及び第2のプラテン21,22をZ軸方向に往復移動させることが可能となる。
【0039】
なお図示せずとも、基台27は、送りネジ26aのまわりへの回転機構部25の回転を規制する適宜の規制構造を有しており、これにより回転軸25aをX軸方向に平行な姿勢で各プラテン21,22をZ軸方向に移動させることが可能とされる。
【0040】
直線移動機構部26は、典型的には電磁モータで構成され、好ましくは、送りネジ26aの回転角度を高精度に制御可能なパルスモータで構成される。直線移動機構部26は、上記コントローラによって駆動制御される。
【0041】
エンドステーション80は、基板をロード/アンロードするための基板搬送口を有しており、図示しない基板搬送機構を介して未処理の基板がプラテンユニット200へ搬送され、あるいは、処理済の基板がプラテンユニット200から搬出される。
【0042】
[イオン注入装置の動作]
次に、以上のように構成される本実施形態のイオン注入装置100の典型的な動作について説明する。ここでは、基板SにSiC基板が用いられ、当該基板Sを高温中でイオン注入する処理を例に挙げて説明する。
【0043】
プラテンユニット200の第1及び第2のプラテン21,22には、基板Sがそれぞれ保持される。各々の基板Sは、保持面21a,22a上において温度調節機構21b,22bによって所定温度に加熱される。そして、回転機構部25及び直線移動機構部26によって第1のプラテン21が平行化装置70のビーム出射口に対向するビーム照射位置へ配置される。
【0044】
次に、ビーム照射源においてイオンビームが生成される。イオン源10から引き出されたイオン1Aは、質量分離器20及び質量分離スリット30で所望のイオン1Bに選別された後、加速管40において注入深さ等に応じた所定のエネルギに加速又は減速される。このように所望のエネルギに調整されたイオンビーム1Cは、四重極レンズ50及び走査器60を介して平行化装置70へ導入される。
【0045】
平行化装置70は、Y軸方向に平行であり、かつX軸方向に走査されたイオンビーム1Dを形成し、これをエンドステーション80内のプラテンユニット200(第1のプラテン21)に保持された基板Sの表面に向けて出射する。
【0046】
イオンビーム1Dは、図2に示すように、第1のプラテン21の保持面21aに保持された基板Sの表面に照射される。イオンビーム1Dは、光軸がY軸方向に平行であり、かつX軸方向に走査される。このため、イオンビーム1DはXY平面(第2の平面)に平行なリボン状のイオンビームとして平行化装置70から出射され、基板Sの表面に照射される。
【0047】
第1のプラテン21(及び第2のプラテン22)は、直線移動機構部26によってZ軸方向に往復移動させられる。これにより、基板S上のイオン注入領域全域にイオンビーム1Dが照射される。移動速度、往復回数等は特に限定されず、基板Sの大きさやドーズ量等に応じて適宜設定される。本実施形態においてはイオンビーム1Dが基板に対して垂直に入射するように構成されているため、基板S上のイオン注入領域全域に均一なドーズ量でイオンを注入することができる。
【0048】
基板Sに対する所定ドーズ量のイオン注入が完了すると、ビーム照射処理が中断し、回転機構部25によって第1及び第2のプラテン21,22が回転軸25aのまわりに180°回転し、第2のプラテン22に保持された基板Sがビーム照射位置へ配置される。そして、イオンビームの照射処理が再開され、保持面22a上に保持された基板Sの全面に上述のようにして所定ドーズ量のイオン注入が実施される。
【0049】
本実施形態においては、一度に複数の基板Sを保持することができるため、第1のプラテン21上の基板Sにイオン注入処理を行っている間、第2のプラテン22上の基板Sの加熱処理を行うことができる。これにより第1のプラテン21上の基板Sのイオン注入が終了した後、速やかに、第2のプラテン22上の基板Sに対するイオン注入処理を開始することができる。
【0050】
また、第1のプラテン21と第2のプラテン22とが各々回転軸25aのまわりに回転可能に配置されているため、回転軸25aの回転操作のみで第1のプラテン21上の基板Sから第2のプラテン22上の基板Sへ速やかにイオン注入処理を移行することができる。
【0051】
以上のように本実施形態によれば、基板Sの予熱処理に要する待ち時間を短縮できるため、高温下で実施されるイオン注入工程のスループットが高まり、装置稼働率の向上を実現することができる。また、第1及び第2のプラテン21,22上の基板Sに対して相互に異なる温度でのイオン注入が可能となるため、プラテンの温度変更に要する待機時間がなくなり、これによりスループットの向上を図ることができる。
【0052】
さらに、第1のプラテン21と第2のプラテン22とが各々回転軸25aに関して回転対称な位置に配置されているため、回転機構部25による回転軸25aの回転操作のみで各プラテン21,22をイオンビームの照射位置へ配置することができる。したがって例えば、ビーム照射源によってプラテン毎に照射位置を変更する必要がなくなり、一定の照射位置で各プラテン上の基板にイオンを注入することができる。このような構成は、イオンビームの照射領域重心を動かせないイオン注入装置において、特に有効である。
【0053】
<第2の実施形態>
図4は、本発明の第2の実施形態に係るイオン注入装置におけるプラテンユニットの構成を示す要部の側面図である。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
【0054】
本実施形態のプラテンユニット300は、プラテンの数が3つである点で、第1の実施形態と異なる。すなわち本実施形態においてプラテンユニット300は、第1のプラテン31と、第2のプラテン32と、第3のプラテン33とを有する。各プラテン31〜33は、支持部材34を介して一体的に固定されている。
【0055】
支持部材34は、回転機構部の回転軸25aに接続されており、各プラテン31〜33は、回転軸25aのまわりに120°の間隔をあけて配置されている。各プラテン31〜33は、各々の保持面の法線が、YZ平面(第1の平面)に平行となるように支持部材34に配置されている。
【0056】
なお本実施形態では、各プラテン31〜33の保持面が基板Sの面積よりも小さい面積で構成されているが、これに限られず、第1の実施形態と同様に基板Sの面積よりも大きい面積で構成されてもよい。
【0057】
本実施形態では、各プラテン31〜33が回転軸25aに関して回転対称な位置にそれぞれ配置されている。回転機構部は、回転軸25aを回転させることで、第1〜第3のプラテン31〜33のうち何れか1つのプラテンをイオンビームの照射位置へ配置させることが可能に構成されている。
【0058】
各プラテン31〜33は、温度調節機構31b,32b,33bをそれぞれ内蔵しており、各々の保持面上の基板を所定温度に加熱または冷却することが可能に構成されている。
【0059】
温度調節機構31b,32b,33bは、保持面を加熱するヒータユニットであってもよいし、保持面を冷却する冷却ユニットであってもよい。また、各プラテンが同一の温度調節機構を有する場合に限られず、一方のプラテンがヒータユニットを、他方のプラテンが冷却ユニットをそれぞれ有してもよい。例えば、温度調節機構31b,32bをヒータユニットで、温度調節機構33bを冷却ユニットでそれぞれ構成されてもよい。これにより例えば、一台の装置で、高温でイオン注入行うプロセスと、常温でイオン注入を行うプロセスとを実施することが可能となる。
【0060】
以上のように構成される本実施形態のイオン注入装置においても、上述の第1の実施形態と同様な作用効果を得ることができる。また本実施形態によれば、一度に保持できる基板の枚数を増やすことができるため、生産性のさらなる向上を図ることができる。
【0061】
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0062】
例えば以上の第1及び第2の実施形態では、プラテンの数が2個及び3個の場合を例に挙げて説明したが、これに限られず、プラテンの数が4個であってもよい。この場合、各プラテンは、回転軸25aのまわりに90°の間隔をあけて配置される。なお複数のプラテンは、回転軸のまわりに等角度間隔で配置される例に限られない。
【0063】
また以上の各実施形態では、一軸方向にイオンビームが走査されたリボン状のイオンビームを用いて基板Sにイオンを注入する装置構成を説明したが、これに限られず、直線的なイオンビームを2軸方向に走査しながらイオンを注入する装置構成にも本発明は適用可能である。
【0064】
さらに以上の第1の実施形態では、第1及び第2のプラテン21,22の温度調節機構21b,22bを何れもヒータユニットとして構成される例を説明したが、いずれか一方が冷却ユニットで構成されてもよい。これにより一台の装置で、高温でイオン注入行うプロセスと、常温でイオン注入を行うプロセスとを実施することが可能となる。
【符号の説明】
【0065】
1D…イオンビーム
21,22,31,32,33…プラテン
21a,22a…保持面
21b,22b,31b,32b,33b…温度調節機構
25…回転機構部
25a…回転軸
26…直線移動機構部
26a…送りネジ
80…エンドステーション
100…イオン注入装置
S…基板
図1
図2
図3
図4