(58)【調査した分野】(Int.Cl.,DB名)
50℃で10分間乾燥しさらに105℃で3時間乾燥させた前記水溶性バインダーの非水電解液に対する膨潤度が、1倍〜5倍である、請求項1又は2記載の多孔膜用スラリー。
【発明を実施するための形態】
【0011】
以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
【0012】
以下の説明において、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸のことを表す。また、(メタ)アクリレートとは、アクリレート又はメタクリレートのことを表す。また、(メタ)アクリロニトリルとは、アクリロニトリル又はメタクリロニトリルのことを表す。
【0013】
さらに、ある物質(この物質には、重合体を含む。)が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が1重量%未満であることをいう。一方、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上であることをいう。
【0014】
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
【0015】
[1.多孔膜用スラリー]
本発明の二次電池セパレーターの多孔膜用スラリー(以下、適宜「多孔膜用スラリー」ということがある。)は、非導電性粒子を有する絶縁粒子、粒子状バインダー、水溶性バインダー及び媒体を含む流体状の組成物である。
【0016】
[1.1.絶縁粒子]
絶縁粒子は、非導電性粒子を有する粒子である。絶縁粒子は、表面が非水溶性重合体で覆われた非導電性粒子であるか;又は、非導電性粒子自体と表面が非水溶性重合体で覆われた非導電性粒子との混合物である。ただし、絶縁粒子は、その表面の70%以上が非水溶性重合体で覆われた非導電性粒子である特定の絶縁粒子(この特定の絶縁粒子のことを、以下、適宜「被覆粒子(A)」ということがある。)を15体積%〜85体積%含む。つまり、絶縁粒子の中の15〜85体積%の粒子は、表面の70%以上が非水溶性重合体で覆われた非導電性粒子である。すなわち、絶縁粒子は、(i)非導電性粒子と、その非導電性粒子の表面を覆い当該絶縁粒子の表面の70%以上を占める非水溶性重合体とを有する被覆粒子(A)を、所定の割合で含む。また、絶縁粒子のうち被覆粒子(A)以外のものは、(ii)非水溶性重合体で被覆されていない非導電性粒子自体であるか、又は、非導電性粒子とその非導電性粒子の表面を覆い当該絶縁粒子の表面の70%未満を占める非水溶性重合体とを有する、絶縁粒子(このような、絶縁粒子のうち被覆粒子(A)以外のものを、以下、適宜「裸粒子(B)」ということがある。)になっている。
【0017】
[1.1.1.被覆粒子(A)]
図1は、非水電解液に湿潤していない状態の多孔膜の表面近傍を拡大して模式的に示す断面図である。
図1に示すように、被覆粒子(A)10は、非導電性粒子11と、その非導電性粒子11の表面11Sを覆う非水溶性重合体12を有する。
【0018】
非導電性粒子としては、無機粒子を用いてもよく、有機粒子を用いてもよい。
【0019】
無機粒子は、通常、媒体中での分散安定性に優れ、多孔膜用スラリーにおいて沈降し難く、均一なスラリー状態を長時間維持することができる。また、無機粒子を用いると、通常は二次電池セパレーター用多孔膜(以下、適宜「多孔膜」ということがある。)の耐熱性を高くできる。
【0020】
非導電性粒子の材料としては、電気化学的に安定な材料が好ましい。このような観点から、非導電性粒子の無機材料として好ましい例を挙げると、酸化アルミニウム(アルミナ)、酸化アルミニウムの水和物(ベーマイト(AlOOH))、ギブサイト(Al(OH)
3)、酸化ケイ素、酸化マグネシウム(マグネシア)、水酸化マグネシウム、酸化カルシウム、酸化チタン(チタニア)、BaTiO
3、ZrO、アルミナ−シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化硼素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。
【0021】
これらの中でも、非水電解液中での安定性と電位安定性の観点から酸化物粒子が好ましく、中でも吸水性が低く耐熱性(例えば180℃以上の高温に対する耐性)に優れる観点から酸化チタン、酸化アルミニウム、酸化アルミニウムの水和物、酸化マグネシウム及び水酸化マグネシウムがより好ましく、酸化アルミニウム、酸化アルミニウムの水和物、酸化マグネシウム及び水酸化マグネシウムが更に好ましく、酸化アルミニウムが特に好ましい。
【0022】
有機粒子としては、通常は重合体の粒子を用いる。有機粒子は、当該有機粒子の表面の官能基の種類及び量を調整することにより、水に対する親和性を制御でき、ひいては多孔膜に含まれる水分量を制御できる。また有機粒子は、通常は金属イオンの溶出が少ない点で、優れる。
【0023】
非導電性粒子の有機材料として好ましい例を挙げると、ポリスチレン、ポリエチレン、ポリイミド、メラミン樹脂、フェノール樹脂等の各種高分子化合物などが挙げられる。粒子を形成する上記高分子化合物は、例えば、混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体、架橋体等であっても使用しうる。有機粒子は、2種以上の高分子化合物の混合物により形成されていてもよい。
【0024】
非導電性粒子として有機粒子を用いる場合、ガラス転移温度を持たなくてもよいが、当該有機粒子を形成する高分子化合物がガラス転移温度を有する場合、そのガラス転移温度は、通常150℃以上、好ましくは200℃以上、より好ましくは250℃以上であり、通常500℃以下である。
【0025】
非導電性粒子は、必要に応じて、例えば元素置換、表面処理、固溶体化等が施されていてもよい。また、非導電性粒子は、1つの粒子の中に、前記の材料のうち1種類を単独で含むものであってもよく、2種類以上を任意の比率で組み合わせて含むものであってもよい。さらに、非導電性粒子は、異なる材料で形成された2種類以上の粒子を組み合わせて用いてもよい。
【0026】
表面処理は、例えば、非導電性粒子と官能性シランカップリング剤とを、室温下で又は必要に応じて加熱条件下で攪拌する処理が挙げられる。この表面処理により、非導電性粒子の表面と非水溶性重合体との結着性を向上させることができる。官能性シランカップリング剤の具体例としては、例えば、トリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどを挙げることができる。これらの中で、γ−グリシドキシプロピルトリメトキシシランやβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを好適に用いることができる。また、官能性シランカップリング剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0027】
非導電性粒子の形状は、例えば、球状、楕円球状、多角形状、テトラポッド(登録商標)状、板状、鱗片状などが挙げられる。中でも、多孔膜の空隙率を高くして二次電池用セパレーター(以下、適宜「セパレーター」ということがある。)によるイオン伝導度の低下を抑制する観点では、テトラポッド(登録商標)状、板状、鱗片状が好ましい。
【0028】
非導電性粒子の個数平均粒子径は、好ましくは100nm以上、より好ましくは150nm以上、特に好ましくは200nm以上であり、好ましくは2000nm以下、より好ましくは1500nm以下、特に好ましくは1000nm以下である。このような個数平均粒子径の非導電性粒子を用いることにより、二次電池のレート特性と、セパレーターの耐熱収縮性との両方をバランス良く良好にできる。
ここで、個数平均粒子径とは、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製「LS230」)を用いて測定された粒径−個数積算分布において、積算分布の値が50%となる粒子径である。
【0029】
50℃で10分間乾燥しさらに105℃で3時間乾燥させた非水溶性重合体の非水電解液に対する膨潤度は、所定の範囲に収まる。この膨潤度の具体的な範囲は、通常10倍以上、好ましくは11倍以上、より好ましくは12倍以上、また、通常50倍以下、好ましくは35倍以下、より好ましくは20倍以下である。通常、50℃で10分間乾燥しさらに105℃で3時間乾燥させた非水溶性重合体の非水電解液に対する膨潤度は、多孔膜用スラリーを用いて形成された多孔膜に含まれる非水溶性重合体の非水電解液に対する膨潤度と同じになる。前記の膨潤度を前記範囲の下限値以上にすることにより、多孔膜のイオン透過性を高めて、抵抗を小さくすることができる。そのため、二次電池のレート特性及び高温サイクル特性を向上させることができる。また、上限値以下にすることにより、非水溶性重合体の結着性を高めることができるので、多孔膜と電極との結着性を高めることができる。そのため、二次電池のサイクル特性を高めることができる。
【0030】
50℃で10分間乾燥しさらに105℃で3時間乾燥させた非水溶性重合体の非水電解液に対する膨潤度は、以下の方法によって測定しうる。
被覆粒子(A)の水分散液を乾燥厚みが1mmとなるようにシリコン容器に流し入れ、乾燥させて、乾燥体を得る。この際の乾燥は、50℃で10分間乾燥しさらに105℃で3時間乾燥させる、という乾燥条件で行なう。この乾燥条件は、通常、多孔膜に含まれるのと同様の非水溶性重合体が得られる乾燥条件である。この乾燥体を、約0.1mm角のサイズとなるように粉砕する。粉砕した乾燥体をエポキシ樹脂に分散させ、エポキシ樹脂を硬化させて樹脂硬化体を得る。この樹脂硬化体を−80℃に冷却した後、ミクロトームで切断して薄膜を作製する。この薄膜を電界放出型電子顕微鏡(FE−TEM)で観察する。観察された像において、被覆粒子(A)200個を任意に選択する。ここで、非水溶性重合体による被覆率とは、観察された像における被覆粒子(A)の面積に対する、その被覆粒子(A)の非水溶性重合体が占める部分の面積の割合をいう。そして、選択された被覆粒子(A)それぞれの、その被覆粒子(A)の非水溶性重合体が占める部分の面積を測定する。その選択した被覆粒子(A)の非水溶性重合体が占める部分の面積の平均値を、面積E0とする。
また別途、被覆粒子(A)の水分散液を乾燥厚みが1mmとなるようにシリコン容器に流し入れ、乾燥させて、乾燥体を得る。この際の乾燥は、50℃で10分間乾燥しさらに105℃で3時間乾燥させる、という乾燥条件で行なう。この乾燥体を、非水電解液に60℃で72時間浸漬し、浸漬後に凍結乾燥させる。このように凍結乾燥させた乾燥体を、約0.1mm角のサイズとなるように粉砕する。粉砕した乾燥体をエポキシ樹脂に分散させて、エポキシ樹脂を硬化させて樹脂硬化体を得る。この樹脂硬化体を−80℃に冷却した後、ミクロトームで切断して薄膜を作製する。この薄膜を電界放出型電子顕微鏡(FE−TEM)で観察する。観察された像において、被覆粒子(A)200個を任意に選択する。そして、選択された被覆粒子(A)それぞれの、その被覆粒子(A)の非水溶性重合体が占める部分の面積を測定する。その選択した被覆粒子(A)の非水溶性重合体が占める部分の面積の平均値を、面積E1とする。
そして、前記の面積E0及び面積E1を用いて、非水溶性重合体の膨潤度Sを、以下の式で算出する。
S=((E1)
1/2)
3/((E0)
1/2)
3
【0031】
この際、非水電解液は、濃度1.0MのLiPF
6溶液に、ビニレンカーボネート(VC)を2容量%添加したものを用いる。また、LiPF
6溶液の溶媒としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、重量比EC/EMC=3/7で含む混合溶媒を用いる。
【0032】
非水溶性重合体が上述した膨潤度を有するようにするための手段としては、例えば非水溶性重合体の単量体の種類、並びに、非水溶性重合体の架橋度及び分子量などを適切に調整することなどが挙げられる。
【0033】
このような非水溶性重合体としては、非水溶性であり、且つ、50℃で10分間乾燥しさらに105℃で3時間乾燥させたときの非水電解液に対する膨潤度が前記の範囲におさまる限り、任意のものを用いうる。また、非水溶性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0034】
非水溶性重合体のうち好適な例としては、スチレン・ブタジエン共重合体(SBR)、アクリロニトリル・ブタジエン共重合体(NBR)、水素化SBR、水素化NBR、スチレン−イソプレン−スチレンブロック共重合体(SIS)、アクリル重合体などが挙げられる。中でも、正極側及び負極側のいずれの多孔膜においても用いうるため汎用性に優れることから、アクリル重合体がより好ましい。
【0035】
アクリル重合体は、(メタ)アクリル酸エステル単量体単位を含む重合体である。ここで(メタ)アクリル酸エステル単量体単位とは、(メタ)アクリル酸エステル単量体を重合して形成される構造を有する構造単位を表す。(メタ)アクリル酸エステル単量体としては、例えば、CH
2=CR
a−COOR
bで表される化合物が挙げられる。ここで、R
aは水素原子またはメチル基を表し、R
bはアルキル基またはシクロアルキル基を表す。
【0036】
(メタ)アクリル酸エステル単量体の例を挙げると、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸−2−メトキシエチル、アクリル酸−2−エトキシエチル、アクリル酸ヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、ベンジルアクリレートなどのアクリレート;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−アミル、メタクリル酸イソアミル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n−ブチルおよびアクリル酸2−エチルヘキシルが、多孔膜の強度を向上できる点で、特に好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0037】
アクリル重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは20.0重量%以上、より好ましくは30.0重量%以上、特に好ましくは40.0重量%以上であり、好ましくは80.0重量%以下、より好ましくは70.0重量%以下、特に好ましくは60.0重量%以下である。(メタ)アクリル酸エステル単量体単位の割合を前記範囲の下限値以上にすることにより、非水溶性重合体と電極との親和性が向上するため、電極と多孔膜との結着力を高めることができる。また、上限値以下にすることにより、非水電解液中での非水溶性重合体の強度を高めることができるため、電極と多孔膜との結着力を高めることができる。
【0038】
また、アクリル重合体は、(メタ)アクリロニトリル単量体単位を含みうる。ここで、(メタ)アクリロニトリル単量体単位とは、(メタ)アクリロニトリルを重合して形成される構造を有する構造単位のことを表す。(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位とを組み合わせて含むアクリル重合体は、酸化還元に安定であるので、高寿命の電池を得やすい。
【0039】
アクリル重合体は、(メタ)アクリロニトリル単量体単位として、アクリロニトリルを重合して形成される構造を有する構造単位だけを含んでいてもよく、メタクリロニトリルを重合して形成される構造を有する構造単位だけを含んでいてもよく、アクリロニトリルを重合して形成される構造を有する構造単位とメタクリロニトリルを重合して形成される構造を有する構造単位の両方を任意の比率で組み合わせて含んでいてもよい。
【0040】
アクリル重合体における(メタ)アクリロニトリル単量体単位の割合は、好ましくは5.0重量%以上、より好ましくは10.0重量%以上、特に好ましくは15.0重量%以上であり、好ましくは55.0重量%以下、より好ましくは50.0重量%以下、特に好ましくは40.0重量%以下である。(メタ)アクリロニトリル単量体単位の割合を前記範囲の下限値以上にすることにより、非水溶性重合体と電極との親和性が向上するため、電極と多孔膜との結着力を高めることができる。また、上限値以下にすることにより、非水電解液中での非水溶性重合体の強度を高めることができるため、電極と多孔膜との結着力を高めることができる。
【0041】
また、アクリル重合体は、エチレン性不飽和カルボン酸単量体単位を含みうる。ここでエチレン性不飽和カルボン酸単量体単位とは、エチレン性不飽和カルボン酸単量体を重合して形成される構造を有する構造単位を表す。
【0042】
エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、β−ジアミノアクリル酸などが挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等の置換基を有するマレイン酸;マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルなどが挙げられる。これらの中でも、被覆粒子(A)の水に対する分散性を高める観点では、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0043】
アクリル重合体におけるエチレン性不飽和カルボン酸単量体単位の割合は、好ましくは0.2重量%以上、より好ましくは0.4重量%以上、特に好ましくは0.6重量%以上であり、好ましくは10.0重量%以下、より好ましくは6.0重量%以下、特に好ましくは4.0重量%以下である。エチレン性不飽和カルボン酸単量体単位の割合を前記範囲の下限値以上にすることにより、非水溶性重合体と電極との相互作用が強くなるため、電極と多孔膜との結着力を高めることができる。また、上限値以下となることにより、多孔膜の残留水分量が減少するので、ガス発生量を低減することができる。
【0044】
また、アクリル重合体は、架橋性単量体単位を含みうる。ここで、架橋性単量体単位とは、架橋性単量体を重合して形成される構造を有する構造単位を表す。また、架橋性単量体とは、当該架橋性単量体に加熱又はエネルギー照射を施すことにより、重合中又は重合後に架橋構造を形成しうる単量体を表す。架橋性単量体の例としては、通常、熱架橋性を有する単量体が挙げられる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体;1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
【0045】
架橋性基の例としては、エポキシ基、N−メチロールアミド基、オキセタニル基、オキサゾリン基、アリル基などが挙げられる。これらの架橋性基の種類は、1種類を用いてもよく、2種類以上を任意に組み合わせて用いてもよい。中でも架橋及び架橋密度の調節が容易であるので、エポキシ基及びアリル基が好ましい。
【0046】
熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o−アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5−エポキシ−2−ペンテン、3,4−エポキシ−1−ビニルシクロヘキセン、1,2−エポキシ−5,9−シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4−エポキシ−1−ブテン、1,2−エポキシ−5−ヘキセン、1,2−エポキシ−9−デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル−4−ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル−4−メチル−3−ペンテノエート、3−シクロヘキセンカルボン酸のグリシジルエステル、4−メチル−3−シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。
【0047】
熱架橋性の架橋性基としてアリル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、アリルアクリレート、アリルメタクリレートが挙げられる。
【0048】
熱架橋性の架橋性基としてN−メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N−メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
【0049】
熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3−((メタ)アクリロイルオキシメチル)オキセタン、3−((メタ)アクリロイルオキシメチル)−2−トリフロロメチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−フェニルオキセタン、2−((メタ)アクリロイルオキシメチル)オキセタン、及び2−((メタ)アクリロイルオキシメチル)−4−トリフロロメチルオキセタンが挙げられる。
【0050】
熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリン、及び2−イソプロペニル−5−エチル−2−オキサゾリンが挙げられる。
【0051】
1分子あたり2つ以上のオレフィン性二重結合を有する架橋性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン−トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン−ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。
【0052】
これらの例示物の中でも、架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが好ましい。
また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0053】
アクリル重合体における架橋性単量体単位の割合は、好ましくは0.10重量%以上、より好ましくは0.20重量%以上、特に好ましくは0.50重量%以上であり、好ましくは20.0重量%以下、より好ましくは15.0重量%以下、特に好ましくは10.0重量%以下である。架橋性単量体単位の割合を前記範囲の下限値以上にすることにより、非水電解液中での非水溶性重合体の強度を高めることができるため、電極と多孔膜との結着力を高めることができる。また、上限値以下となることにより、架橋密度が低く制御されて、イオン透過性を確保することができる。
【0054】
さらに、前記のアクリル重合体は、上述した構造単位以外にも、任意の構造単位を含みうる。これらの任意の構造単位に対応する単量体の例を挙げると、スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミド、メタクリルアミド、及びN,N−ジメチルアクリルアミド等の不飽和カルボン酸アミド単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0055】
図1に示すように、被覆粒子(A)10それぞれにおいて、非水溶性重合体12は、当該被覆粒子(A)10の表面10Sの70%以上を占めている。そして、このように表面10Sの70%以上を非水溶性重合体12に占められた複数の被覆粒子(A)10が、多孔膜用スラリーに含まれている。この際、多孔膜用スラリーに含まれる被覆粒子(A)10の非水溶性重合体12による平均被覆率は、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上であり、通常100%以下である。多孔膜用スラリーに含まれる被覆粒子(A)10の非水溶性重合体12による平均被覆率をこのような範囲に収めることにより、電極と多孔膜との結着性を高めることができるので、二次電池のサイクル特性を高めることができる。
【0056】
多孔膜用スラリーに含まれる被覆粒子(A)の非水溶性重合体による平均被覆率は、以下の方法によって測定しうる。
被覆粒子(A)の水分散液を乾燥厚みが1mmとなるようにシリコン容器に流し入れ、室温で72時間乾燥させて、乾燥体を得る。この乾燥体を、約0.1mm角のサイズとなるように粉砕する。粉砕した乾燥体をエポキシ樹脂に分散させ、エポキシ樹脂を硬化させて樹脂硬化体を得る。この樹脂硬化体を−80℃に冷却した後、ミクロトームで切断して薄膜を作製する。この薄膜を電界放出型電子顕微鏡(FE−TEM)で観察する。観察された像において、被覆粒子(A)200個を任意に選択する。そして、選択された被覆粒子(A)それぞれの非水溶性重合体による被覆率を測定する。その選択した被覆粒子(A)の非水溶性重合体による被覆率の平均値を、その多孔膜用スラリーにおける被覆粒子(A)の非水溶性重合体による平均被覆率とする。この際、被覆の厚み(即ち、非水溶性重合体の膜の厚み)が1nm未満の被覆部分については、観察が困難であることと、被覆による効果が十分に得られないことから、被覆していないと定義した。
【0057】
多孔膜用スラリーに含まれる被覆粒子(A)の非水溶性重合体による平均被覆率を上述した範囲に収めるための手段としては、例えば、非導電性粒子の存在下で非水溶性重合体の合成反応を行って被覆粒子(A)を製造する場合には、その合成反応の反応時間を長くする方法が挙げられる。また、例えば、非水溶性重合体の単量体を調製することにより、非水溶性重合体の非導電性粒子に対する親和性を高める方法が挙げられる。
【0058】
また、被覆粒子(A)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0059】
多孔膜用スラリーにおいて、絶縁粒子のうちの通常15体積%以上85体積%以下が、被覆粒子(A)となっている。より詳しくは、絶縁粒子の全量(絶縁粒子の全量とは、即ち、被覆粒子(A)と裸粒子(B)の合計量を表す。)を100体積%とした場合、被覆粒子(A)の量は、通常15体積%以上、好ましくは25体積%以上、より好ましくは35体積%以上であり、通常85体積%以下、好ましくは75体積%以下、より好ましくは65体積%以下である。被覆粒子(A)の量を前記範囲の下限値以上にすることにより、多孔膜と電極との結着性を高めることができるので、二次電池のサイクル特性を良好にできる。また、上限値以下にすることにより、セパレーターの耐熱収縮性を高めることができるので、二次電池の安全性を良好にできる。また、多孔膜のイオン透過性を高くして、抵抗を下げることができるので、二次電池のレート特性を良好にできる。
【0060】
被覆粒子(A)の製造方法に制限は無い。例えば、被覆粒子(A)は、非導電性粒子の存在下において、非水溶性重合体を合成することにより、製造しうる。また、例えば、被覆粒子(A)は、非導電性粒子と非水溶性重合体とを適切な条件において混合することにより、製造しうる。また、非導電性粒子と非水溶性重合体との結着性を高めるため、非導電性粒子には、予め表面処理を施しておいてもよい。
【0061】
[1.1.2.裸粒子(B)]
図1に示すように、裸粒子(B)20は、非水溶性重合体12で被覆されていない非導電性粒子11自体であってもよい。また、裸粒子(B)20は、非導電性粒子11と、その非導電性粒子11の表面11Sを覆い当該絶縁粒子の表面の70%未満を占める非水溶性重合体12とを有する粒子(図示せず)であってもよい。
【0062】
裸粒子(B)において、非導電性粒子としては、被覆粒子(A)に係る非導電性粒子と同じものを用いる。
【0063】
裸粒子(B)においては、非導電性粒子は非水溶性重合体で被覆されていてもよい。ただしその場合、裸粒子(B)の表面において非水溶性重合体が占める範囲は、当該裸粒子(B)の表面の70%未満である。また、このように裸粒子(B)において非導電性粒子が非水溶性重合体で被覆される場合、裸粒子(B)の非水溶性重合体としては、被覆粒子(A)に係る非水溶性重合体として説明した範囲のものを任意に用いうる。さらに、裸粒子(B)において、非水溶性重合体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0064】
中でも、裸粒子(B)としては、非水溶性重合体による平均被覆率が低いことが好ましく、平均被覆率がゼロであることが特に好ましい。したがって、裸粒子(B)としては、非水溶性重合体で被覆されていない非導電性粒子それ自体を用いることが特に好ましい。このように非導電性粒子自体を裸粒子(B)として被覆粒子(A)と組み合わせることにより、セパレーターの耐熱収縮性を高めて、二次電池の安全性を良好にできる。また、多孔膜のイオン透過性を高くして、抵抗を下げることができるので、二次電池のレート特性を良好にできる。
【0065】
また、裸粒子(B)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0066】
[1.2.粒子状バインダー]
多孔膜用スラリーは、粒子状バインダーを含む。これにより、セパレーターの耐熱収縮性を高めて、二次電池の安全性を良好にできる。
【0067】
粒子状バインダーは、多孔膜用スラリーにおいて、媒体中に分散している。このように媒体中で分散可能とするために、粒子状バインダーは、通常、媒体に対して不溶性の材料で形成される。したがって、例えば媒体として水を用いる場合には、粒子状バインダーは、非水溶性の材料で形成されることが好ましい。なお、前記粒子状バインダーは、被覆粒子(A)の非水溶性重合体には含まれない。
【0068】
通常は、粒子状バインダーは重合体により形成される。粒子状バインダーの材料となりうる重合体のうち好適な例としては、スチレン・ブタジエン共重合体(SBR)、アクリロニトリル・ブタジエン共重合体(NBR)、水素化SBR、水素化NBR、スチレン−イソプレン−スチレンブロック共重合体(SIS)、アクリル重合体などが挙げられる。また、粒子状バインダーの材料となりうる重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、正極側及び負極側のいずれの多孔膜においても用いうるため汎用性に優れることから、アクリル重合体がより好ましい。
【0069】
粒子状バインダーの材料となりうるアクリル重合体において、(メタ)アクリル酸エステル単量体単位に対応する(メタ)アクリル酸エステル単量体の例としては、被覆粒子(A)の非水溶性重合体として用いうるアクリル重合体の説明において挙げたのと同様の例が挙げられる。また、それらの(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0070】
粒子状バインダーの材料となりうるアクリル重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、特に好ましくは97重量%以下である。(メタ)アクリル酸エステル単量体単位の割合を前記範囲の下限値以上にすることにより、多孔膜の柔軟性を高めて、多孔膜と有機セパレーター層との結着性を高めることができる。また、上限値以下にすることにより、多孔膜の剛性を高めて、これによっても多孔膜と有機セパレーター層との結着性を高めることができる。
【0071】
また、粒子状バインダーの材料となりうるアクリル重合体は、(メタ)アクリロニトリル単量体単位を含みうる。この際、アクリル重合体は、(メタ)アクリロニトリル単量体単位として、アクリロニトリルを重合して形成される構造を有する構造単位だけを含んでいてもよく、メタクリロニトリルを重合して形成される構造を有する構造単位だけを含んでいてもよく、アクリロニトリルを重合して形成される構造を有する構造単位とメタクリロニトリルを重合して形成される構造を有する構造単位の両方を任意の比率で組み合わせて含んでいてもよい。
【0072】
粒子状バインダーの材料となりうるアクリル重合体における(メタ)アクリロニトリル単量体単位の割合は、好ましくは0.2重量%以上、より好ましくは0.5重量%以上、特に好ましくは1.0重量%以上であり、好ましくは20.0重量%以下、より好ましくは10.0重量%以下、特に好ましくは5.0重量%以下である。(メタ)アクリロニトリル単量体単位の割合を前記範囲の下限値以上にすることにより、二次電池の寿命を特に長くすることができる。また、上限値以下にすることにより、多孔膜の機械的強度を高めることができる。
【0073】
また、粒子状バインダーの材料となりうるアクリル重合体は、エチレン性不飽和カルボン酸単量体単位を含みうる。このエチレン性不飽和カルボン酸単量体単位に対応するエチレン性不飽和カルボン酸単量体の例としては、被覆粒子(A)の非水溶性重合体として用いうるアクリル重合体の説明において挙げたのと同様の例が挙げられる。また、それらのエチレン性不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0074】
粒子状バインダーの材料となりうるアクリル重合体におけるエチレン性不飽和カルボン酸単量体単位の割合は、好ましくは0.2重量%以上、より好ましくは0.5重量%以上、特に好ましくは1.0重量%以上であり、好ましくは10.0重量%以下、より好ましくは6.0重量%以下、特に好ましくは4.0重量%以下である。エチレン性不飽和カルボン酸単量体単位の割合を前記範囲の下限値以上にすることにより、粒子状バインダーの絶縁粒子及び有機セパレーター層への結着性を高めたり、多孔膜の機械的強度を高めたりすることができる。また、上限値以下にすることにより、多孔膜の柔軟性を高めて、多孔膜と有機セパレーター層との結着性を高めることができる。
【0075】
また、粒子状バインダーの材料となりうるアクリル重合体は、架橋性単量体単位を含みうる。この架橋性単量体単位に対応する架橋性単量体の例としては、被覆粒子(A)の非水溶性重合体として用いうるアクリル重合体の説明において挙げたのと同様の例が挙げられる。また、それらの架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0076】
粒子状バインダーの材料となりうるアクリル重合体における架橋性単量体単位の割合は、好ましくは0.2重量%以上、より好ましくは0.6重量%以上、特に好ましくは1.0重量%以上であり、好ましくは5.0重量%以下、より好ましくは4.0重量%以下、特に好ましくは3.0重量%以下である。架橋性単量体単位の割合を前記範囲の下限値以上にすることにより、多孔膜の機械的強度を高めることができる。また、上限値以下にすることにより、多孔膜の柔軟性が損なわれて脆くなることを防止できる。
【0077】
さらに、粒子状バインダーの材料となりうるアクリル重合体は、上述した構造単位以外にも、任意の構造単位を含みうる。これらの任意の構造単位に対応する単量体の例としては、被覆粒子(A)の非水溶性重合体として用いうるアクリル重合体の説明において挙げたのと同様の例が挙げられる。また、それらの単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0078】
粒子状バインダーの個数平均粒子径は、好ましくは0.10μm以上、より好ましくは0.15μm以上、特に好ましくは0.20μm以上であり、好ましくは1.00μm以下、より好ましくは0.80μm以下、特に好ましくは0.60μm以下である。個数平均粒子径を前記範囲の下限値以上にすることにより、スラリー層において粒子状バインダーのマイグレーションを防止して、粒子状バインダーを多孔膜中に均一に分散させることができるので、多孔膜の強度を効果的に向上させることができる。また、上限値以下にすることにより、絶縁粒子と粒子状バインダーとの接着点を多くして結着性を高くできる。ここで、粒子状バインダーの個数平均粒子径は、当該粒子状バインダーが非水電解液に膨潤していない状態での個数平均粒子径を表す。
【0079】
粒子状バインダーの量は、絶縁粒子100体積部に対して、好ましくは4.0体積部以上、より好ましくは8.0体積部以上、特に好ましくは12.0体積部以上であり、好ましくは40.0体積部以下、より好ましくは35.0体積部以下、特に好ましくは30.0体積部以下である。粒子状バインダーの量を前記範囲の下限値以上にすることにより、多孔膜及びセパレーターの機械的強度を高くすることができる。また、前記範囲の上限値以下とすることにより、多孔膜のイオン透過性を高くできるので、二次電池の抵抗を小さくすることができる。
【0080】
また、50℃で10分間乾燥しさらに105℃で3時間乾燥させた粒子状バインダーの非水電解液に対する膨潤度は、所定の範囲に収まる。この膨潤度の具体的な範囲は、好ましくは10倍未満、より好ましくは7倍未満、特に好ましくは5倍未満である。通常、50℃で10分間乾燥しさらに105℃で3時間乾燥させた粒子状バインダーの非水電解液に対する膨潤度は、多孔膜用スラリーを用いて形成された多孔膜に含まれる粒子状バインダーの非水電解液に対する膨潤度と同じになる。前記の膨潤度を前記範囲の上限値以下にすることにより、粒子状バインダーの結着性を高くすることができる。そのため、多孔膜における絶縁粒子への粒子状バインダーの結着性を高めたり、多孔膜と有機セパレーター層との結着性を高めたりすることが可能となるので、セパレーターの機械的強度を高めて、二次電池の安全性を向上させることができる。また、前記の膨潤度の下限値に特に制限は無いが、通常は1倍以上となりうる。
【0081】
50℃で10分間乾燥しさらに105℃で3時間乾燥させたバインダーの非水電解液に対する膨潤度の測定方法は、以下の通りである。
試料となるバインダーを含む水分散液又は水溶液を用意し、その固形分濃度を10重量%に調整する。濃度を調整した水分散液又は水溶液を、乾燥厚みが1mmとなるようにシリコン容器に流し入れ、乾燥させて、1cm×1cmの正方形のフィルムを作製する。この際の乾燥は、50℃で10分間乾燥しさらに105℃で3時間乾燥させる、という乾燥条件で行なう。この乾燥条件は、通常、多孔膜に含まれるのと同様のバインダーが得られる乾燥条件である。そして、このフィルムの重量M0を測定する。
その後、前記のフィルムを非水電解液に60℃で72時間浸漬し、浸漬後のフィルムの重量M1を測定する。
測定した重量M0及びM1から、膨潤度を式(M1−M0)/M0より算出する。
【0082】
この際、バインダーの膨潤度を評価するための非水電解液としては、濃度1.0MのLiPF
6溶液に、ビニレンカーボネート(VC)を2容量%添加したものを用いる。また、LiPF
6溶液の溶媒としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、重量比EC/EMC=3/7で含む混合溶媒を用いる。
【0083】
粒子状バインダーが上述した膨潤度を有するようにするための手段としては、例えば粒子状バインダーの材料となりうる重合体の単量体の種類、並びに、前記重合体の架橋度及び分子量などを適切に調整することなどが挙げられる。
【0084】
粒子状バインダーの製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、乳化重合法などの、いずれの方法も用いうる。中でも、水中で重合をすることができ、そのまま多孔膜用スラリーの材料として好適に使用できるので、乳化重合法及び懸濁重合法が好ましい。また、粒子状バインダーを製造する際、その反応系には分散剤を含ませることが好ましい。
【0085】
分散剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウム等のベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウム等のアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウム等のスルホコハク酸塩;ラウリン酸ナトリウム等の脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩等のエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体等の非イオン性乳化剤;ゼラチン、無水マレイン酸−スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコール等の水溶性高分子;などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウム等のベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウム等のアルキル硫酸塩であり、更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウム等のベンゼンスルホン酸塩である。分散剤の量は任意に設定してもよく、単量体の総量100重量部に対して、通常0.01重量部〜10重量部である。
【0086】
[1.3.水溶性バインダー]
多孔膜用スラリーは、水溶性バインダーを含む。これにより、セパレーターの耐熱収縮性を高めて、二次電池の安全性を良好にできる。
水溶性バインダーは、水に可溶である。そのため、例えば媒体として水を用いる場合には、通常、水溶性バインダーは媒体に溶解しており、非粒子状のバインダーとなる。その場合、多孔膜用スラリーにおいて、水溶性バインダーの一部は媒体中に遊離しているが、別の一部は絶縁粒子の表面に吸着するので、絶縁粒子の分散性を向上させることができる。
【0087】
また、50℃で10分間乾燥しさらに105℃で3時間乾燥させた水溶性バインダーの非水電解液に対する膨潤度は、所定の範囲に収まる。この膨潤度の具体的な範囲は、好ましくは5倍以下、好ましくは3.5倍以下、より好ましくは2倍以下である。通常、50℃で10分間乾燥しさらに105℃で3時間乾燥させた水溶性バインダーの非水電解液に対する膨潤度は、多孔膜用スラリーを用いて形成された多孔膜に含まれる水溶性バインダーの非水電解液に対する膨潤度と同じになる。前記の膨潤度を前記範囲の上限値以下にすることにより、多孔膜の耐熱性を高めることができる。そのため、加熱時において多孔膜の収縮を防止できるので、二次電池の安全性を高めることができる。また、前記の膨潤度の下限値に特に制限は無いが、通常は1倍以上となりうる。
【0088】
50℃で10分間乾燥しさらに105℃で3時間乾燥させた水溶性バインダーの非水電解液に対する膨潤度は、粒子状バインダーの項において説明した方法で測定しうる。
【0089】
水溶性バインダーが上述した膨潤度を有するようにするための手段としては、例えば水溶性バインダーの材料となりうる重合体の単量体の種類、並びに、前記重合体の架橋度及び分子量などを適切に調整することなどが挙げられる。
【0090】
通常は、水溶性バインダーは重合体により形成される。水溶性バインダーの材料となりうる重合体のうち好適な例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系重合体及びこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸及びこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸若しくはフマル酸とビニルアルコールの共重合体等のポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。ここで、「(変性)ポリ」は「未変性ポリ」及び「変性ポリ」を意味する。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0091】
水溶性バインダーの量は、絶縁粒子100体積部に対して、好ましくは0.50体積部以上、より好ましくは1.0体積部以上、特に好ましくは1.5体積部以上であり、好ましくは6.0体積部以下、より好ましくは5.0体積部以下、特に好ましくは4.0体積部以下である。水溶性バインダーの量を前記範囲の下限値以上にすることにより、多孔膜の耐熱性を向上させることができる。また、前記範囲の上限値以下とすることにより、多孔膜のイオン透過性を高くできるので、二次電池の抵抗を小さくすることができる。
【0092】
[1.4.媒体]
媒体としては、水系媒体を用いることが好ましい。水系媒体としては、例えば、水;ダイアセトンアルコール、γ−ブチロラクトン等のケトン類;エチルアルコール、イソプロピルアルコール、ノルマルプロピルアルコール等のアルコール類;プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、エチレングリコールターシャリーブチルエーテル、ブチルセロソルブ、3−メトキシ−3−メチル−1−ブタノール、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等のグリコールエーテル類;1,3−ジオキソラン、1,4−ジオキソラン、テトラヒドロフラン等のエーテル類;などが挙げられる。中でも水は、可燃性がなく、粒子状バインダーの粒子の分散体が得られやすいという観点から、好ましい。また、これらの媒体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0093】
媒体の量は、通常、多孔膜を製造する際に作業性を損なわない範囲の粘度を多孔膜用スラリーが有する範囲で任意に設定しうる。具体的には、多孔膜用スラリーの固形分濃度が、好ましくは1体積%以上、より好ましくは5体積%以上、特に好ましくは10体積%以上であり、好ましくは60体積%以下、より好ましくは50体積%以下、特に好ましくは45体積%以下となるように媒体の量を設定する。
【0094】
[1.5.任意の成分]
多孔膜用スラリーは、絶縁粒子、粒子状バインダー、水溶性バインダー及び媒体以外の任意の成分を含みうる。このような任意の成分としては、電池反応に過度に好ましくない影響を及ぼさないものを用いうる。
【0095】
任意の成分としては、例えば、イソチアゾリン系化合物、キレート化合物、ピリチオン化合物、分散剤、レベリング剤、酸化防止剤、増粘剤、消泡剤、湿潤剤、及び、電解液分解抑制の機能を有する電解液添加剤などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0096】
[1.6.多孔膜用スラリーの製造方法]
多孔膜用スラリーは、例えば、絶縁粒子、粒子状バインダー、水溶性バインダー及び媒体、並びに、必要に応じて用いられる任意の成分を混合して製造しうる。この際の混合順序には特に制限は無い。また、混合方法にも特に制限は無い。通常は、絶縁粒子を速やかに分散させるため、混合装置として分散機を用いて混合を行う。
【0097】
分散機は、上記成分を均一に分散及び混合できる装置が好ましい。例を挙げると、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。中でも、高い分散シェアを加えることができることから、ビーズミル、ロールミル、フィルミックス等の高分散装置が特に好ましい。
【0098】
[2.二次電池セパレーター用多孔膜]
本発明の多孔膜は、絶縁粒子、粒子状バインダー及び水溶性バインダーを含む。この多孔膜において、絶縁粒子に含まれる非導電性粒子間には空隙が形成されており、この空隙は孔を形成している。そのため、本発明の多孔膜は、多孔質構造を有するので、イオンはこの多孔膜を透過できる。したがって、二次電池において、多孔膜によっては電池反応は阻害されない。また、絶縁粒子は導電性を有さないので、多孔膜に絶縁性を発現させることができる。
【0099】
また、本発明の多孔膜においては、絶縁粒子のうち上述した所定割合のものが被覆粒子(A)となっていて、且つ、被覆粒子(A)の非水溶性重合体の非水電解液に対する膨潤度が上述した範囲となっている。このような構成により、本発明の多孔膜を用いれば、安全性と、高温サイクル特性及びレート特性等の電池特性との両方に優れる二次電池を実現できる。
【0100】
前記のように優れた安全性を有する二次電池を実現できる理由は必ずしも定かでは無いが、本発明者の検討によれば、以下のように推察される。
一般に有機セパレーター層は高温になった場合に収縮する傾向がある。これに対し、多孔膜は、剛性が高く熱による変形を生じにくい非導電性粒子を有する絶縁粒子を含む。また、絶縁粒子は粒子状バインダー及び水溶性バインダーによって強固に結着されている。そのため、多孔膜は、熱による収縮を生じ難い。ここで、本発明の多孔膜では、粒子状バインダーが多孔膜を有機セパレーター層に安定して結着させる。そのため、有機セパレーター層が熱により収縮しようとしても、その収縮応力に多孔膜が抗するので、有機セパレーター層の収縮を防止することができる。したがって、高温環境のような苛酷な環境下においても本発明の多孔膜を備えるセパレーターは短絡を防止できるので、二次電池の安全性を高めることが可能となっているものと推察される。
また、通常、粒子状バインダーは靭性を有し、多孔膜の機械的強度を向上させることができる。そのため、温度変化によって多孔膜中に応力が生じたり、多孔膜に外力が加えられたりしても、多孔膜の破損を防止することができる。さらに、水溶性バインダーは通常、多孔膜中に均一に存在し、絶縁粒子同士を強力に結着できる。そのため、温度変化及び外力による非導電性粒子の多孔膜からの脱落を、生じ難くできる。したがって、通常は、これらの粒子状バインダー及び水溶性バインダーの作用によっても、短絡を防止できるので、安全性が更に向上しているものと推察される。
【0101】
また、前記のように優れた高温サイクル特性及びレート特性が得られる理由は定かでは無いが、本発明者の検討によれば、以下のように推察される。
図2は、非水電解液に湿潤した状態の多孔膜の表面近傍を拡大して模式的に示す断面図である。
図1及び
図2に示すように、非水電解液に湿潤していない状態の多孔膜(
図1参照)に比べて、非水電解液に湿潤した状態の多孔膜(
図2参照)では、非水電解液に膨潤することにより、被覆粒子(A)10の非水溶性重合体12の体積が大きくなる。そのため、非水溶性重合体12の一部は多孔膜の表面から突出した状態となる。このような状態では、多孔膜の表面に電極を貼り合わせると、電極の表面に非水溶性重合体12が接触することができる。したがって、非水溶性重合体12により、電極と多孔膜とを強力に結着させることができる。
前記のようにして電極と多孔膜との結着性を向上させることができるので、高温環境で充放電を繰り返した場合でも、電極と多孔膜との剥離を防止できる。仮に電極と多孔膜との剥離が生じると、正極と負極との間の距離が大きくなり、そのため二次電池の抵抗が大きくなると考えられる。しかし、本発明の多孔膜を用いれば、電極と多孔膜との剥離を防止できるので、前記のような抵抗の増加を防止できるため、高温サイクル特性を高くできると推察される。
また、
図2に示すように、多孔膜では絶縁粒子30として被覆粒子(A)10と裸粒子(B)20とを組み合わせて用いている。そのため、非水溶性重合体12が膨潤しても多孔膜の孔を塞ぎ難くなっているので、多孔膜のイオン透過性を高くできる。よって、本発明の多孔膜は、二次電池の抵抗を上昇させ難い。したがって、安全性向上のためにセパレーターに多孔膜を設けた割には二次電池の抵抗を上昇させ難いので、二次電池のレート特性を高くできると推察される。
【0102】
また、粒子状バインダー40は、好ましくは非水電解液に膨潤し難い。これにより、粒子状バインダー40は、通常、絶縁粒子30同士、及び、絶縁粒子30と有機セパレーター(図示せず)とを良好に結着させられるようになっていると推察される。さらに、粒子状バインダー40は、粒子状であるので、多孔膜の孔を塞ぎ難い。したがって、本発明の多孔膜を用いた二次電池では、抵抗を抑えられていると推察される。
【0103】
さらに、水溶性バインダー50は、好ましくは非水電解液に膨潤し難い。そのため、水溶性バインダー50は高温の非水電解中においても絶縁粒子30同士を強力に結着できているものと推察される。
【0104】
上述したように、本発明の多孔膜は、粒子状バインダーを含む。ただし、多孔膜においてバインダーが粒子状であるとは、多孔膜用スラリーにおける粒子状バインダーの粒子形状がそのまま維持されることを必ずしも意味するものではない。
図1及び
図2に示すように、通常、粒子状バインダー40は、多孔膜においては絶縁粒子30に挟み潰されるため不定形な形状となり、不規則な形状となりやすい。しかし、そのような状態でも、粒子状バインダー40は、非粒子状のバインダー(非粒子状のバインダーとしては、例えば、媒体として水を用いたときの水溶性バインダー50が挙げられる。)とは異なり、その粒子状バインダー40が存在する位置ごとにまとまって存在している。多孔膜においては、このように非粒子状のバインダーよりもまとまっている粒子状バインダー40の状態を、粒子状という。
【0105】
多孔膜の厚みは、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.3μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは10μm以下である。多孔膜の厚みを前記範囲の下限値以上とすることにより、多孔膜の耐熱性を高くすることができる。また上限値以下とすることにより、多孔膜によるイオン伝導性の低下を抑制することができる。
【0106】
本発明の多孔膜は、例えば、多孔膜用スラリーを基材上に塗布してスラリー層を得ること、及び、このスラリー層を乾燥させること、を含む製造方法により、製造しうる。
【0107】
多孔膜用スラリーの塗布方法に制限は無い。塗布方法の例を挙げると、ドクターブレード法、ディップ法、ダイコート法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などが挙げられる。多孔膜用スラリーの塗布量は、通常、所望の厚みの多孔膜が得られる範囲にする。
【0108】
基材上にスラリー層を形成した後で、そのスラリー層を乾燥させる。乾燥により、スラリー層から媒体が除去されて、多孔膜が得られる。乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射による乾燥法;などが挙げられる。
【0109】
乾燥の際の温度は、好ましくは40℃以上、より好ましくは45℃以上、特に好ましくは50℃以上であり、好ましくは90℃以下、より好ましくは80℃以下、特に好ましくは70℃以下である。乾燥温度を前記範囲の下限以上にすることにより多孔膜用スラリーからの媒体と低分子化合物を効率よく除去できる。また、上限以下とすることにより基材の熱による収縮を抑えることができる。
【0110】
乾燥時間は、好ましくは5秒以上、より好ましくは10秒以上、特に好ましくは15秒以上であり、好ましくは3分以下、より好ましくは2分以下、特に好ましくは1分以下である。乾燥時間を前記範囲の下限以上にすることにより、多孔膜から媒体を十分に除去できるので、電池の出力特性を向上させることができる。また、上限値以下とすることにより、製造効率を高めることができる。
【0111】
本発明の多孔膜の製造方法においては、上述した以外の任意の操作を行ってもよい。例えば、金型プレス及びロールプレス等のプレス方法によって、多孔膜に加圧処理を施してもよい。加圧処理を施すことにより、有機セパレーター層等の基材と多孔膜との結着性を向上させることができる。ただし、多孔膜の空隙率が損なわれないようにするために、圧力及び加圧時間を適切に制御することが好ましい。また、残留水分除去のため、例えば真空乾燥やドライルーム内で乾燥することが好ましい。加熱処理することも好ましく、これにより多孔膜中の重合体に含まれる熱架橋基を架橋させて、結着力を高めることができる。
【0112】
[3.二次電池用セパレーター]
本発明の二次電池用セパレーターは、有機セパレーター層、及び、この有機セパレーター層上に形成された本発明の多孔膜を備える。二次電池用セパレーターが備える有機セパレーター層及び多孔膜はいずれも多孔質構造を有するので、二次電池用セパレーターによっては、電池反応は阻害されない。また、二次電池用セパレーターは本発明の多孔膜を備えるので、この二次電池用セパレーターを用いることにより、安全性、高温サイクル特性及びレート特性のいずれにも優れる二次電池を実現できる。
【0113】
有機セパレーター層としては、例えば、微細な孔を有する多孔性基材を用いうる。このような有機セパレーター層を用いることにより、二次電池において電池の充放電を妨げることなく電極の短絡を防止することができる。有機セパレーター層の具体例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられる。
【0114】
多孔膜は、有機セパレーター層の、片方の表面だけに設けてもよく、両方の表面に設けてもよい。
【0115】
有機セパレーター層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは40μm以下、より好ましくは30μm以下、特に好ましくは10μm以下である。この範囲であると二次電池内での有機セパレーター層による抵抗が小さくなり、また、電池製造時の作業性に優れる。
【0116】
本発明の二次電池用セパレーターの製造方法に制限は無い。例えば、本発明の多孔膜と有機セパレーター層とを貼り合せて製造してもよい。また、例えば、基材として有機セパレーター層を用いて上述した多孔膜の製造方法を実施することにより、二次電池用セパレーターを製造してもよい。
【0117】
[4.二次電池]
本発明の二次電池は、正極、負極、本発明の二次電池用セパレーター及び非水電解液を備える。具体的には、本発明の二次電池は、正極、本発明の二次電池用セパレーター及び負極をこの順に備え、更に非水電解液を備える。本発明の二次電池は、安全性、高温サイクル特性及びレート特性のいずれにも優れる。
【0118】
[4.1.正極及び負極]
電極としての正極及び負極は、いずれも、通常、集電体と、その集電体上に設けられた電極活物質層とを備える。
【0119】
集電体は、電気導電性を有し且つ電気化学的に耐久性のある材料を用いうる。中でも、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。その中でも、正極用集電体としてはアルミニウムが特に好ましく、負極用集電体としては銅が特に好ましい。
【0120】
集電体の形状は特に制限されないが、厚さ0.001mm以上0.5mm以下のシート状のものが好ましい。
集電体は、電極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用されうる。
また、電極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
【0121】
電極活物質層は、電極活物質を含む。以下の説明においては、電極活物質の中でも特に正極用の電極活物質のことを「正極活物質」、負極用の電極活物質のことを「負極活物質」と呼ぶことがある。電極活物質の種類は二次電池の種類に応じて様々であり、ここでは、特にリチウムイオン二次電池用の電極活物質について説明する。ただし、電極活物質は以下で挙げるものに限定されない。
【0122】
電極活物質は、非水電解液中で電位をかけることにより可逆的にリチウムイオンを挿入放出できるものを用いうる。電極活物質は、無機化合物を用いてもよく、有機化合物を用いてもよい。
【0123】
正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、例えば、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO
2、LiNiO
2、LiMnO
2、LiMn
2O
4、LiFePO
4、LiFeVO
4等のリチウム含有複合金属酸化物;TiS
2、TiS
3、非晶質MoS
2等の遷移金属硫化物;Cu
2V
2O
3、非晶質V
2O−P
2O
5、MoO
3、V
2O
5、V
6O
13等の遷移金属酸化物などが挙げられる。一方、有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性重合体が挙げられる。
【0124】
さらに、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。
また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
これらの正極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、前述の無機化合物と有機化合物との混合物を正極活物質として用いてもよい。
【0125】
正極活物質の粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択される。負荷特性、サイクル特性などの電池特性の向上の観点から、正極活物質の個数平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは50μm以下、より好ましくは20μm以下である。正極活物質の個数平均粒子径がこの範囲であると、充放電容量が大きい電池を得ることができ、かつ活物質層用スラリーおよび電極を製造する際の取扱いが容易である。
【0126】
負極活物質は、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性重合体;などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケル等の金属並びにこれらの合金;前記金属又は合金の酸化物;前記金属又は合金の硫酸塩;なども挙げられる。また、金属リチウム;Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等を使用してもよい。さらに、電極活物質は、機械的改質法により表面に導電材を付着させたものを使用してもよい。これらの負極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0127】
負極活物質の粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択される。初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、負極活物質の個数平均粒子径は、好ましくは1μm以上、より好ましくは15μm以上であり、好ましくは50μm以下、より好ましくは30μm以下である。
【0128】
電極活物質層は、電極活物質の他に、電極用バインダーを含むことが好ましい。電極用バインダーを含むことにより、電極中の電極活物質層の結着性が向上し、電極の撒回時等の工程上においてかかる機械的な力に対する強度が上がる。また、電極中の電極活物質層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。
【0129】
電極用バインダーとしては、例えば重合体を用いうる。電極用バインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いてもよい。さらに、電極用バインダーとして、例えば多孔膜用のバインダーと同様の重合体を用いてもよい。電極用バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0130】
電極活物質層における電極用バインダーの量は、電極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、好ましくは5重量部以下、より好ましくは4重量部以下、特に好ましくは3重量部以下である。電極用バインダーの量が前記範囲であることにより、電池反応を阻害せずに、電極から電極活物質が脱落するのを防ぐことができる。
【0131】
電極活物質層には、本発明の効果を著しく損なわない限り、電極活物質及び電極用バインダー以外にも、任意の成分が含まれていてもよい。その例を挙げると、導電材、補強材などが挙げられる。なお、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0132】
導電材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボン;黒鉛等の炭素粉末;各種金属のファイバー及び箔;などが挙げられる。導電材を用いることにより、電極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合にはサイクル特性を改善できる。
【0133】
補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
【0134】
導電材及び補強剤の使用量は、電極活物質100重量部に対して、それぞれ、通常0重量部以上、好ましくは1重量部以上であり、好ましくは20重量部以下、より好ましくは10重量部以下である。
【0135】
電極活物質層の厚みは、正極及び負極のいずれも、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは300μm以下、より好ましくは250μm以下である。
【0136】
電極活物質層の製造方法は特に制限されない。電極活物質層は、例えば、電極活物質及び媒体、並びに、必要に応じて電極用バインダー及び任意の成分を含む活物質層用スラリーを集電体上に塗布し、乾燥させて製造しうる。媒体としては、水及び有機溶媒のいずれも使用しうる。
【0137】
[4.2.非水電解液]
非水電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用しうる。リチウム塩としては、例えば、LiPF
6、LiAsF
6、LiBF
4、LiSbF
6、LiAlCl
4、LiClO
4、CF
3SO
3Li、C
4F
9SO
3Li、CF
3COOLi、(CF
3CO)
2NLi、(CF
3SO
2)
2NLi、(C
2F
5SO
2)NLiなどが挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF
6、LiClO
4、CF
3SO
3Liは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0138】
支持電解質の量は、非水電解液に対して、好ましくは1重量%以上、より好ましくは5重量%以上であり、好ましくは30重量%以下、より好ましくは20重量%以下である。支持電解質の量をこの範囲に収めることにより、イオン導電度を高くして、二次電池の充電特性及び放電特性を良好にできる。
【0139】
非水電解液の溶媒としては、支持電解質を溶解させられるものを用いうる。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0140】
また、非水電解液には必要に応じて添加剤を含有させうる。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0141】
[4.3.製造方法]
二次電池の製造方法としては、例えば、電極及び二次電池用セパレーターを適切に組み合わせて重ね、電池形状に応じて、巻く、折るなどして電池容器に入れ、電池容器に非水電解液を注入して封口する方法が挙げられる。また、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、リード板、エキスパンドメタルなどを入れ、過充放電の防止、電池内部の圧力上昇の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
【実施例】
【0142】
以下、本発明について実施例を示して具体的に説明する。ただし、本発明は以下の実施例に限定されず、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。また、以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。さらに、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
【0143】
[評価方法の説明]
〔被覆粒子(A)の平均被覆率の測定方法〕
固形分濃度が10重量%の被覆粒子(A)の水分散液を乾燥厚みが1mmとなるようにシリコン容器に流し入れ、室温で72時間乾燥させて、乾燥体を得た。この乾燥体を、約0.1mm角のサイズとなるように粉砕した。粉砕した乾燥体をエポキシ樹脂に分散させ、エポキシ樹脂を硬化させて樹脂硬化体を得た。この樹脂硬化体を−80℃に冷却した後、ミクロトームで切断して薄膜を作製した。この薄膜を電界放出型電子顕微鏡(FE−TEM)で観察した。観察された像において、被覆粒子(A)200個を任意に選択した。そして、選択された被覆粒子(A)それぞれの非水溶性重合体による被覆率を測定した。ここで、非水溶性重合体による被覆率とは、被覆粒子(A)の面積に対する、その被覆粒子(A)の非水溶性重合体が占める部分の面積の割合をいう。その選択した被覆粒子(A)の非水溶性重合体による被覆率の平均値を、その多孔膜用スラリーにおける被覆粒子(A)の非水溶性重合体による平均被覆率とした。また、被覆の厚みが1nm未満の被覆部分については、観察が困難であることと、被覆による効果が十分に得られないことから、被覆していないと定義した。
【0144】
〔非水溶性重合体の膨潤度測定方法〕
固形分濃度が10重量%の被覆粒子(A)の水分散液を乾燥厚みが1mmとなるようにシリコン容器に流し入れ、50℃で10分間乾燥し、さらに105℃で3時間本乾燥させて、乾燥体を得た。この乾燥体を、約0.1mm角のサイズとなるように粉砕した。粉砕した乾燥体をエポキシ樹脂に分散させ、エポキシ樹脂を硬化させて樹脂硬化体を得た。この樹脂硬化体を−80℃に冷却した後、ミクロトームで切断して薄膜を作製した。この薄膜を電界放出型電子顕微鏡(FE−TEM)で観察した。観察された像において、被覆粒子(A)200個を任意に選択した。そして、選択された被覆粒子(A)それぞれの、その被覆粒子(A)の非水溶性重合体が占める部分の面積を測定した。その選択した被覆粒子(A)の非水溶性重合体が占める部分の面積の平均値を、面積E0とした。
【0145】
また別途、固形分濃度が10重量%の被覆粒子(A)の水分散液を乾燥厚みが1mmとなるようにシリコン容器に流し入れ、50℃で10分間乾燥し、さらに105℃で3時間本乾燥させて、乾燥体を得た。この乾燥体を、非水電解液に60℃で72時間浸漬し、浸漬後に凍結乾燥させた。このように凍結乾燥させた乾燥体を、約0.1mm角のサイズとなるように粉砕した。粉砕した乾燥体をエポキシ樹脂に分散させて、エポキシ樹脂を硬化させて樹脂硬化体を得た。この樹脂硬化体を−80℃に冷却した後、ミクロトームで切断して薄膜を作製した。この薄膜を電界放出型電子顕微鏡(FE−TEM)で観察した。観察された像において、被覆粒子(A)200個を任意に選択した。そして、選択された被覆粒子(A)それぞれの、その被覆粒子(A)の非水溶性重合体が占める部分の面積を測定した。その選択した被覆粒子(A)の非水溶性重合体が占める部分の面積の平均値を、面積E1とした。
この際、非水電解液は、濃度1.0MのLiPF
6溶液に、ビニレンカーボネート(VC)を2容量%添加したものを用いた。また、LiPF
6溶液の溶媒としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、重量比EC/EMC=3/7で含む混合溶媒を用いた。
【0146】
前記の面積E0及び面積E1を用いて、非水溶性重合体の膨潤度Sを、以下の式で算出した。
S=((E1)
1/2)
3/((E0)
1/2)
3【0147】
〔水溶性バインダーの膨潤度の測定方法〕
水溶性バインダーの水溶液を用意し、その固形分濃度を10重量%に調整した。濃度を調整した水溶液を、乾燥厚みが1mmとなるようにシリコン容器に流し入れ、50℃で10分間乾燥し、さらに105℃で3時間本乾燥させて、1cm×1cmの正方形のフィルムを作製した。このフィルムの重量M0を測定した。
【0148】
その後、フィルムを非水電解液に60℃で72時間浸漬し、浸漬後のフィルムの重量M1を測定した。
測定した重量M0及びM1から、膨潤度を式(M1−M0)/M0より算出した。
【0149】
この際、非水電解液は、濃度1.0MのLiPF
6溶液に、ビニレンカーボネート(VC)を2容量%添加したものを用いた。また、LiPF
6溶液の溶媒としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、重量比EC/EMC=3/7で含む混合溶媒を用いた。
【0150】
〔非導電性粒子の個数平均粒子径の測定方法〕
非導電性粒子の個数平均粒子径は、レーザー回折散乱粒度分布測定装置(ベックマン・コールター社製「LS230」)を用いて測定した。ここで個数平均粒子径とは、粒子径−個数積算分布において、積算分布の値が50%となる粒子径である。
【0151】
〔セパレーターの熱収縮試験〕
多孔膜付のセパレーターを幅10cm×長さ10cmに切り出し試験片とした。試験片を温度150℃に調節されたオーブン内に1時間放置した後、各辺の長さを測定し、最も収縮率の大きい辺の収縮率を下記基準で評価した。熱収縮率が小さいほど、二次電池の安全性に優れることを示している。
【0152】
(収縮率の評価基準)
A:3.0%未満
B:3.0%以上5.0%未満
C:5.0%以上10.0%未満
D:10.0%以上
【0153】
〔非水電解液中でのセパレーターと電極との接着性試験〕
多孔膜付のセパレーター及び電極を幅10mm×長さ50mmに切り出し、試験片とした。切り出した電極の活物質層側の面上に、セパレーターを配置して、電極及びセパレーターを備える、負極活物質層/集電体/負極活物質層/多孔膜/有機セパレーター層/多孔膜/正極活物質層/集電体/正極活物質層という構成の積層体を得た。
【0154】
前記の積層体をアルミニウム包材中に配置した。このアルミニウム包材の中に、非水電解液を空気が残らないように注入した。さらに150℃のヒートシールを行うことで、アルミニウム包材の開口を密封して、ラミネート型の試験用セルを作製した。この際、非水電解液は、濃度1.0MのLiPF
6溶液にビニレンカーボネート(VC)を2容量%添加したものを用いた。また、LiPF
6溶液の溶媒としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、重量比EC/EMC=3/7で含む混合溶媒を用いた。
【0155】
前記の試験用セルを、60℃で24時間静置した。その後、試験用セルに、卓上型テストプレスで、温度90℃、時間60秒、圧力1MPaの条件でヒートプレスを施した。その後、試験用セルを解体し、電極及びセパレーターを備える積層体を取り出し、試験片とした。
【0156】
予め水平な試験台にセロハンテープを固定した。このセロハンテープとしては、「JIS Z1522」に規定されるものを用いた。前記試験片を、電極側の面を下にしてセロハンテープに貼り付けた。これにより、試験片は電極側を下にしてセロハンテープに貼り付いた状態となった。その後、セパレーターの一端を垂直方向に引張り速度10mm/分で引っ張って剥がしたときの応力を測定した。正極および負極でそれぞれ測定を3回行い、その平均値を求めて接着強度とした。接着強度が大きいほど、セパレーターと電極の接着性に優れることを示している。
【0157】
(接着強度の評価基準)
A:接着強度が2.0N/m以上
B:接着強度が1.0N/m以上2.0N/m未満
C:接着強度が0.5N/m以上1.0N/m未満
D:接着強度が0.5N/m未満
【0158】
〔二次電池のレート特性の評価試験〕
パウチ型のリチウムイオン二次電池を、室温において24時間静置した後に、室温において0.1Cの充放電レートにて4.2Vまで充電し3.0Vまで放電を行う操作を行った。その後、25℃で0.1Cの充電レートで4.2Vまで充電し、1.0Cの放電レートで3.0Vまで放電する充放電サイクルと、室温において3.0Cの放電レートで3.0Vまで放電する充放電サイクルとを、それぞれ行った。1.0Cにおける電池容量に対する3.0Cにおける電池容量の割合を百分率で算出して充放電レート特性とし、下記の基準で判断した。充放電レート特性の値が高いほど、内部抵抗が小さく、高速充放電が可能であることを示す。
【0159】
(充放電レート特性の評価基準)
A:70%以上
B:65%以上70%未満
C:60%以上65%未満
D:60%未満
【0160】
〔二次電池の高温サイクル特性の評価試験〕
パウチ型のリチウムイオン二次電池を、室温において24時間静置した後に、室温において0.1Cの充放電レートにて4.2Vまで充電し3.0Vまで放電を行う操作を行い、初期容量C0を測定した。さらに、45℃環境下で、0.1Cの充放電レートで4.2Vに充電し、3.0Vまで放電する充放電を繰り返し、100サイクル後の容量C1を測定した。高温サイクル特性はΔC=C1/C0×100(%)で示す容量維持率にて評価した。この容量維持率の値が高いほど、放電容量の低下が少なく、サイクル特性に優れていることを示す。
【0161】
(容量維持率の評価基準)
A:80%以上
B:75%以上80%未満
C:70%以上75%未満
D:70%未満
【0162】
〔二次電池の安全性試験〕
パウチ型のリチウムイオン二次電池を、室温において24時間静置した後に、室温において0.1Cの充放電レートにて4.2Vまで充電し3.0Vまで放電を行う操作を行った。その後、25℃で0.1Cの充電レートで4.2Vまで充電した。このパウチ型のリチウムイオン二次電池に電圧測定端子を接続して、加熱試験装置の内部に置いた。その後、5℃/分の速度で、150℃まで昇温し、150℃で保持した。150℃到達から、短絡が発生するまでの経過時間を測定した。経過時間が長いほど、電池の安全性が高いことを示す。
【0163】
(経過時間の評価基準)
A:10分以上
B:8分以上10分未満
C:4分以上8分未満
D:1分以上4分未満
E:1分未満
【0164】
[実施例1]
(1−1.非導電性粒子の表面処理)
撹拌機を備えた反応器に、非導電性粒子としてテトラポッド(登録商標)状のアルミナ粒子(住友化学社製「AKP−3000」;個数平均粒子径550nm)100.0部(体積換算では、25.2体積部)、表面処理剤としてのビニルトリメトキシシラン(信越シリコーン社製「KBM−1003」)1.0部、メタノール900.0部、及びイオン交換水100.0部を入れ、室温で1時間撹拌した。その後、ろ過して、表面処理したアルミナ粒子を取り出した。
【0165】
(1−2.被覆粒子(A)の製造)
撹拌機を備えた反応器に、表面処理したアルミナ粒子400.0部、(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル50.0部、エチレン性不飽和カルボン酸単量体としてのメタクリル酸1.0部、(メタ)アクリロニトリル単量体としてのアクリロニトリル32.0部、任意の単量体としてのスチレン12.0部、架橋性単量体としてのアリルグリシジルエーテル5.0部、重合開始剤としてのt−ブチルパーオキシ−2−エチルヘキサノエート(日油社製「商品名:パーブチルO」)0.5部、及びメチルエチルケトン2000.0部を混合し、75℃に昇温して12時間反応を行った。その後、25℃まで冷却して、ろ過及び乾燥することで、アルミナ粒子及び当該アルミナ粒子を被覆する非水溶性重合体を備える絶縁粒子としての被覆粒子(A1)の粉体を得た。
上述した要領で、被覆粒子(A1)の非水溶性重合体による平均被覆率、及び、非水溶性重合体の膨潤度を測定した。
【0166】
(1−3.多孔膜用の粒子状バインダーの製造)
撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.06部、過硫酸アンモニウムを0.23部、及びイオン交換水を100部入れて混合し混合物Aとし、80℃に昇温した。
【0167】
一方、別の容器中で、(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル93.8部、エチレン性不飽和カルボン酸単量体としてのメタクリル酸2.0部、(メタ)アクリロニトリル単量体としてのアクリロニトリル2.0部、架橋性単量体としてのアリルグリシジルエーテル1.0部、N−メチロールアクリルアミド1.2部、任意の単量体としてのドデシル硫酸ナトリウム0.1部、及びイオン交換水100部を混合して、単量体混合物1の分散体を調製した。
【0168】
この単量体混合物1の分散体を、4時間かけて、前記の混合物A中に連続的に添加して重合させた。単量体混合物1の分散体の連続的な添加中の反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。これにより、重合体粒子の水分散体を得た。
【0169】
得られた重合体粒子の水分散体を25℃に冷却後、これにアンモニア水を添加してpHを7に調整し、その後スチームを導入して未反応の単量体を除去した。その後、イオン交換水で固形分濃度の調整を更に行いながら、200メッシュ(孔径:約77μm)のステンレス製金網でろ過を行った。これにより、個数平均粒子径370nm、固形分濃度40%の多孔膜用の粒子状バインダーの水分散液を得た。
【0170】
(1−4.多孔膜用スラリーの製造)
絶縁粒子として、非水溶性重合体で被覆されていない裸粒子(B)としてのアルミナ粒子(住友化学社製「AKP−3000」個数平均粒子径550nm)及び前記工程(1−2)で得た被覆粒子(A1);前記工程(1−3)で得た多孔膜用の粒子状バインダーの水分散体;水溶性バインダーとしてカルボキシメチルセルロースのナトリウム塩(ダイセル化学社製、商品名:ダイセル1220);並びに、湿潤剤としてポリエチレングリコール型の界面活性剤(サンノプコ株式会社製「SNウエット366」)を、アルミナ粒子/被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=39.2/39.2/18.1/2.9/0.6の体積比となるよう混合し、さらにイオン交換水を混合して固形分濃度が40重量%になるように調整し、撹拌することで、多孔膜用スラリーを得た。
また、上述した要領で、水溶性バインダーであるカルボキシメチルセルロースのナトリウム塩の膨潤度を測定した。
【0171】
(1−5.二次電池用セパレーター(多孔膜付セパレーター)の製造)
湿式法により製造された単層のポリエチレン製セパレーター(厚さ9μm)を、有機セパレーター層として用意した。この有機セパレーター層の両面に、前記工程(1−4)で得た多孔膜用スラリーを、乾燥後の厚みがそれぞれ2μmとなるように塗布してスラリー層を得た。その後、スラリー層を50℃で10分間乾燥し、さらに105℃で3時間本乾燥することで多孔膜を形成し、有機セパレーター層の両面に多孔膜を有するセパレーターを得た。
【0172】
(1−6.正極の製造)
正極活物質としてLiCoO
2を95部用意し、これに、正極用バインダーとしてのPVDF(ポリフッ化ビニリデン;呉羽化学社製「KF−1100」)を固形分換算量で3部となるように加え、さらに、アセチレンブラック2部、及びN−メチルピロリドン20部を加えて、これらをプラネタリーミキサーで混合して、正極用スラリーを得た。この正極用スラリーを、厚さ15μmのアルミニウム箔の両面に塗布し、乾燥後、ローラで圧延して、正極シートを作製した。正極シートを所定のサイズに切断し、加工し、正極リードを溶接して正極を得た。
【0173】
(1−7.負極の製造)
負極活物質としての粒子径20μm、比表面積4.2m
2/gのグラファイト98部を用意した。これに、負極用バインダーとしてのSBR(スチレン−ブタジエンゴム;ガラス転移点が−10℃)を固形分換算量で1部混合した。この混合物にさらにカルボキシメチルセルロースを1.0部加えて、これらをプラネタリーミキサーで混合して、負極用スラリーを調製した。この負極用スラリーを厚さ10μmの銅箔の両面に塗布し、乾燥後、ローラで圧延して、負極シートを作製した。負極シートを所定のサイズに切断し、加工し、負極リードを溶接して、負極を得た。
【0174】
(1−8.二次電池の製造)
工程(1−6)で得た正極と、工程(1−7)で得た負極とを、工程(1−5)で得た多孔膜付のセパレーターとともにゼリーロール(Jelly Roll)状に捲回して、電極群を作製した。この電極群をパウチ型の電池ケース内に挿入し、非水電解液を注液した後に、ヒートシーラーで電池ケースの開口を封口した。さらに、この二次電池を100℃、1MPaの条件で60秒間プレスすることで、電池を完成させた。電池の設計容量は2000mAhとした。ここで、非水電解液は、濃度1.0MのLiPF
6溶液にVC(ビニレンカーボネート)を2容量%添加したものを用いた。前記LiPF
6溶液の溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7重量比)である。
【0175】
(1−9.評価)
得られた多孔膜付セパレーターについて、熱収縮試験、非水電解液中での電極への接着性試験を行った。
また、得られた二次電池のレート特性、高温サイクル特性及び安全性の評価試験を行った。
【0176】
[実施例2]
前記工程(1−4)において、アルミナ粒子、被覆粒子(A1)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比をアルミナ粒子/被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=27.4/51/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0177】
[実施例3]
前記工程(1−4)において、アルミナ粒子、被覆粒子(A1)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比をアルミナ粒子/被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=51/27.4/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0178】
[実施例4]
前記工程(1−2)において、表面処理したアルミナ粒子の量を440.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0179】
[実施例5]
前記工程(1−2)において、アクリル酸ブチルの量を48.0部に変更し、また、アリルグリシジルエーテルの量を7.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0180】
[実施例6]
前記工程(1−4)において、アルミナ粒子、被覆粒子(A1)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比をアルミナ粒子/被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=11.8/66.6/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0181】
[実施例7]
前記工程(1−4)において、アルミナ粒子、被覆粒子(A1)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比をアルミナ粒子/被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=66.6/11.8/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0182】
[実施例8]
前記工程(1−2)において、表面処理したアルミナ粒子の量を600.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0183】
[実施例9]
前記工程(1−2)において、アクリル酸ブチルの量を54.0部に変更し、また、アリルグリシジルエーテルの量を1.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0184】
[実施例10]
前記工程(1−2)において、アクリル酸ブチルの量を45.0部に変更し、また、アリルグリシジルエーテルの量を10.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0185】
[実施例11]
非導電性粒子としてアルミナ粒子の代わりにベーマイト粒子(河合石灰工業社製「BMM」;個数平均粒子径1000nm)77.0部(体積換算では、25.3体積部)を用いたこと以外は前記工程(1−1)と同様にして、表面処理したベーマイト粒子を得た。
【0186】
表面処理したアルミナ粒子の代わりに前記の表面処理したベーマイト粒子306.0部を用いたこと以外は前記工程(1−2)と同様にして、ベーマイト粒子及び当該ベーマイト粒子を被覆する非水溶性重合体を備える絶縁粒子としての被覆粒子(A2)の粉体を得た。
【0187】
前記工程(1−4)において、絶縁粒子として、非水溶性重合体で被覆されていない裸粒子(B)としてのベーマイト粒子(河合石灰工業社製「BMM」)と、実施例11で製造した被覆粒子(A2)とを用いた。この際、ベーマイト粒子、被覆粒子(A2)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比は、ベーマイト粒子/被覆粒子(A2)/粒子状バインダー/水溶性バインダー/湿潤剤=39.2/39.2/18.1/2.9/0.6にした。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0188】
[実施例12]
撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.06部、過硫酸アンモニウムを0.23部、及びイオン交換水を100部入れて混合し混合物Xとし、80℃に昇温した。
一方、別の容器中でアクリル酸ブチル93.8部、メタクリル酸2.0部、アクリロニトリル2.0部、アリルグリシジルエーテル1.0部、N−メチロールアクリルアミド1.2部、ドデシル硫酸ナトリウム0.1部、及びイオン交換水100部を混合して、単量体混合物X1の分散体を調製した。
この単量体混合物X1の分散体を、4時間かけて、上で得た混合物X中に、連続的に添加して重合させた。単量体混合物X1の分散体の連続的な添加中の反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。これにより、個数平均粒子径370nmのシードポリマー粒子の水分散体を得た。
次に、撹拌機を備えた反応器に、前記のシードポリマー粒子の水分散体を固形分基準(即ちシードポリマー粒子重量基準)で20部、単量体としてエチレングリコールジメタクリレート(共栄社化学株式会社「ライトエステルEG」)を100部、ドデシルベンゼンスルホン酸ナトリウムを1.0部、重合開始剤としてt−ブチルパーオキシ−2−エチルヘキサノエート(日油社製「パーブチルO」)を4.0部、及びイオン交換水を200部入れ、35℃で12時間撹拌することで、シードポリマー粒子に単量体及び重合開始剤を完全に吸収させた。その後、これを90℃で5時間重合させた。その後、スチームを導入して未反応の単量体および開始剤分解生成物を除去した。これにより、有機微粒子(個数平均粒子径650nm)を製造した。
【0189】
非導電性粒子としてアルミナ粒子の代わりに前記の有機微粒子29.0部(体積換算では、24.6体積部、球状)を用いたこと以外は前記工程(1−1)と同様にして、表面処理した有機微粒子を得た。
【0190】
表面処理したアルミナ粒子の代わりに前記の表面処理した有機微粒子119.0部を用いたこと以外は前記工程(1−2)と同様にして、有機微粒子及び当該有機微粒子を被覆する非水溶性重合体を備える絶縁粒子としての被覆粒子(A3)の粉体を得た。
【0191】
前記工程(1−4)において、絶縁粒子として、非水溶性重合体で被覆されていない裸粒子(B)としての有機微粒子と、実施例12で製造した被覆粒子(A3)とを用いた。この際、有機微粒子、被覆粒子(A3)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比は、有機微粒子/被覆粒子(A3)/粒子状バインダー/水溶性バインダー/湿潤剤=39.2/39.2/18.1/2.9/0.6にした。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0192】
[比較例1]
前記工程(1−4)において、アルミナ粒子、被覆粒子(A1)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比をアルミナ粒子/被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=70.5/7.9/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0193】
[比較例2]
前記工程(1−4)において、被覆粒子(A1)は使用しないで、アルミナ粒子、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比をアルミナ粒子/粒子状バインダー/水溶性バインダー/湿潤剤=78.4/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0194】
[比較例3]
前記工程(1−4)において、裸粒子(B)としてのアルミナ粒子は使用しないで、被覆粒子(A1)、粒子状バインダー、水溶性バインダー及び湿潤剤の体積比を被覆粒子(A1)/粒子状バインダー/水溶性バインダー/湿潤剤=78.4/18.1/2.9/0.6に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0195】
[比較例4]
前記工程(1−2)において、アクリル酸ブチルの量を42.0部に変更し、また、アリルグリシジルエーテルの量を13.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0196】
[比較例5]
前記工程(1−4)において、カルボキシメチルセルロースのナトリウム塩を使用しないで、アルミナ粒子、被覆粒子(A1)、粒子状バインダー及び湿潤剤の体積比をアルミナ粒子/被覆粒子(A1)/粒子状バインダー/湿潤剤=40.35/40.35/18.7/0.6に変更した。
前記の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0197】
[比較例6]
前記工程(1−2)において、表面処理したアルミナ粒子の量を800.0部に変更した。
以上の事項以外は実施例1と同様にして、二次電池を製造し、評価した。
【0198】
[結果]
前記の実施例及び比較例の結果を、下記の表1〜表5に示す。下記の表において、略称の意味は、以下の通りである。
BA:アクリル酸ブチル
MAA:メタクリル酸
AN:アクリロニトリル
ST:スチレン
AGE:アリルグリシジルエーテル
PBO:t−ブチルパーオキシ−2−エチルヘキサノエート
非導電性粒子/非水溶性重合体(重量比):「被覆される前の非導電性粒子/非水溶性重合体」で表される重量比。
非導電性粒子/非水溶性重合体(体積比):「被覆される前の非導電性粒子/非水溶性重合体」で表される体積比。
被覆粒子(A)の割合:絶縁粒子全体に占める被覆粒子(A)の割合。
【0199】
【表1】
【0200】
【表2】
【0201】
【表3】
【0202】
【表4】
【0203】
【表5】
【0204】
[検討]
前記の実施例及び比較例から分かるように、本発明の多孔膜を備えたセパレーターを用いることにより、安全性、高温サイクル特性及びレート特性のいずれにも優れる二次電池を実現することができる。