【実施例】
【0033】
以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。
【0034】
A.イオン液体の合成
[合成例1]
以下の手順により、本発明の化合物1を合成した。
【化7】
(1)化合物1aの合成
アルゴン雰囲気下、トリエチレングリコールビス(p−トルエンスルホン酸エステル)(62.36g、0.136mol)のアセトニトリル溶液(40mL)に1−ブチルイミダゾール(37.15g、0.299mol)を添加し、混合物を60℃で72時間混合した。反応混合物を減圧下で濃縮して乾固し、粘調な残渣に塩化メチレン(10mL)を添加した。酢酸エチル(50mL)により二層分離を3回行なった。イオン液体層を、ロータリーエバポレーター、及びP
2O
5を用いて105℃で一晩真空オーブンにより乾燥すると、薄黄色の粘調な液体である化合物1aが得られた(57g、0.129mol、収率:81%)。
【0035】
1HNMR(500MHz,DMSO−d6,25°C)d(ppm)9.17(s,2H),7.81(t,J=1.5Hz,2H),7.74(t,J=1.5Hz,2H),7.48(d,J=8.5Hz,4H),7.12(d,J=7.9Hz,4H),4.33(t,J=4.9Hz,4H),4.17(t,J=7.0Hz,4H),3.73(t,J=4.9Hz,4H),3.51(s,4H),2.29(s,6H),1.75(dt,J=15.0,7.0Hz,4H),1.22(td,J=15.0,7.5Hz,4H),0.88(t,J=7.3Hz,6H);
13CNMR(125MHz,DMSO−d6,
,25°C)d(ppm)145.7,137.6,136.3,125.5,122.8,122.3,69.3,68.1,48.7,48.5,31.3,20.8,18.7,13.2;ESI−MS:m/z535.29([M−OTs]
+,calcd. for C
27H
43N
4O
5S
+535.30)
【0036】
(2)化合物1の合成
化合物1a(38.17g、0.054mol)のアセトニトリル溶液(30mL)に、KPF
6(23g、0.125mol)水溶液を添加し、混合物を室温で2時間攪拌した。反応混合物は水層とイオン液体層に分離した。上澄みの水層を移し、10mLの塩化メチレンを加え、イオン液体層を蒸留水(30mL)で3回洗浄した。イオン液体層をNa
2SO
4で乾燥し、ロータリーエバポレーターで濃縮し、P
2O
5を用いて105℃で一晩真空オーブン中で乾燥すると、粘調な液体である化合物1が得られた(30.3g、0.046mol、収率:85%)。
【0037】
1HNMR(500MHz,DMSO−d6,25°C)d(ppm)9.13(s,2H),7.79(t,J=1.8Hz,2H),7.72(t,J=1.8Hz,2H),4.33(t,J=4.9Hz,4H),4.18(t,J=7.0Hz,4H),3.74(t,J=5.2Hz,4H),3.52(s,4H),1.77(dt,J=15.3,6.9Hz,4H),1.25(td,J=15.0,7.3Hz,4H),0.90(t,J=7.3Hz,6H);
13CNMR(125MHz,DMSO−d6,
,25°C)d(ppm)136.3,122.8,122.2,69.3,68.1,48.8,48.6,31.3,18.7,13.2;ESI−MS:m/z509.25([M−PF
6]
+,calcd. for C
20H
36F
6N
4O
2P
+509.25).
【0038】
[合成例2]
以下の手順により、本発明の化合物2を合成した。
【化8】
【0039】
(1)化合物2の合成
アルゴン雰囲気下、合成例1で得た化合物1a(36.78g、0.052mol)のアセトニトリル溶液(20mL)に、リチウムビス(トリフルオロメタンスルホニル)イミド(35g、0.122mol)の水溶液を添加し、混合物を室温で2時間攪拌した。反応混合物は水層とイオン液体層に分離した。上澄みの水層を移し、塩化メチレンを10mL添加し、イオン液体層を蒸留水(30mL)で3回洗浄した。イオン液体層をNa
2SO
4で乾燥し、ロータリーエバポレーターで濃縮し、P
2O
5を用いて105℃で一晩真空オーブン中で乾燥すると、黄色液体が得られた(44.5g、0.048mol、収率:92%)。
【0040】
1HNMR(500MHz,DMSO−d6,25°C)d(ppm)9.13(s,2H),7.79(t,J=1.8Hz,2H),7.72(t,J=1.5Hz,2H),4.33(t,J=4.9Hz,4H),4.19(t,J=7.3Hz,4H),3.74(t,J=5.2Hz,4H),3.53(s,4H),1.77(dt,J=15.3,7.0Hz,4H),1.25(td,J=15.0,7.5Hz,4H),0.90(t,J=7.6Hz,6H);
13CNMR(125MHz,DMSO−d6,25°C)d(ppm)136.3,122.8,122.2,69.3,68.1,48.8,48.6,31.3,18.7,13.2;ESI−MS:m/z644.19([M−TFSI]
+,calcd. for C
22H
36F
6N
5O
6S
2+644.20).
【0041】
[合成例3]
以下の手順により、本発明の化合物3を合成した。
【化9】
【0042】
(1)化合物Aの合成
アルゴン雰囲気下、トリエチレングリコールビス(p−トルエンスルホン酸エステル)(52g、0.113mol)のアセトニトリル溶液(60mL)に、1−ブチルイミダゾール(4.69g、0.038mol)を添加し、混合物を60℃で10時間攪拌した。反応混合物を減圧下で濃縮し、乾固し、粘調な残渣に塩化メチレン(15mL)を添加した。残渣をシリカカラムクロマトグラフィー(塩化メチレン/メタノール=9/1)で精製すると、薄黄色の粘調液体として化合物Aが得られた(15g、0.026mol、収率:68%)。
【0043】
1HNMR(500MHz,DMSO−d6,25°C)d(ppm)9.13(s,1H),7.76(dd,J=13.4,7.9Hz,4H),7.48(dd,J=7.6,5.8Hz,4H),7.11(d,J=7.9Hz,2H),4.33(t,J=4.9Hz,2H),4.17(t,J=7.0Hz,2H),4.10(t,J=4.6Hz,3H),3.75(t,J=4.9Hz,2H),3.55(t,J=4.3Hz,2H),3.49(t,J=2.7Hz,2H),3.45(t,J=2.7Hz,2H),3.34(s,4H),2.42(s,3H),2.29(s,3H),1.75(dt,J=15.3,7.0Hz,2H),1.24(td,J=15.0,7.3Hz,2H),0.89(t,J=7.3Hz,3H);
13CNMR(125MHz,DMSO−d6
,25°C)d(ppm)145.82,144.98,137.52,136.27,132.31,130.16,128.02,127.59,125.47,122.79,122.21,69.95,69.50,69.37,68.08,67.88,48.77,48.58,48.53,31.32,21.08,20.76,18.74,13.24;ESI−MS:m/z411.19([M−OTs]
+,calcd. for C
20H
31N
2O
5S
+ 411.20)
【0044】
(2)化合物Bの合成
J.E.Bara.Ind.Eng.Chem.Res.50,13614(2011)に基づいて化合物B(1,1’−[1,2−エタンジイルビス(オキシ−2,1−エタンジイル)]ビス(イミダゾール))を合成した。
【0045】
(3)化合物3aの合成
アルゴン雰囲気下において、化合物A(13.85g、0.024mol)と化合物B(2.97g、0.012mol)の混合物をアセトニトリル中60℃で48時間攪拌した。反応混合物をロータリーエバポレーターで濃縮して、P
2O
5を用いて105℃で一晩真空オーブン中で乾燥すると、薄黄色の粘調な液体として化合物3aが得られた(16.82g、0.012mol、収率:100%)。
【0046】
1HNMR(500MHz,DMSO−d6,25°C)d(ppm)9.17(s,2H),9.14(s,2H),7.80(t,J=1.8Hz,2H),7.74(dd,J=4.9,1.8Hz,6H,),7.48(d,J=7.9Hz,8H),7.11(d,J=7.9Hz,8H),4.34(td,J=9.0,4.5Hz,12H),4.17(t,J=7.0Hz,4H),3.73(t,J=4.9Hz,12H),3.51(d,J=1.2Hz,12H),2.29(s,12H),1.74(dt,J=15.4,7.0Hz,4H),1.22(td,J=15.0,7.5Hz,4H),0.88(t,J=7.3Hz,6H,);
13CNMR(125MHz,DMSO−d6
,25°C)d(ppm)145.68,137.65,136.62,136.32,128.07,125.46,122.78,122.61,122.26,69.32,68.18,68.09,48.71,48.52,31.35,20.77,18.73,13.25;ESI−MS:m/z1243.54([M−OTs]
+,calcd. for C
59H
87N
8O
15S
3+1243.55)
【0047】
(3)化合物3の合成
化合物3a(16.82g、0.012mol)のアセトニトリル溶液(10mL)にKPF
6(9.97g、0.054mol)水溶液を添加し、混合物を室温で2時間攪拌した。上澄みの水層を反応混合物から移し、イオン液体を蒸留水(30mL)で3回洗浄した。イオン液体層をNa
2SO
4で乾燥し、ロータリーエバポレーターで濃縮した。その後、この液体を、P
2O
5を用いて105℃で一晩真空オーブン中で乾燥すると、黄色の粘調な液体として化合物3が得られた(14.78g、0.011mol、収率:94%)。
【0048】
1HNMR(500MHz,DMSO−d6,25°C)d(ppm)9.12(s,2H),9.07(s,2H),7.79(t,J=1.5Hz,2H),7.72(dd,J=3.4,1.5Hz,6H),4.36−4.32(m,12H),4.18(t,J=7.0Hz,4H),3.74(t,J=4.9Hz,12H),3.53(t,J=2.4Hz,12H),1.77(dt,J=15.0,6.9Hz,4H),1.25(td,J=14.8,7.5Hz,4H),0.90(t,J=7.3Hz,6H,);
13CNMR(125MHz,DMSO−d6
,25°C)d(ppm)136.52,136.25,122.78,122.60,122.26,69.29,68.17,68.08,48.74,48.56,31.33,18.73,13.24;ESI−MS:m/z1165.40([M−PF
6]
+,calcd. for C
38H
66F
18N
8O
6P
3+1165.40)
【0049】
B.本発明のイオン液体の分散性の評価
(1)グラフェン分散液の調製
グラファイト(和光純薬工業株式会社製STG0561(純度:98%、平均粒径:約45μm)700mgをイオン液体又は混合イオン液体10mLに分散し、乳鉢で磨り潰して15分間均一に混合した。黒色ペーストをホーンタイプの超音波分散機(Sonics製VCX−500、500W)を用いて175Wで4時間超音波を印加した。得られた分散液を18000gで30分間遠心分離にかけ、グラファイトを取り除いて。グラフェン分散液を単離した。
【0050】
(2)グラフェン濃度の算出
グラフェン分散液0.2mLをAdvantec社PTFE膜(細孔:0.1μm、直径:25mm)で真空濾過することにより分散液中のグラフェン濃度を測定した。使用前に膜の重量を測定し、濾過後に膜をアセトニトリル(50mL)とジクロロメタン(50mL)で十分に洗浄し、真空オーブン中70℃、1時間乾燥して、乾燥した膜の重量を測定することで、分散液中のグラフェン量を算出した。
【0051】
[実施例1]
上記の手順で化合物1のグラフェン分散液を調製し、グラフェン濃度を算出したところ、グラフェンを12.29mg/mlの濃度で含んでいることが確認された。また、グラファイト粉末と、上記分散液から得られたグラフェン粉末のラマンスペクトルを
図1に示す。Aがグラファイト粉末を、Bがグラフェン粉末のスペクトルである。二次元ピークの形状の変化は、無秩序で積層していないグラフェンによるものである。
【0052】
[比較例1]
分散媒としてブチルメチルイミダゾリウムヘキサフルオロホスフェートを用いて、実施例1と同様の実験を行なった。得られた分散液はグラフェンを5.33mg/mlの濃度で含んでいることが確認された。
【0053】
C.本発明の混合イオン液体の分散性の評価
[実施例2]
化合物1とブチルメチルイミダゾリウムヘキサフルオロホスフェート(BMIPF
6)を、0:100、35:65、56:44、70:30、100:0(体積比)で混合して混合イオン液体を調製した。この混合イオン液体を分散媒として用いて、実施例1と同様の実験を行なった。得られた分散液のグラフェン濃度の測定結果を表1に示す。
【0054】
[実施例3]
化合物3とBMIPF
6を、0:100、35:65、56:44、70:30、100:0(体積比)で混合して混合イオン液体を調製した。この混合イオン液体を分散媒として用いて、実施例1と同様の実験を行なった。得られた分散液のグラフェン濃度の測定結果を表1に示す。
【0055】
【表1】
【0056】
上記の通り、本発明の新規イオン液体を用いることにより高濃度のグラフェン分散液を提供することが可能である。また、本発明の新規イオン液体とBMIPF
6との混合イオン液体は、本発明の新規イオン液体単独で用いるよりも高い濃度のグラフェン分散液を提供することが可能であることが見出された。
【0057】
D.グラフェンの層数分布の評価
Nat.Mat.2012,11,217に記載されている方法により、グラフェン分散液のラマンスペクトルを測定して、2Dバンドに由来する2600−2800cm
-1のラマンピークの位置を判定することにより、分散液中のグラフェンの層数の分布を調べることができる。
図2は、アセトニトリル中にグラファイトを添加して、超音波処理、遠心分離をせずに、ラマンスペクトルを測定して得られたグラファイトのグラフェン層数分布である。
図2から、特別な分散処理をしないグラファイトでは、グラフェンの層数が9より大きいものが60%以上を占めることがわかる。
以下の実施例では、本発明のイオン液体を用いてグラフェンの層数分布を調べた。
【0058】
[実施例4]
化合物1のイオン液体に、グラファイトを100mg/mLの濃度となるように添加してグラファイト混合液を調製した。マイクロ波反応装置CEM Discoveryを用いて、100W、2.4GHzの条件で、当該混合液に30秒間マイクロ波を印加してグラフェン分散液を得た。得られたグラフェン分散液について、グラフェンの層数分布を調べた結果を
図3に示す。
また、上記の混合液に超音波を1時間印加して得られたグラフェン分散液について、グラフェンの層数分布を調べた結果を
図4に示す。
図3から、短時間のマイクロ波処理により、グラフェンの層数が1〜2層のものの割合が50%以上となることが示される。
【0059】
[実施例5]
化合物3のイオン液体を用いて、実施例4と同様に、グラファイト混合液にマイクロ波を印加してグラフェン分散液を得た。得られたグラフェン分散液についてグラフェンの層数分布を調べた結果を
図5に示す。
【0060】
[比較例1]
BMIPF
6を用いて、実施例4と同様に、グラファイト混合液にマイクロ波を印加してグラフェン分散液を得た。得られたグラフェン分散液について、グラフェンの層数分布を調べた結果を
図6に示す。
【0061】
図4及び5から、本発明のイオン液体を用いた場合、マイクロ波処理がグラフェン分散液を得るうえで有効な手段となることを示唆している。
【0062】
E.マイクロ波処理によるグラフェン分散液の調製
[実施例6]
次に、より低いエネルギーのマイクロ波の印加によるグラフェン分散液調製の可能性を検討した。
化合物1のイオン液体に、グラファイトを100mg/mLの濃度となるように添加してグラファイト混合液を調製した。マイクロ波反応装置CEM Discoveryを用いて、10W、2.4GHzの条件で、当該混合液に12時間マイクロ波を印加した。得られた分散液について、動的粘弾性を測定した。その結果を
図7に示す。
マイクロ波を印加して得た分散液では、初期(マイクロ波印加前)に対し、弾性を表すG’、粘性を表すG’’が共に50倍程度大きくなっている。このことは、グラファイトが層構造を失い層が剥離することによって、グラフェンの絡み合いを誘起し、結果、粘性が上がったことを示している。
従って、本発明のイオン液体を用いることにより、低エネルギーのマイクロ波の印加によってもグラフェン分散液を調製することが示される。
【0063】
このように、本発明のイオン液体により高い分散性が得られるため、グラフェンをフィルム状にすることが容易となり、リチウムイオン二次電池のような多くの電子部品やエネルギー貯蔵電化製品にグラフェンを適用することが可能となる。また、本発明の製造方法は、グラフェンオキサイドを経由することなく、グラファイトの一段階の剥離工程により高濃度のグラフェン分散液を得ることができるため、生産効率がよく工業的にも価値が高い。