【実施例】
【0060】
これより本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表4を示すが、これらは第1実施例〜第4実施例における各諸元の表である。
【0061】
なお、第1実施例に係る
図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
【0062】
各実施例では収差特性の算出対象として、C線(波長656.2730nm)、d線(波長587.5620nm)、F線(波長486.1330nm)、g線(波長435.8350nm)を選んでいる。
【0063】
表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。物面は物体面、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.00000」は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
【0064】
表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10
-n」を示す。例えば、1.234E-05=1.234×10
-5である。
【0065】
X(y)=(y
2/R)/{1+(1−κ×y
2/R
2)
1/2}
+A4×y
4+A6×y
6+A8×y
8 …(a)
【0066】
表中の[各種データ]において、fは光学系WL全系の焦点距離、FnoはFナンバー、ωは半画角(最大入射角、単位:°)、Yは像高、BFはバックフォーカス(光軸上でのレンズ最終面から近軸像面までの距離を空気換算距離)、TLはレンズ全長(光軸上でのレンズ最前面からレンズ最終面までの距離に、BFを加えたもの)を示す。
【0067】
表中の[可変間隔データ]において、無限遠合焦状態(撮影倍率β=0.00)、撮影倍率β=-1/20の状態それぞれにおける各可変間隔Diを示す。なお、Diは、第i面と第(i+1)面の可変間隔を示す。
【0068】
表中の[レンズ群データ]において、Gは群番号、群初面は各群の最も物体側の面番号を、群焦点距離は各群の焦点距離を示す。
【0069】
表中の[条件式]には、上記の条件式(1)〜(6)に対応する値を示す。
【0070】
以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
【0071】
ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
【0072】
(第1実施例)
第1実施例について、
図1,
図2及び表1を用いて説明する。第1実施例に係る光学系WL(WL1)は、
図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ前群GFと、開口絞りSと、正の屈折力を持つ後群GRと、フィルタ群FLとから構成されている。
【0073】
前群GFは、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13からなる接合レンズとからなる。
【0074】
後群GRは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23からなる接合レンズと、両凸形状の正レンズL24とからなる。正レンズL23の像側レンズ面には、非球面が形成されている。
【0075】
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするための、ローパスフィルタや赤外カットフィルタ等で構成されている。
【0076】
本実施例に係る光学系WL1において、無限遠物体から有限距離物体へのフォーカシングは、後群GR内の最も像側に配置された正レンズL24を光軸に沿って移動させることにより行っている。
【0077】
下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜17が、
図1に示す曲率半径R1〜R17の各光学面に対応している。第1実施例では、第11面が非球面形状に形成されている。
【0078】
(表1)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 3.0935 0.0653 1.62280 57.10
2 0.5713 0.5438
3 0.6509 0.2284 1.81600 46.59
4 -1.3074 0.1088 1.74077 27.74
5 25.1245 0.1196
6(絞りS) ∞ 0.0778
7 2.7190 0.0979 1.79504 28.69
8 34.1231 0.0696
9 -0.4895 0.0435 1.69895 30.13
10 0.8594 0.1903 1.76802 49.23
*11(非球面) -0.8257 D11(可変)
12 4.2417 0.1088 1.69680 55.52
13 -114.5150 D13(可変)
14 ∞ 0.0865 1.51680 64.20
15 ∞ 0.0544
16 ∞ 0.0381 1.51680 64.20
17 ∞ 0.033
像面 ∞
[非球面データ]
第11面
κ=-2.1683,A4=2.51801E-01,A6=4.63597E+00,A8=-2.43802E+00
[各種データ]
f 1.00
Fno 2.88
ω 39.03
Y 0.79
BF 0.49
TL 2.55
[可変間隔データ]
無限遠 β=-1/20
D11 0.40785 0.17389
D13 0.31544 0.54940
[レンズ群データ]
群番号 群初面 群焦点距離
GF 1 1.00
GR 7 5.36
[条件式]
条件式(1) (L22r1+L21r2)/(L22r1−L21r2) = -0.972
条件式(2) fL24/f = 5.872
条件式(3) dL23L24/f = 0.408
条件式(4) fGF/f = 0.997
条件式(5) (nL22−nL23) = -0.069
条件式(6) (nL12−nL13) = 0.075
【0079】
表1から、本実施例に係る光学系WL1は、条件式(1)〜(6)を満たすことが分かる。
【0080】
図2は、第1実施例に係る光学系WL1の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)における諸収差図、(b)は撮影倍率β=-1/20の状態における諸収差図をそれぞれ示す。
【0081】
各収差図において、FNOはFナンバー、NAは開口数、Aは各像高に対する半画角(単位:°)、H0は物体高をそれぞれ示す。dはd線、gはg線、CはC線、FはF線における収差をそれぞれ示す。また、記載のないものは、d線における収差を示す。非点収差図において、実線はサジタル像面を、破線はメリディオナル像面を示す。
【0082】
これら収差図に関する説明は、他の実施例においても同様とし、その説明を省略する。
【0083】
図2に示す各収差図から明らかなように、第1実施例では、諸収差が良好に補正され、優れた光学性能を有することが分かる。
【0084】
(第2実施例)
第2実施例について、
図3,
図4及び表2を用いて説明する。第2実施例に係る光学系WL(WL2)は、
図3に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ前群GFと、開口絞りSと、正の屈折力を持つ後群GRと、フィルタ群FLとから構成されている。
【0085】
前群GFは、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13からなる接合レンズとからなる。
【0086】
後群GRは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23からなる接合レンズと、両凸形状の正レンズL24とからなる。正レンズL23の像側レンズ面には、非球面が形成されている。
【0087】
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするための、ローパスフィルタや赤外カットフィルタ等で構成されている。
【0088】
本実施例に係る光学系WL2において、無限遠物体から有限距離物体へのフォーカシングは、後群GR内の最も像側に配置された正レンズL24を光軸に沿って移動させることにより行っている。
【0089】
下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜17が、
図3に示す曲率半径R1〜R17の各光学面に対応している。第2実施例では、第11面が非球面形状に形成されている。
【0090】
(表2)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 2.81876 0.06533 1.65100 56.24
2 0.57178 0.53895
3 0.62198 0.22320 1.81600 46.59
4 -1.46662 0.10888 1.74077 27.74
5 5.74708 0.11977
6(絞りS) ∞ 0.06533
7 1.63318 0.13610 1.77250 49.62
8 8.16592 0.07077
9 -0.43794 0.03811 1.69895 30.13
10 1.49543 0.18509 1.76802 49.23
*11(非球面) -0.73787 D11(可変)
12 4.35516 0.10888 1.69680 55.52
13 -114.64001 D13(可変)
14 ∞ 0.08656 1.51680 64.20
15 ∞ 0.05444
16 ∞ 0.03811 1.51680 64.20
17 ∞ 0.037
像面 ∞
[非球面データ]
第11面
κ=-0.9570,A4=3.34667E-01,A6=4.42540E+00,A8=-2.28401E+00
[各種データ]
f 1.00
Fno 2.88
ω 38.98
Y 0.79
BF 0.43
TL 2.53
[可変間隔データ]
無限遠 β=-1/20
D11 0.43552 0.18100
D13 0.26000 0.51452
[レンズ群データ]
群番号 群初面 群焦点距離
GF 1 1.06
GR 7 4.48
[条件式]
条件式(1) (L22r1+L21r2)/(L22r1−L21r2) = -0.898
条件式(2) fL24/f = 6.024
条件式(3) dL23L24/f = 0.436
条件式(4) fGF/f = 1.062
条件式(5) (nL22−nL23) = -0.069
条件式(6) (nL12−nL13) = 0.075
【0091】
表2から、本実施例に係る光学系WL2は、条件式(1)〜(6)を満たすことが分かる。
【0092】
図4は、第2実施例に係る光学系WL2の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)における諸収差図、(b)は撮影倍率β=-1/20の状態における諸収差図をそれぞれ示す。
【0093】
図4に示す各収差図から明らかなように、第2実施例では、諸収差が良好に補正され、優れた光学性能を有することが分かる。
【0094】
(第3実施例)
第3実施例について、
図5,
図6及び表3を用いて説明する。第3実施例に係る光学系WL(WL3)は、
図5に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ前群GFと、開口絞りSと、正の屈折力を持つ後群GRと、フィルタ群FLとから構成されている。
【0095】
前群GFは、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13からなる接合レンズとからなる。
【0096】
後群GRは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23からなる接合レンズと、両凸形状の正レンズL24とからなる。正レンズL23の像側レンズ面には、非球面が形成されている。
【0097】
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするための、ローパスフィルタや赤外カットフィルタ等で構成されている。
【0098】
本実施例に係る光学系WL3において、無限遠物体から有限距離物体へのフォーカシングは、後群GR内の最も像側に配置された正レンズL24を光軸に沿って移動させることにより行っている。
【0099】
下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜17が、
図5に示す曲率半径R1〜R17の各光学面に対応している。第3実施例では、第11面が非球面形状に形成されている。
【0100】
(表3)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 3.67143 0.06515 1.58913 61.22
2 0.57061 0.54292
3 0.64353 0.22803 1.81600 46.59
4 -1.26794 0.10858 1.74077 27.74
5 9.64318 0.11944
6(絞りS) ∞ 0.06515
7 1.90022 0.12759 1.78800 47.35
8 7.20062 0.07058
9 -0.46932 0.03800 1.69895 30.13
10 1.65587 0.18459 1.76802 49.23
*11(非球面) -0.76832 D11(可変)
12 4.34336 0.10858 1.69680 55.52
13 -114.32956 D13(可変)
14 ∞ 0.08632 1.51680 64.20
15 ∞ 0.05429
16 ∞ 0.03800 1.51680 64.20
17 ∞ 0.010
像面 ∞
[非球面データ]
第11面
κ=-0.8431,A4=4.39025E-01,A6=4.29306E+00,A8=-1.16486E+00
[各種データ]
f 1.00
Fno 2.88
ω 38.65
Y 0.78
BF 0.46
TL 2.53
[可変間隔データ]
無限遠 β=-1/20
D11 0.40719 0.16188
D13 0.31493 0.56024
[レンズ群データ]
群番号 群初面 群焦点距離
GF 1 1.03
GR 7 5.02
[条件式]
条件式(1) (L22r1+L21r2)/(L22r1−L21r2) = -0.878
条件式(2) fL24/f = 6.007
条件式(3) dL23L24/f = 0.407
条件式(4) fGF/f = 1.029
条件式(5) (nL22−nL23) = -0.069
条件式(6) (nL12−nL13) = 0.075
【0101】
表3から、本実施例に係る光学系WL3は、条件式(1)〜(6)を満たすことが分かる。
【0102】
図6は、第3実施例に係る光学系WL3の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)における諸収差図、(b)は撮影倍率β=-1/20の状態における諸収差図をそれぞれ示す。
【0103】
図6に示す収差図から明らかなように、第3実施例では、諸収差が良好に補正され、優れた光学性能を有することが分かる。
【0104】
(第4実施例)
第4実施例について、
図7,
図8及び表4を用いて説明する。第4実施例に係る光学系WL(WL4)は、
図7に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ前群GFと、開口絞りSと、正の屈折力を持つ後群GRと、フィルタ群FLとから構成されている。
【0105】
前群GFは、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13からなる接合レンズとからなる。
【0106】
後群GRは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23からなる接合レンズと、両凸形状の正レンズL24とからなる。正レンズL23の像側レンズ面には、非球面が形成されている。
【0107】
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)の限界解像以上の空間周波数をカットするための、ローパスフィルタや赤外カットフィルタ等で構成されている。
【0108】
本実施例に係る光学系WL4において、無限遠物体から有限距離物体へのフォーカシングは、後群GR内の最も像側に配置された正レンズL24を光軸に沿って移動させることにより行っている。
【0109】
下記の表4に、第4実施例における各諸元の値を示す。表4における面番号1〜17が、
図7に示す曲率半径R1〜R17の各光学面に対応している。第4実施例では、第11面が非球面形状に形成されている。
【0110】
(表4)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 3.81559 0.06487 1.58913 61.22
2 0.57102 0.54057
3 0.65152 0.22704 1.81600 46.59
4 -1.24961 0.10811 1.74077 27.74
5 13.99216 0.11892
6(絞りS) ∞ 0.06487
7 1.89198 0.12703 1.78800 47.35
8 5.40565 0.07027
9 -0.48370 0.03784 1.69895 30.13
10 1.43940 0.18379 1.76802 49.23
*11(非球面) -0.78223 D11(可変)
12 4.32452 0.10811 1.69680 55.52
13 -113.83359 D13(可変)
14 ∞ 0.08595 1.51680 64.20
15 ∞ 0.05406
16 ∞ 0.03784 1.51680 64.20
17 ∞ 0.023
像面 ∞
[非球面データ]
第11面
κ=-0.6683,A4=5.30186E-01,A6=4.42920E+00,A8=-1.47383E+00
[各種データ]
f 1.00
Fno 2.88
ω 38.66
Y 0.78
BF 0.47
TL 2.53
[可変間隔データ]
無限遠 β=-1/20
D11 0.40542 0.16424
D13 0.31356 0.55475
[レンズ群データ]
群番号 群初面 群焦点距離
GF 1 1.02
GR 7 5.17
[条件式]
条件式(1) (L22r1+L21r2)/(L22r1−L21r2) = -0.836
条件式(2) fL24/f = 5.982
条件式(3) dL23L24/f = 0.405
条件式(4) fGF/f = 1.024
条件式(5) (nL22−nL23) = -0.069
条件式(6) (nL12−nL13) = 0.075
【0111】
表4から、本実施例に係る光学系WL4は、条件式(1)〜(6)を満たすことが分かる。
【0112】
図8は、第4実施例に係る光学系WL4の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)における諸収差図、(b)は撮影倍率β=-1/20の状態における諸収差図をそれぞれ示す。
【0113】
図8に示す各収差図から明らかなように、第4実施例では、諸収差が良好に補正され、優れた光学性能を有することが分かる。
【0114】
上記の各実施例によれば、カメラ未使用時にレンズ鏡筒がカメラ内に沈胴することが可能であり、小型で、画角が77度程度と広く、Fnoが2.8程度と明るい光学系を実現することができる。
【0115】
ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。