【実施例1】
【0034】
図1は本発明の加熱媒体発生装置を用いた本発明の加熱処理装置の一例を示す概略図、
図2乃至
図7は本発明の加熱媒体発生装置の一例を示す概略図である。
【0035】
加熱処理装置は、加熱処理室1と、加熱処理室1内に備えられ、加熱処理室1内を所定温度に加熱する処理室内加熱機構2と、加熱処理室1内に加熱媒体を噴射する加熱媒体発生装置3とで構成されている(
図1参照。)。
【0036】
加熱処理室1は、例えば、処理対象物を投入する図示しない投入口を備えた非密閉状でかつ所定長さの矩形状に形成されている(
図1参照。)。
加熱処理室1の全体長さ・全体形状・構造などは本発明の範囲内で設計変更可能である。
また、加熱処理室1は、後述するように室内空間を所定温度以上に加熱制御するため、断熱性を有する材質(保温可能な材質)を選定して形成する。なお、加熱処理室1は、室内空間を所定温度以上に加熱制御処理可能な構成を備えているものであれば、例えば、処理室1の一方に投入口、他方に排出口を備えるとともに、投入口から排出口にわたって処理対象物を搬送可能なチェーンコンベアなどの搬送機構を備え、対象物を連続処理可能なように構成するものであっても本発明の範囲内である。
【0037】
処理室内加熱機構3は、例えば、周知の室内加熱ヒーターが想定される。本実施例では、この処理室内加熱機構(室内加熱ヒーター)3によって、加熱処理室1内全体を、常圧で、かつ105℃〜150℃程度(好ましくは115℃程度)に加熱制御している。
なお、処理室内加熱機構3の形状・構造及び配設数量などについては、適宜設計変更可能であって、何等本実施例に限定解釈されるものではない。
【0038】
加熱媒体発生装置3は、本実施例では次の構成を採用している。
【0039】
加熱媒体生成装置3は、断熱性を有する外装体5と、外装体5内に配され、後述する熱交換パイプ13内に供給される加熱媒体用供給水に伝熱する遠赤外線放射ヒーター11と、遠赤外線放射ヒーター11から放射された遠赤外線を反射し、再度熱交換パイプ13へと放射可能な第一反射部材23と、外装体5の側面一端側5aに給水部18を外装し、外装体5の側面他端側5bに吐水部19を外装するとともに、その外装体5の一端側5aから他端側5bに向けて給水部18と吐水部19にわたって連続して配設され、内部空間に供給される加熱媒体用供給水を前記遠赤外線放射ヒーター11からの放射熱(所定温度)及び所定圧力で沸騰させて加熱媒体を生成する熱交換パイプ13とで構成されている(
図1乃至
図3参照。)。
【0040】
外装体5は、例えば所定長さ・所定径(外径・内径)の筒状に形成された外筒7と、外筒7の内面側に筒状に備えられる断熱材9とで内部を密閉空間とする断熱性を有する全体筒状に形成されている。
【0041】
外筒7は、所定の金属材料で両端を非開放とした円筒状に形成されている。本実施例では、両端開放状の筒本体7aと、該筒本体7aの両端を閉鎖する左右の円盤状の蓋部7b,7bとにより、両端を非開放とした円筒状に形成している。
外筒7の全体長さ・全体形状・筒外径・筒内径などは本発明の範囲内で設計変更可能である。また、材質も本発明の範囲内で設計変更可能であって何ら限定解釈されるものではない。
【0042】
断熱材9は、グラスウール・ウレタンフォームなどからなり、外筒7の内面に密着させて備えられる所定内径を有した円筒状に形成されている。断熱材9は本発明の範囲内で周知のものが用いられ、その材質や筒状の肉厚(外径9aと内径9bとの間の厚み)なども本発明の範囲内で設計変更可能である。なお、断熱材9は、外装体5として所定の断熱性を有する程度に厚みをもって配される必要があるが、その中空の内部に遠赤外線放射ヒーター11と熱交換パイプ13と第一反射板23とを配設可能に構成する必要がある。
【0043】
遠赤外線放射ヒーター11は、所定長さ・所定径の単一の真直ぐな棒状に形成され、外装体5の一端側5aから他端側5bにわたってその外装体5の内部空間の中心位置に配設されている(
図2及び
図3参照。)。
なお、本実施例では、遠赤外線放射ヒーター11を単数配設した実施の一形態を想定している。
また、遠赤外線放射ヒーター11は、本実施例では電気式の遠赤外線放射ヒーター11を想定しているが、遠赤外線放射ヒーター11は電機式であってもガス式であってもよく、本発明の範囲内で周知のものが採択可能である。
【0044】
熱交換パイプ13は、内部空間を加熱媒体用供給水が通過する所定内径の中空の金属製パイプからなり、これを所定ピッチで所定の巻回数のコイル状に形成し、外装体5の中心位置に配した前記遠赤外線放射ヒーター11の外周(外径11a)との間に所定の間隔15をあけて、前記遠赤外線放射ヒーター11の長さ方向に巻回状に配設されている(
図2及び
図3参照。)。
また、熱交換パイプ13は、後述する第一反射部材23との間においても所定の間隔17をあけて配設されている(
図2及び
図3参照。)。
遠赤外線放射ヒーター11の外周と熱交換パイプ13の間隔15については、遠赤外線放射ヒーター11の中心点と熱交換パイプ13の中心点までの距離が1〜20mm程度で、好ましくは10〜13mmが効率が良く、熱交換パイプ13の中心点と第一反射部材23の内面までの距離が1〜18mm程度で、好ましくは2〜5mmが効率が良い。
すなわち、遠赤外線放射ヒーター11の外径11a<熱交換パイプ13のコイル内径13b、熱交換パイプ13のコイル外径13a<第一反射部材23の内径23bの関係を有している(
図3参照。)。
なお、熱交換パイプ13の材質は特に限定されないが、熱伝導率に優れた金属材を採択するのが好ましい。
【0045】
本実施例において熱交換パイプ13は、黒色耐熱塗装が施されており、熱吸収率を高めている。
そして、熱交換パイプ13の一端側には、図示しない給水源と熱交換パイプを接続する給水部(給水ポート)18が備えられ、他端側には、吐水部(吐水ポート)19が備えられ、吐水部19には、熱交換パイプ13によって生成された加熱媒体を、熱交換パイプ13から加熱処理室1へと噴射する加熱媒体噴射ノズル21が接続されている(
図1及び
図2参照。)。
ちなみに、前記加熱媒体噴射ノズル21は、本実施例では、例えば、ノズル内径を0.1mm〜10mm(好ましくは0.5mm〜5mm)としている。
【0046】
第一反射部材(反射筒)23は、前記断熱材9の内面(内径9b)と密着させて配設される所定の外径23aを有した中空の金属製の筒部材で、前記熱交換パイプ13の長さ方向全域を覆う全体円筒状に形成されている。
また、前記熱交換パイプ13との間に所定の間隔17をあけて配することの可能な内径23bを有している。
すなわち、第一反射部材23の内径23b>熱交換パイプ13のコイル外径13aの関係を有する(
図3参照。)。
また、放射熱の反射効率を高めるため、第一反射部材23の内面(内径23b)は、鏡面仕上げされているのが好ましい。
【0047】
本実施例によれば、図示しない所定のポンプ(例えば電磁定量ポンプなどを想定)を介して給水源から給水部(給水ポート)18を通過して熱交換パイプ13内に供給された加熱媒体用供給水は、所定径の熱交換パイプ13内で、遠赤外線放射ヒーター11から放射された熱及び所定の圧力によって沸騰させられる。
熱交換パイプ13内に供給される水量は、パイプ径・パイプ長さによって調整されるが、本実施例では、例えば0.7gr/sec以上、好ましくは0.7gr/sec〜25gr/secとする。これにより加熱媒体用供給水は所定の圧力が掛かった状態で加熱されることとなる。
【0048】
本発明の加熱処理装置の作動について以下に説明する。
【0049】
まず、給水源から定量ポンプにより給水部18を介して加熱媒体発生装置3の熱交換パイプ13内に、0.7gr/secで加熱媒体用供給水を供給する。
遠赤外線放射ヒーター11からの放射熱は、熱交換パイプ13に伝熱してパイプ13自体を加熱するとともに、前記放射熱パイプ13内を通過してパイプ13内に供給される加熱媒体用供給水に伝達される。
さらに、前記放射熱は、パイプ13を通過し、そして第一反射部材23によって反射して再度熱交換パイプ内を通過させることによって、再度供給水に伝熱する。
このようにして、前記供給水を所定温度、例えば120℃(好ましくは105℃〜150℃)及び所定圧力、例えば0.19MPa(好ましくは、0.01MPa〜0.30MPa)で沸騰させることで熱交換パイプ13内には水蒸気50と熱水52からなる気液混合体(加熱媒体)が生成される(
図1参照。)。
【0050】
そして、加熱媒体噴射ノズル21を介し、前記したように115℃程度に加熱制御された加熱処理室1内に前記気液混合体(水蒸気50と熱水52)を噴出することにより、前記加熱処理室1内が過熱水蒸気60と高温微細水滴62が混在する状態の加熱媒体で満たされた加熱処理雰囲気70に調整される(
図1参照。)。
【0051】
前記気液混合体(水蒸気50と熱水52)は、処理対象物の加熱処理中において、連続して噴射されるものであっても、断続して噴射されるものであってもよい。
【0052】
本実施例によれば、遠赤外線放射ヒーター11から放射された熱が、黒色耐熱塗装を施して熱吸収効率を高めた熱交換パイプ13内を通過してパイプ13内の加熱媒体に伝熱し、さらに熱交換パイプ13を通過した放射熱は、鏡面仕上げされた第一反射部材23で反射して再度熱交換パイプ13内を通過してパイプ13内の加熱媒体用供給水に伝熱する。図中の矢印は放射熱の放射方向の一例を示す。
【0053】
このように遠赤外線放射ヒーター11から放射された熱は、繰り返し熱交換パイプ13内を通過して加熱媒体用供給水に伝熱するため、効率的な伝熱効果が発揮され、短時間で加熱媒体供給水を加熱して加熱媒体を生成する。
【0054】
すなわち、単に遠赤外線の放射熱を一方通行で熱交換パイプ13に放射するだけではなく、遠赤外線の放射熱を第一反射部材23によって反射させて再び熱交換パイプ13へと放射させることが可能であるため、伝熱効率も高くなり、短時間で加熱媒体の生成がなし得る。
【0055】
したがって、全体として省エネルギ化(コスト減)が図れる。また、従来のように熱伝セメントを採用していないため、装置全体の軽量化及び装置製造時間の短縮化も図れる。具体的には、例えば、電熱線を用いた本発明者等の特許文献4に開示の加熱媒体発生装置(従来の加熱媒体発生装置)を用いた加熱処理装置と比した場合、本実施例の加熱媒体発生装置3を用いた加熱処理装置によれば、製造コストが60%以上節減され、40%の省エネルギ化、50%の軽量化も図れた。
【0056】
また、本実施例では、外筒7の蓋部7b,7bの外方(筒長さ方向の外方)にそれぞれ相対向せしめて、蓋部7b,7bと同一径の円板47,47を備えている。
円板47には、遠赤外線放射ヒーター11の端部をそれぞれ固定している。そして、蓋部7bと円板47との間、及び蓋部7bと円板47との間には、それぞれ所定の間隙48,48を形成し、遠赤外線放射ヒーター11からの排熱を目的としている。
【0057】
図8は、本実施例の加熱媒体発生装置3において、熱交換パイプ13と接続された加熱媒体噴射ノズル21内の温度を110℃、120℃、130℃、140℃、150℃に設定し、供給水量を毎分14g−140g程度まで変化させたときのノズル21の内圧(MPa)と供給水量(g/min)の関係を示す。図中「▲」印はノズル21内の温度110℃のときのノズル21の内圧(MPa)と供給水量(g/min)の関係、「●」印はノズル21内の温度120℃のときのノズル21の内圧(MPa)と供給水量(g/min)の関係、「■」印はノズル21内の温度130℃のときのノズル21の内圧(MPa)と供給水量(g/min)の関係、「◆」印はノズル21内の温度140℃のときのノズル21の内圧(MPa)と供給水量(g/min)の関係、「★」印はノズル21内の温度150℃のときのノズル21の内圧(MPa)と供給水量(g/min)の関係をそれぞれ示す。
例えばノズル21内の温度が110℃の場合、供給水量を増加させていき、毎分11.04gとなった段階でノズル21の内圧が0.142MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。同じく、ノズル内温度が120℃の場合、供給水量を増加させていき、毎分16.53gとなった段階でノズル内圧が0.186MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。同じく、ノズル内温度が150℃の場合、供給水量を増加させていき、毎分36.85gとなった段階でノズル内圧が0.476MPaに達した後は、加熱媒体(水蒸気50と熱水52からなる気液混合体)が発生する。
なお、
図8中に記した「水滴」とは本明細書における「熱水」と同義語である。
本実施例の加熱媒体発生装置3によれば、110℃〜150℃のノズル21内の温度において加熱媒体の発生量が得られることが示されているが、幅広い温度(105℃〜150℃)において加熱媒体の発生量が得られることが分かった。
【0058】
図9は、ノズル21内の昇温速度と制御安定性を表した図で、
図9(a)は従来の加熱媒体発生装置を用いた加熱処理装置、
図9(b)は本実施例の加熱媒体発生装置を用いた加熱処理装置のそれぞれのデータを表している。
図9(a)における従来の加熱媒体発生装置は最大出力4.96kwで、
図9(b)の本実施例の加熱媒体発生装置は最大出力2.0kwで、同量の給水における温度の立ち上がり速度において同等の性能が確認された。
更に、本実施例の加熱媒体発生装置3を用いた場合の方が、従来の加熱媒体発生装置を用いた場合に比して高精度な温度制御が安定して得られることも証明された。
「実施例2」
【0059】
図4及び
図5は本発明加熱媒体発生装置の第2の実施例を示し、本実施例では、単一の装置3内に3個の遠赤外線放射ヒーター11,11,11を配設した実施の一例を想定している。
【0060】
外装体5内の長さ方向にわたって配される熱交換パイプ13のコイル形状の中心領域には、コイル形状の内部空間の長さ方向にわたる第1領域25〜第3領域27が並設され、遠赤外線放射ヒーター11,11,11は、これらの領域25〜27にそれぞれ独立して配設されている。
【0061】
第1領域25〜第3領域27は、遠赤外線放射ヒーター11から放射された遠赤外線をそれぞれ反射し、再度熱交換パイプ13へとそれぞれ放射可能な第二反射部材28で仕切られることによって構成されている。
【0062】
第二反射部材28は、第1領域25、第2領域26、第3領域27が、120度毎に均等に区切られるように仕切り板30,31,32が備えられている。
仕切り板30,31,32は、それぞれの基端側を合わせるとともに、それぞれ60度毎に均等に領域が区切られるように立ち上げ形成されている。すなわち、外筒7の長さ方向に外筒7と略同一長さで、かつ所定の高さで立ち上げ形成されている。
本実施例では、それぞれの仕切り板30,31,32の上端(遊端)30a,31a,32aがコイル形状を有する熱交換パイプ13の内面(内径13b)に接する程度の高さに設定されている。
第二反射部材28の表面、すなわち、各仕切り板30,31,32の表面は、それぞれ鏡面仕上げされている。
【0063】
したがって、本実施形態では、中心に第二反射部材28、第1領域25〜第3領域27、各遠赤外線放射ヒーター11,11,11、熱交換パイプ13、第一反射部材23、断熱材9、外筒7の順に内方から外方に向けて配設されている。
【0064】
本実施例によれば、熱交換パイプ13には、各遠赤外線放射ヒーター11,11,11からの放射熱がそれぞれ通過し、パイプ13内部を流通する供給水に伝熱する。
そして本実施例によれば、熱交換パイプ13を通過した放射熱が、第一反射部材23によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
さらに、熱交換パイプ13を通過した放射熱は、第二反射部材28の各仕切り板30,31,32によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
このように、それぞれの遠赤外線放射ヒーター11…は、第一反射部材23と第二反射部材28によって囲われるとともに、その囲われた領域内を熱交換パイプ13が通過しているため、上述のような作用が繰り返し行なわれ、伝熱効率が極めて高く短時間で加熱媒体の生成が可能である。図中の矢印は放射熱の放射方向の一例を示す。
【0065】
また、本実施例では、それぞれの仕切り板30,31,32の上端(遊端)30a,31a,32aがコイル形状を有する熱交換パイプ13の内面(内径13b)に接している形態としているが、非接触とすることも可能で本発明野範囲内である。
仕切り板30,31,32の厚みは特に限定されず本発明の範囲内で設計変更可能である。また、本実施例において、仕切り板30,31,32は、それぞれが連続した一つの板部材としているが、長さ方向で複数に分割されて断続的に配設される形態でもよい。
【0066】
本実施例は、第二反射部材28を備えて第1領域25〜第3領域27を形成するとともに、それぞれの領域25〜27に、それぞれ遠赤外線放射ヒーター11を配設した点に特徴的な構成を有しているが、それ以外の構成・作用効果については実施例1と同じであるため詳細な説明は省略する。
「実施例3」
【0067】
図6及び
図7は本発明加熱媒体発生装置3の第3の実施例を示し、本実施例では、単一の装置3内に6個の遠赤外線放射ヒーター11,11,11,11,11,11を配設した実施の一例を想定している。
【0068】
外装体5内の長さ方向にわたって配される熱交換パイプ13のコイル形状の中心領域には、コイル形状の内部空間の長さ方向にわたる第1領域33〜第6領域38が並設され、遠赤外線放射ヒーター11,11,11,11,11,11は、これらの領域33〜38にそれぞれ独立して一本ずつ配設されている。
【0069】
第1領域33〜第6領域38は、遠赤外線放射ヒーター11,11,11,11,11,11から放射された遠赤外線をそれぞれ反射し、再度熱交換パイプ13へとそれぞれ放射可能な第二反射部材39で仕切られることによって構成されている。
【0070】
第二反射部材39は、第1領域33、第2領域34、第3領域35、第4領域36、第5領域37、第6領域38が、それぞれ60度毎に均等に区切られるように仕切り板40,41,42,43,44,45が備えられている。
なお、本実施例では、外筒7の一端部7aから他端部7bにわたる長さのパイプ46を中心に設け、そのパイプ46の外径46aから所定間隔おきに仕切り板40,41,42,43,44,45を一体に立ち上げ形成して第二反射部材39を構成している。
仕切り板40,41,42,43,44,45は、パイプ46の軸方向中心からそれぞれ60度毎に均等に区切られる位置で立ち上げ形成されている。すなわち、パイプ46の外径において、パイプ46の長さ方向にパイプ46と同一長さで、かつ所定の高さで立ち上げ形成されている。
【0071】
このようにパイプ46を有する形態とした理由は、それぞれの領域33〜38の空間に遠赤外線放射ヒーター11…が、その周囲に空間を形成した状態で配設することが可能なように可能な限り広い空間を形成するためである。
第二反射部材39の表面、すなわち、各仕切り板40,41,42,43,44,45の表面は、それぞれ鏡面仕上げされている。
仕切り板40,41,42,43,44,45の厚みは特に限定されず本発明の範囲内で設計変更可能である。また、本実施例では、仕切り板40,41,42,43,44,45の高さは全て同一としているが、異なる高さとすることも可能である。
本実施例において、仕切り板40,41,42,43,44,45は、それぞれが連続した一つの板部材としているが、長さ方向で複数に分割されて断続的に配設される形態でもよい。
【0072】
したがって、本実施形態では、中心に第二反射部材39、第1領域33〜第6領域38、各遠赤外線放射ヒーター11…、熱交換パイプ13、第一反射部材23、断熱材9、外筒7の順に内方から外方に向けて配設されている。
【0073】
本実施例によれば、熱交換パイプ13には、各遠赤外線放射ヒーター11…からの放射熱がそれぞれ通過し、パイプ13内部を流通する供給水に伝熱する。
そして本実施例によれば、熱交換パイプ13を通過した放射熱が、第一反射部材23によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
さらに、熱交換パイプ13を通過した放射熱は、第二反射部材39の各仕切り板40,41,42,43,44,45によって反射されて再び熱交換パイプ13内を通過して供給水に伝熱する。
このように、それぞれの遠赤外線放射ヒーター11…は、第一反射部材23と第二反射部材39によって囲われるとともに、その囲われた領域内を熱交換パイプ13が通過しているため、上述のような作用が繰り返し行なわれ、伝熱効率が極めて高く短時間で加熱媒体の生成が可能である。図中の矢印は放射熱の放射方向の一例を示す。
【0074】
また、本実施例では、実施例2とは異なり、それぞれの仕切り板40,41,42,43,44,45の上端(遊端)40a,41a,42a,43a,44a,45aがコイル形状を有する熱交換パイプ13の内面(内径13b)と非接触形態としているが、熱交換パイプ13の内面(内径13b)と接触する形態とすることも可能で本発明野範囲内である。
【0075】
本実施例は、第二反射部材39を備えて第1領域33〜第6領域38を形成するとともに、それぞれの領域33〜38に、それぞれ
遠赤外線放射ヒーター11を配設した点に特徴的な構成を有しているが、それ以外の構成・作用効果については実施例1と同じであるため詳細な説明は省略する。
【0076】
なお上述の実施例1−実施例3は本発明の一実施の形態であって、本発明は何等これに限定解釈されるものではなく、遠赤外線放射ヒーター11の配設される数量や第二反射部材28(39)によって仕切られる領域の数などは本発明の範囲内において設計変更可能である。
また、実施例2や実施例3では、一つの領域毎に一本の遠赤外線放射ヒーターを配設した実施の形態をもって説明したが、一つの領域毎に複数本の遠赤外線放射ヒーターを配設する形態であってもよく本発明の範囲内である。
さらに、本実施例では、一つの加熱媒体発生装置に対して一本の熱交換パイプを配設する形態をもって説明したが、一つの加熱媒体発生装置に対して複数本の熱交換パイプを配設する形態であってもよく本発明の範囲内である。