特許第6249179号(P6249179)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニコンの特許一覧

特許6249179露光方法及び露光装置、並びにデバイス製造方法
<>
  • 特許6249179-露光方法及び露光装置、並びにデバイス製造方法 図000002
  • 特許6249179-露光方法及び露光装置、並びにデバイス製造方法 図000003
  • 特許6249179-露光方法及び露光装置、並びにデバイス製造方法 図000004
  • 特許6249179-露光方法及び露光装置、並びにデバイス製造方法 図000005
  • 特許6249179-露光方法及び露光装置、並びにデバイス製造方法 図000006
  • 特許6249179-露光方法及び露光装置、並びにデバイス製造方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6249179
(24)【登録日】2017年12月1日
(45)【発行日】2017年12月20日
(54)【発明の名称】露光方法及び露光装置、並びにデバイス製造方法
(51)【国際特許分類】
   G03F 7/20 20060101AFI20171211BHJP
   H01L 21/683 20060101ALI20171211BHJP
【FI】
   G03F7/20 521
   H01L21/68 N
【請求項の数】25
【全頁数】23
(21)【出願番号】特願2015-92710(P2015-92710)
(22)【出願日】2015年4月30日
(62)【分割の表示】特願2013-257558(P2013-257558)の分割
【原出願日】2006年4月21日
(65)【公開番号】特開2015-146043(P2015-146043A)
(43)【公開日】2015年8月13日
【審査請求日】2015年5月28日
(31)【優先権主張番号】特願2005-127025(P2005-127025)
(32)【優先日】2005年4月25日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2005-238373(P2005-238373)
(32)【優先日】2005年8月19日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100102901
【弁理士】
【氏名又は名称】立石 篤司
(72)【発明者】
【氏名】白石 健一
(72)【発明者】
【氏名】星加 隆一
(72)【発明者】
【氏名】藤原 朋春
【審査官】 新井 重雄
(56)【参考文献】
【文献】 特開2005−183693(JP,A)
【文献】 特開2005−005713(JP,A)
【文献】 特開2005−057278(JP,A)
【文献】 特開2001−188356(JP,A)
【文献】 特開2006−024819(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/20
H01L 21/683
(57)【特許請求の範囲】
【請求項1】
投影光学系と液体とを介して基板を露光する露光方法であって、
比抵抗を変化させる物質を純水に溶解させることと、
前記物質を純水に溶解させた液体の比抵抗を比抵抗計で計測することと、
前記物質を純水に溶解させた液体を前記投影光学系の下方に供給して液浸領域を形成することと、
前記液浸領域の界面に、前記液浸領域を形成する液体、又は前記液浸領域の液体と接触する物体の帯電を抑制する気体を吹き付けることと、
前記投影光学系と、前記液浸領域を形成する、前記物質を純水に溶解させた液体とを介して露光光で基板を露光することと、
を含む露光方法。
【請求項2】
請求項1に記載の露光方法において、
前記気体は、除電機能を有する気体である露光方法。
【請求項3】
請求項2に記載の露光方法において、
前記除電機能を有する気体は、イオンを含む気体である露光方法。
【請求項4】
請求項1〜3のいずれか一項に記載の露光方法において、
前記物質を純水に溶解させた液体を前記投影光学系の下方に供給することによって、前記液体の帯電に起因する前記基板上の膜の劣化を防止する露光方法。
【請求項5】
請求項1〜4のいずれか一項に記載の露光方法において、
前記物質は純水に溶解可能な気体を含み、
前記気体は、二酸化炭素を含む露光方法。
【請求項6】
請求項1〜5のいずれか一項に記載の露光方法において、
前記物質を純水に溶解させた液体の温度を調整することをさらに含む露光方法。
【請求項7】
請求項1〜6のいずれか一項に記載の露光方法において、
前記投影光学系の下方に供給される液体の比抵抗を、前記比抵抗計の計測結果に基づいて調整する露光方法。
【請求項8】
請求項1〜7のいずれか一項に記載の露光方法において、
前記物体は、前記液浸領域を形成する液体に対して撥液性の表面を有する露光方法。
【請求項9】
請求項8に記載の露光方法において、
前記撥液性の表面は、前記基板の表面を含む露光方法。
【請求項10】
請求項8又は9に記載の露光方法において、
前記撥液性の表面は、前記基板が載置されるステージの上面を含む露光方法。
【請求項11】
請求項1〜10のいずれか一項に記載の露光方法を用いて基板を露光することによって、前記基板上にデバイスパターンを形成するリソグラフィ工程を含むデバイス製造方法。
【請求項12】
投影光学系と液体とを介して露光光で基板を露光する露光装置であって、
基板が載置される基板ステージと、
液体の比抵抗を計測する比抵抗計と、
前記投影光学系の下方に液体を供給して前記投影光学系と対向する前記基板ステージに載置された前記基板上に液浸領域を形成する液浸装置と、を備え、
前記液浸装置は、比抵抗を変化させる物質を純水に溶解させる第1機構を有し、前記物質を純水に溶解させた液体を前記投影光学系の下方に供給し、
前記比抵抗計は、前記物質を純水に溶解させた液体の比抵抗を計測し、
前記液浸領域の界面に、前記液浸領域を形成する液体、又は前記液浸領域の液体と接触する物体の帯電を抑制する気体が吹き付けられる露光装置。
【請求項13】
請求項12に記載の露光装置において、
前記気体は、除電機能を有する気体である露光装置。
【請求項14】
請求項13に記載の露光装置において、
前記除電機能を有する気体は、イオンを含む気体である露光装置。
【請求項15】
請求項1214のいずれか一項に記載の露光装置において、
前記第1機構は、前記比抵抗計の計測結果に基づいて、前記投影光学系の下方に供給される液体の比抵抗を調整する露光装置。
【請求項16】
請求項1215のいずれか一項に記載の露光装置において、
前記第1機構は、前記比抵抗計の計測結果に基づいて、前記純水に対する前記物質の溶解量を調整可能である露光装置。
【請求項17】
請求項1216のいずれか一項に記載の露光装置において、
前記液浸装置は、前記第1機構の下流に配置され、前記物質を純水に溶解させた液体の温度調整を行う第2機構を有し、前記第2機構により温度調整された液体を前記投影光学系の下方に供給する露光装置。
【請求項18】
請求項1217のいずれか一項に記載の露光装置において、
前記物質の溶解に起因する前記液体の屈折率変動を考慮して前記投影光学系の少なくとも一部を調整する調整装置を更に備える露光装置。
【請求項19】
請求項1218のいずれか一項に記載の露光装置において、
前記物質の溶解に起因する前記液体の前記露光光と同一波長の光に対する透過率変動を考慮して前記基板に対するドーズ制御を行う制御装置を更に備える露光装置。
【請求項20】
請求項1219のいずれか一項に記載の露光装置において、
前記物質は純水に溶解可能な気体を含む露光装置。
【請求項21】
請求項20に記載の露光装置において、
前記物質は、二酸化炭素を含む露光装置。
【請求項22】
請求項12〜21のいずれか一項に記載の露光装置において、
前記物体は、前記液浸領域を形成する液体に対して撥液性の表面を有する露光装置。
【請求項23】
請求項22に記載の露光装置において、
前記撥液性の表面は、前記基板の表面を含む露光装置。
【請求項24】
請求項22又は23に記載の露光装置において、
前記基板が載置されるステージをさらに備え、
前記撥液性の表面は、前記基板が載置される前記ステージの上面を含む露光装置。
【請求項25】
請求項1224のいずれか一項に記載の露光装置を用いて基板を露光することによって、前記基板上にデバイスパターンを形成するリソグラフィ工程を含むデバイス製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、露光方法及び露光装置、並びにデバイス製造方法に係り、更に詳しくは、液体を介して物体を露光する露光方法及び露光装置、並びにリソグラフィ工程で前記露光方法及び露光装置を用いるデバイス製造方法に関する。
【背景技術】
【0002】
従来、半導体素子(集積回路等)、液晶表示素子等の電子デバイスを製造するリソグラフィ工程では、マスク(又はレチクル)のパターンの像を投影光学系を介して、レジスト(感応材)が塗布されたウエハ又はガラスプレート等の感応性の物体(以下、「ウエハ」と総称する)上の複数のショット領域の各々に転写するステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)や、ステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。
【0003】
この種の投影露光装置では、集積回路の高集積化によるパターンの微細化に伴って、より高い解像力(解像度)が年々要求されるようになり、最近では、実質的に露光波長を短くして、かつ空気中に比べて焦点深度を大きく(広く)する方法として、液浸法を利用した露光装置が、注目されるようになってきた。この液浸法を利用した露光装置として、投影光学系の下面とウエハ表面との間を水又は有機溶媒等の液体で局所的に満たした状態で露光を行うものが知られている(例えば、下記特許文献1参照)。この特許文献1に記載の露光装置では、液体中での露光光の波長が、空気中の1/n倍(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上させると共に、その解像度と同一の解像度が液浸法によらず得られる投影光学系(このような投影光学系の製造が可能であるとして)に比べて焦点深度をn倍に拡大する、すなわち空気中に比べて焦点深度を実質的にn倍に拡大することができる。
【0004】
しかるに、前述の液浸露光装置においては、露光光が照射される物体(部材)上に液浸領域を形成した状態で露光に関する種々の計測が行われる。
【0005】
また、液浸露光装置では、液体の一例として純水が提案されている。これは、純水は、半導体製造工場等で容易に大量に入手できると共に、ウエハ上のフォトレジストや光学レンズ等に対する悪影響がない利点があるからである。
【0006】
しかしながら、純水は、比抵抗が高いため、配管、ノズルなどとの摩擦により静電気が発生し、この帯電した純水で物体(部材)上に液浸領域を形成した場合、その物体(部材)及びその物体(部材)表面の膜の少なくとも一方などが帯電する可能性がある。その場合、その液浸領域が形成された物体(部材)表面の膜が損傷する可能性がある。この膜の損傷は、その損傷部分と他の部分との光学特性の不均一性の発生や、水染み(ウォーターマーク)の発生などの要因となり、結果的に、計測精度の低下を招くおそれがある。また、その帯電により物体(部材)表面に異物が吸着され、その異物によって液体(純水)、ウエハなどが汚染され、欠陥などの露光不良が生じる可能性もある。
【0007】
また、帯電した純水で露光対象の物体(例えば、ウエハ)上に液浸領域を形成した場合には、物体(ウエハ)上の膜(レジスト膜、及び/又はトップコート層)が帯電する可能性がある。その場合、物体(ウエハ)上の膜(レジスト膜、及び/又はトップコート層)に損傷、改質などが起こり、欠陥の発生原因となる可能性がある。
【0008】
また、露光対象の物体(ウエハ)が帯電した場合、物体(ウエハ)の表面に異物が吸着され、液体(純水)、露光対象の物体(ウエハ)などが汚染され、欠陥などの露光不良が生じる可能性もある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】国際公開第99/49504号
【発明の概要】
【課題を解決するための手段】
【0010】
本発明は、上述の事情の下でなされたもので、第1の観点からすると、投影光学系と液体とを介して基板を露光する露光方法であって、比抵抗を変化させる物質を純水に溶解させることと、前記物質を純水に溶解させた液体の比抵抗を比抵抗計で計測することと、前記物質を純水に溶解させた液体を前記投影光学系の下方に供給して液浸領域を形成することと、前記液浸領域の界面に、前記液浸領域を形成する液体、又は前記液浸領域の液体と接触する物体の帯電を抑制する気体を吹き付けることと、前記投影光学系と前記液浸領域を形成する、前記物質を純水に溶解させた液体とを介して露光光で基板を露光することと、を含む露光方法である。
【0011】
これによれば、比抵抗を変化させる物質を純水に溶解させた液体により投影光学系の下方に液浸領域が形成される。また、液浸領域の界面に、液浸領域を形成する液体、又は液浸領域の液体と接触する物体の帯電を抑制する気体が吹き付けられる。そして、投影光学系と液浸領域を形成する液体とを介して露光光で基板が露光される。
【0012】
本発明は、第2の観点からすると、投影光学系と液体とを介して露光光で基板を露光する露光装置であって、基板が載置される基板ステージと、液体の比抵抗を計測する比抵抗計と、前記投影光学系の下方に液体を供給して前記投影光学系と対向する前記基板ステージに載置された前記基板上に液浸領域を形成する液浸装置と、を備え、前記液浸装置は、比抵抗を変化させる物質を純水に溶解させる第1機構を有し、前記物質を純水に溶解させた液体を前記投影光学系の下方に供給し、前記比抵抗計は、前記物質を純水に溶解させた液体の比抵抗を計測し、前記液浸領域の界面に、前記液浸領域を形成する液体、又は前記液浸領域の液体と接触する物体の帯電を抑制する気体が吹き付けられる露光装置である。
【0013】
これによれば、液浸装置により、比抵抗を変化させる物質を純水に溶解させた液体が投影光学系の下方に供給され投影光学系と対向する基板ステージに載置された基板上に液浸領域が形成される。また、液浸領域を形成する液体の比抵抗が、比抵抗計によって計測され、液浸領域の界面に、液浸領域を形成する液体、又は液浸領域の液体と接触する物体の帯電を抑制する気体が吹き付けられる。そして、投影光学系と液浸領域を形成する液体とを介して露光光で基板が露光される。
【0016】
また、リソグラフィ工程において、本発明の露光方法を用いることで、基板上にパターンを精度良く形成することができる。したがって、本発明は、第の観点からすると、本発明の露光方法を用いて基板を露光することによって、前記基板上にデバイスパターンを形成するリソグラフィ工程を含むデバイス製造方法であるとも言える。また、リソグラフィ工程において、本発明の露光装置を用いることで、基板上にパターンを精度良く形成することができる。したがって、本発明は、第の観点からすると、本発明の露光装置を用いて基板を露光することによって、前記基板上にデバイスパターンを形成するリソグラフィ工程を含むデバイス製造方法であるとも言える。
【図面の簡単な説明】
【0019】
図1】一実施形態の露光装置の構成を概略的に示す図である。
図2図1のステージ装置の平面図である。
図3】液体供給装置の構成を概略的に示す図である。
図4】計測テーブルを示す平面図である。
図5】照度モニタ122近傍を示す計測テーブルの縦断面図である。
図6】一実施形態の露光装置の制御系の主要な構成を示すブロック図である。
【発明を実施するための形態】
【0020】
以下、本発明の一実施形態を図1図6に基づいて説明する。
【0021】
図1には、一実施形態に係る露光装置100の構成が概略的に示されている。この露光装置100は、ステップ・アンド・スキャン方式の走査型露光装置、すなわちいわゆるスキャナである。
【0022】
露光装置100は、照明系ILS、該照明系ILSからのエネルギビームとしての露光用照明光ILにより照明されるマスクとしてのレチクルRを保持して所定の走査方向(ここでは、図1における紙面内左右方向であるY軸方向とする)に移動するレチクルステージRST、レチクルRから射出された露光用照明光ILをウエハW上に投射する投影光学系PLを含む投影ユニットPU、ウエハWが載置される物体ステージとしてのウエハステージWST及び露光のための計測に用いられる計測ステージMSTを含むステージ装置150、及びこれらの制御系等を備えている。
【0023】
照明系ILSに搭載された光源としては、一例として波長200nm〜170nmの真空紫外域の光を発するパルス光源であるArFエキシマレーザ光源(出力波長193nm)が用いられている。
【0024】
また、照明系ILSは、所定の位置関係で配置された、ビーム整形光学系、エネルギ粗調器、オプティカル・インテグレータ(ユニフォマイザ、又はホモジナイザ)、照明系開口絞り板、ビームスプリッタ、リレーレンズ、レチクルブラインド、光路折り曲げ用のミラー及びコンデンサレンズ(いずれも不図示)等を含んでいる。なお、照明系ILSの構成や各光学部材の機能などについては、例えば国際公開第2002/103766号などに開示されている。
【0025】
前記レチクルステージRST上には、回路パターンなどがそのパターン面(図1における下面)に形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系55によって、XY平面内で微少駆動可能であるとともに、所定の走査方向(ここでは図1における紙面内左右方向であるY軸方向)に指定された走査速度で駆動可能となっている。
【0026】
レチクルステージRSTのステージ移動面内の位置(Z軸回りの回転を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)53によって、移動鏡65(実際には、Y軸方向に直交する反射面を有するY移動鏡とX軸方向に直交する反射面を有するX移動鏡とが設けられている)を介して、例えば0.5〜1nm程度の分解能で常時検出される。このレチクル干渉計53の計測値は、主制御装置50に送られ、主制御装置50では、このレチクル干渉計53の計測値に基づいてレチクルステージ駆動系55を介してレチクルステージRSTのX軸方向、Y軸方向及びθz方向(Z軸回りの回転方向)の位置(及び速度)を制御する。
【0027】
レチクルRの上方には、投影光学系PLを介してレチクルR上の一対のレチクルアライメントマークとこれらに対応する計測ステージMST上に設けられた基準マーク板FM(図2等参照)上の一対の基準マーク(以下、「第1基準マーク」と呼ぶ)とを同時に観察するための露光波長の光を用いたTTR(Through The Reticle)アライメント系から成る一対のレチクルアライメント検出系RAa,RAbがX軸方向に所定距離隔てて設けられている。これらのレチクルアライメント検出系RAa,RAbとしては、例えば特開平7−176468号公報及びこれに対応する米国特許第5,646,413号明細書などに開示されるものと同様の構成のものが用いられている。
【0028】
前記投影ユニットPUは、図1においてレチクルステージRSTの下方に配置されている。投影ユニットPUは、鏡筒140と、該鏡筒140内に所定の位置関係で保持された複数の光学素子から成る投影光学系PLとを含む。投影光学系PLとしては、例えばZ軸方向の共通の光軸AXを有する複数のレンズ(レンズエレメント)から成る屈折光学系が用いられている。この投影光学系PLは、例えば両側テレセントリックで所定の投影倍率(例えば1/4倍、1/5倍又は1/8倍)を有する。このため、照明光学系12からの照明光ILによってレチクルR上の照明領域IARが照明されると、このレチクルRを通過した照明光ILにより、投影光学系PL(投影ユニットPU)を介してその照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が表面にレジスト(感応材)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、「露光領域」とも呼ぶ)IAに形成される。なお、本実施形態において、投影光学系PLを構成する最も像面側(ウエハ側)の終端光学素子191は、屈折力を有するレンズであるが、無屈折力の平行平面板であっても良い。
【0029】
また、投影光学系PLを構成する複数のレンズのうち、特定の複数のレンズは、主制御装置50からの指令に基づいて、結像特性補正コントローラ52によって制御され、投影光学系PLの光学特性(結像特性を含む)、例えば倍率、ディストーション、コマ収差、及び像面湾曲(像面傾斜を含む)などを調整できる。
【0030】
なお、本実施形態の露光装置100では、後述するように液浸法を適用した露光が行われるため、開口数NAが実質的に増大することに伴いレチクル側の開口が大きくなる。このため、レンズのみで構成する屈折光学系においては、ペッツヴァルの条件を満足することが困難となり、投影光学系が大型化する傾向にある。かかる投影光学系の大型化を避けるために、ミラーとレンズとを含む反射屈折系(カタディ・オプトリック系)を用いても良い。
【0031】
また、本実施形態の露光装置100では、投影光学系PLを構成する最も像面側(ウエハW側)の終端光学素子であるレンズ(以下、「先端レンズ」ともいう)191の近傍には、液浸装置132の一部を構成する液体供給ノズル131Aと、液体回収ノズル131Bとが設けられている。
【0032】
前記液体供給ノズル131Aには、その一端が液体供給装置138(図1では不図示、図6参照)の一部に接続された供給管78(図1図6では不図示、図3参照)の他端が接続されており、前記液体回収ノズル131Bには、その一端が液体回収装置139(図1では不図示、図6参照)に接続された不図示の回収管の他端が接続されている。
【0033】
本実施形態では、液浸用の液体Lq(図1参照)は、ArFエキシマレーザ光(波長193nmの光)が透過する純水を使って作るものとする。純水は、半導体製造工場等で容易に大量に入手できると共に、ウエハW上のレジスト及び光学レンズ等に対する悪影響が少ない利点がある。
【0034】
図3には、液体供給装置138の構成の一例が示されている。この図3に示されるように、液体供給装置138は、一端が半導体製造工場の純水の工場配管に接続され、他端が液体のタンクを兼ねるCO2溶解槽82の一端に接続された純水供給管84、該純水供給管84の途中に設けられた流量制御用電磁弁86A、上記CO2溶解槽82の一端と不図示のCO2タンクとを接続するCO2供給管88、該CO2供給管88の途中に設けられた流量制御用電磁弁86B、前記CO2溶解槽82の他端(純水供給管84とは反対側)にその一端が接続された供給配管90、該供給配管90の他端にその一端が接続され、液体の温度調整を行う液体温度調整機構72、該供給配管90の途中に設けられた加圧ポンプ74及び比抵抗計76、上記液体温度調整機構72の他端側にその一端が接続され、他端に液体供給ノズル131Aが設けられた供給管78、並びに液体温度調整機構72、流量制御用電磁弁86A,86B、加圧ポンプ74、比抵抗計76等が接続されたコントローラ80等を備えている。
【0035】
コントローラ80は、加圧ポンプ74を主制御装置50からの指示に基づいて作動させるとともに、その作動中、比抵抗計76で計測されるCO2溶解槽82からの液体(二酸化炭素が溶解した純水)の比抵抗値をモニタしつつ、その計測される比抵抗値が所定範囲内の値となるように、流量制御用電磁弁86A,86Bを制御する。これにより、CO2溶解槽82の内部で、工場配管を介して供給された純水中にCO2タンクから供給された二酸化炭素(CO2)が混入し、溶解して、所望の比抵抗値の液体(純水、厳密に言えば炭酸水)Lqが生成される。すなわち、本実施形態では、純水に比抵抗を低下させる二酸化炭素を混入して溶解させて、液体供給ノズル131Aを介して計測テーブルMTB上又はウエハテーブルWTB上に液体Lqとして供給する。なお、純水中への二酸化炭素(炭酸ガス)の混入(溶解)は、純水中に炭酸ガスを直接注入する方式、あるいは中空糸膜を介して純水中に二酸化炭素を混入させる方式など、各種の方式を採用することができる。なお、二酸化炭素を含む空気を純水中に溶解させても良い。
【0036】
そして、コントローラ80の指示の下、液体温度調整機構72によりその液体Lqの温度が、露光装置本体が収納されているチャンバ(不図示)内の温度と同程度の温度に調整される。ここで、コントローラ80は、純水と二酸化炭素との流量の比を維持した状態で、流量制御用電磁弁86A,86Bの開度を調整することで、液体供給ノズル131Aを介して供給される液体Lqの流量を調整する。但し、液体温度調整機構72の内部又はその近傍に流量制御弁を設けて、液体の温度と流量とを調整するようにしても勿論良い。
【0037】
前記液体回収装置139は、液体のタンク及び吸引ポンプ、並びに回収管を介した液体の回収・停止を制御するためのバルブ等を含む。バルブとしては、前述した液体供給装置138側のバルブに対応して流量制御弁を用いることが望ましい。
【0038】
ArFエキシマレーザ光に対する純水の屈折率nは、ほぼ1.44である。この純水の中では、照明光ILの波長は、193nm×1/n=約134nmに短波長化される。本実施形態の場合、液体Lqとして前述の二酸化炭素が溶解した水溶液が用いられるので、厳密に言えば、その混入した二酸化炭素の割合に応じて純水と屈折率が異なるが、二酸化炭素の混入割合は、小さいのでArFエキシマレーザ光に対する液体Lqの屈折率は、上記の値とあまり異ならないものとする。
【0039】
前記液体供給ノズル131Aと前記液体回収ノズル131Bとを含む液浸装置132は、主制御装置50によって制御される(図6参照)。主制御装置50は、液体供給ノズル131Aを介して先端レンズ191とウエハWとの間に液体Lqを供給するとともに、液体回収ノズル131Bを介して先端レンズ191とウエハWとの間から液体Lqを回収する。このとき、主制御装置50は、先端レンズ191とウエハWとの間に液体供給ノズル131Aから供給される液体Lqの量と、液体回収ノズル131Bを介して回収される液体Lqの量とが常に等しくなるように制御している。従って、先端レンズ191とウエハWとの間に、一定量の液体Lq(図1参照)が保持される。この場合、先端レンズ191とウエハWとの間に保持された液体Lqは、常に入れ替わっている。
【0040】
なお、投影ユニットPU下方に計測ステージMSTが位置する場合にも、上記と同様に計測テーブルMTBと先端レンズ191との間に液体Lqを満たすことが可能である。
【0041】
なお、上記の説明では、その説明を簡単にするため、液体供給ノズルと液体回収ノズルとがそれぞれ1つずつ設けられているものとしたが、これに限らず、例えば、国際公開第99/49504号に開示されるように、ノズルを多数有する構成を採用することとしても良い。また、液浸装置132に、欧州特許出願公開第1,598,855号公報、あるいは国際公開第2004/090634号などに開示されている構成を採用することもできる。要は、投影光学系PLを構成する最下端の光学部材(先端レンズ)191とウエハWとの間に液体を供給することができるのであれば、液浸装置132の構成はいかなるものであっても良い。
【0042】
前記投影ユニットPUの+Y側には、図1に示されるように、ウエハW上のアライメントマークなどの検出対象マークを光学的に検出するオフアクシス・アライメント系(以下、「アライメント系」と略述する)ALGが設けられている。なお、アライメント系ALGとしては、各種方式のセンサを用いることができるが、本実施形態においては、画像処理方式のセンサが用いられている。なお、画像処理方式のセンサは、例えば特開平4−65603号公報及びこれに対応する米国特許第5,493,403号明細書などに開示されている。アライメント系ALGからの撮像信号は、主制御装置50に供給される(図6参照)。
【0043】
図1及び図2に示されるように、前記ステージ装置150は、ベース盤112と、該ベース盤112の上面の上方に配置されたウエハステージWST及び計測ステージMSTと、これらのステージWST、MSTの位置を計測する干渉計システム118(図6参照)と、リニアモータ等を使ってステージWST、MSTを駆動するステージ駆動系124(図6参照)と、を備えている。
【0044】
ウエハステージWST及び計測ステージMSTの底面には、不図示の非接触軸受、例えば空気静圧軸受(すなわち、エアベアリング(エアパッドとも呼ばれる))が複数ヶ所に設けられており、これらの空気静圧軸受からベース盤112の上面に向けて噴出された加圧空気の静圧により、ベース盤112の上面の上方にウエハステージWST、計測ステージMSTが数μm程度のクリアランスを介して浮上支持されている。また、ステージWST、MSTのそれぞれは、ステージ駆動系124によって、XY面内で互いに独立して駆動(θz回転を含む)される。ウエハステージWST、及び計測ステージMSTのステージ移動面(XY平面)内の位置、及び各座標軸回りの回転位置は、干渉計システム118により検出される。なお、図1においては、説明を簡単にするために、ウエハステージWSTのY軸方向の位置を計測するためのY軸干渉計116、計測ステージMSTのY軸方向の位置を計測するためのY軸干渉計117のみが図示されている。干渉計システム118(116,117)の計測値は、主制御装置50に送られ、主制御装置50は、干渉計システム118の計測値に基づいてステージ駆動系124を介してウエハステージWST、及び計測ステージMSTの位置(及び速度)を制御する。
【0045】
これを更に詳述すると、ウエハステージWSTは、図1に示されるように、上記エアベアリングがその底面に設けられたウエハステージ本体91と、該ウエハステージ本体91上に不図示のZ・レベリング機構(例えばボイスコイルモータなどのアクチュエータを含んでいる)を介して搭載され、ウエハステージ本体91に対してZ軸方向、X軸回りの回転方向(θx方向)及びY軸回りの回転方向(θy方向)に微小駆動されるウエハテーブルWTBとを備えている。
【0046】
ウエハテーブルWTB上には、ウエハWを真空吸着等によって保持するウエハホルダ(不図示)が設けられている。このウエハホルダは、板状の本体部と、該本体部の上面に固定されその中央にウエハWの直径より0.1〜2mm程度直径が大きな円形開口が形成されたプレート93(図1図2参照)とを備えている。プレート93の円形開口内部の本体部の領域には、多数のピンが配置されており、その多数のピンによってウエハWが支持された状態で真空吸着されている。この場合、ウエハWが真空吸着された状態では、そのウエハW表面とプレート93の表面とがほぼ同一の高さとなる。プレート93全面の表面にフッ素系樹脂材料やアクリル系樹脂材料等の撥液性材料(撥水材料)がコーティングされ、撥液膜が形成されている。また、ウエハWの表面には、レジスト(感応材)が塗布され、その塗布されたレジストによりレジスト膜が形成されている。この場合、レジスト膜は液浸用の液体Lqに対して撥液性のものを用いることが望ましい。また、ウエハWの表面にそのレジスト膜を覆うようにトップコート膜(層)を形成しても良い。このトップコート膜として液浸用の液体Lqに対して撥液性のものが用いることが望ましい。なお、トップコート膜は、液体Lqからレジスト膜を保護する保護機能、レジスト膜を構成する物質の液体Lqへの溶出を防止する溶出防止機能、及び照明光ILの反射を防止する反射防止機能の少なくとも一つを有している。
【0047】
前記計測ステージMSTは、図1に示されるように、上記エアベアリングがその底面に設けられた計測ステージ本体92と、該計測ステージ本体92上に不図示のZ・レベリング機構を介して搭載された計測テーブルMTBとを備えている。
【0048】
計測テーブルMTBは、上面が開口した中空直方体状の筐体120(図5参照)と、該筐体120の上面を閉塞する例えばポリ四フッ化エチレン(テフロン(登録商標))などの撥液性を有する材料によって形成される所定厚さのプレート部材101とを含み、高さ方向の寸法が幅方向及び奥行き方向の寸法に比べて格段に小さな直方体状の外見を有している。
【0049】
前記プレート部材101は、計測テーブルMTBの平面図である図4に示されるように、Y軸方向を長手方向とする長方形の開口101a、該開口101aとほぼ同一のX軸方向寸法を有しそのX軸方向を長手方向とする長方形の開口101bと、3つの円形開口101d,101e,101fとが形成されている。
【0050】
前記プレート部材101の開口101bの内側及び開口101b下方の筐体120の内部には、図5に示されるように照度モニタ(照射量モニタ)122が、配置されている。この照度モニタ122は、図5に示されるように、合成石英又は蛍石などを素材とするガラスから成るガラス部材126、及び該ガラス部材126の下面にほぼ隙間なく固定された光センサ128等を備えている。光センサ128は、図5に示される前述の露光領域IA(図4参照)に照射された照明光ILのほぼ全部を受光できる程度の所定面積の受光面を有し、照明光ILと同じ波長域(例えば波長300nm〜100nm程度)で感度があり、且つ照明光ILを検出するために高い応答周波数を有する複数のシリコン・フォト・ダイオード(又はフォト・マルチプライア・チューブ)などの受光素子群を含んでいる。
【0051】
ガラス部材126は、図5に示されるように、プレート部材101の開口101b部分の内側面及び下側面に対して所定のギャップを介して対向するような形状を有している。この場合、開口101bとガラス部材126の上部側面との間のギャップBの幅寸法は、例えば0.3mm程度に設定されている。
【0052】
ガラス部材126は、筐体120の底壁の上面に設けられた支持部材130に上方から係合している。すなわち、支持部材130は、光センサ128を取り囲む平面視(上方から見て)所定幅の枠状の形状を有しており、ガラス部材126の下面の外縁部には、支持部材130の上端部に係合する段部が形成されている。ガラス部材126には、その上面に照明光ILを減光するクロム等の金属薄膜から成る減光膜129が全面に渡って形成され、さらにその減光膜の上部にフッ素系樹脂材料、あるいはアクリル系樹脂材料等の撥液性材料(撥水材料)がコーティングされ、これによって撥液膜WRFが形成されている。本実施形態では、この撥液膜WRFの上面とプレート部材101の上面とは、ほぼ同一面(面一)に設定されている。
【0053】
一方、ガラス部材126下面には、中央部の長方形領域を除く領域にクロムなどの金属膜から成る遮光膜127が形成されている。この遮光膜127により、図5に示されるようにギャップB部分を介してガラス部材126に入射した迷光(図5中の太線の実線矢印参照)がカット(遮光)される。
【0054】
本実施形態の照度モニタ122は、例えば特開平6−291016号公報及びこれに対応する米国特許第5,721,608号明細書などに開示される照度モニタ(照射量モニタ)と同様の構成を有しており、投影光学系PLの像面上で液体Lqを介して照明光ILの照度を計測する。照度モニタ122の一部を構成する光センサ128の検出信号(光電変換信号)が不図示のホールド回路(例えばピークホールド回路など)、及びアナログ/デジタル(A/D)変換器を介して主制御装置50に供給されている。
【0055】
なお、ガラス部材126の側面の少なくともプレート部材101に対向する領域、並びにプレート部材101のガラス部材126に対向する開口101bの内壁面は、撥液処理されて撥液性となっている。撥液処理としては、前述したフッ素系樹脂材料、あるいはアクリル系樹脂材料等の撥液性材料を塗布する等して行うことができる。
【0056】
また、筐体120底壁には、前述の支持部材130の近傍に、排出孔120aが形成されており、この排出孔120aは、不図示の配管を介して不図示の回収部に接続されている。この回収部は、真空系及び液体Lqを収容可能なタンクを含む気液分離器等を備えている。上述した撥液処理にもかかわらず、ギャップBを介して筐体120の内部に流入した液体Lqは、その回収部で回収される。
【0057】
前記プレート部材101の開口101aの内部には、図4に示されるように、平面視長方形の基準マーク板FMが配置されている。この場合、基準マーク板FMとプレート部材101との間には例えば0.3mm程度のギャップAが、基準マーク板FMの周囲に形成されている。基準マーク板FMの上面はプレート部材101表面とほぼ同じ高さ(面一)に設定されている。この基準マーク板FMの表面には、前述の一対のレチクルアライメント検出系RAa,RAbによって一対ずつ同時計測が可能な3対の第1基準マークRM11〜RM32と、アライメント系ALGにより検出される3つの第2基準マークWM1〜WM3とが所定の位置関係で形成されている。これらの基準マークのそれぞれは、基準マーク板FMを構成する部材(例えば極低膨張ガラスセラミック、例えばクリアセラム(登録商標)など)の表面にほぼ全面に渡って形成されたクロム層に上記所定の位置関係でパターニングよって形成された開口パターンによって形成されている。なお、各基準マークを、アルミニウムなどのパターン(残しパターン)によって形成しても良い。
【0058】
本実施形態では、例えば特開平5−21314号公報及びこれに対応する米国特許第5,243,195号明細書などに開示されるのと同様に、上記第1基準マークRMj1,RMj2(j=1〜3)は、液体Lqを介して前述の一対のレチクルアライメント検出系RAa,RAbによって同時に計測可能で、かつこの第1基準マークRMj1,RMj2の計測と同時に第2基準マークWMjを液体Lqを介さずにアライメント系ALGによって計測が可能になるように、上記各基準マークの配置が定められている。また、基準マーク板FMの上面はほぼ平坦面となっており、多点焦点位置検出系の基準面として用いることとしても良い。この基準マーク板FMの上面には、不図示ではあるが、前述のクロム層の上部に前述したフッ素系樹脂材料、あるいはアクリル系樹脂材料等の撥液性材料から成る撥液膜が形成されている。
【0059】
基準マーク板FMの側面の少なくともプレート部材101に対向する領域、並びにプレート部材101の基準マーク板FMに対向する開口101aの内壁面は、前述と同様の撥液処理が施されている。また、筐体120の底壁には、基準マーク板FMの近傍にも前述の排出孔120aと同様の排出孔が形成され、この排出孔が前述の回収部の真空系に接続されている。
【0060】
前記プレート部材101の開口101dの内側及び開口101b下方の筐体120の内部には、平面視円形のパターン板103を有する照度むら計測器104が配置されている。パターン板103とプレート部材101との間には例えば0.3mm程度の幅寸法のギャップDが、パターン板103の周囲に形成されている。
【0061】
照度むら計測器104は、上記パターン板103と、該パターン板の下方に配置された不図示の受光素子(前述のシリコン・フォト・ダイオードあるいはフォト・マルチプライア・チューブなど)から成るセンサとを有している。パターン板103は、前述のガラス部材126と同様に石英ガラスなどから成り、その表面にクロムなどの遮光膜が成膜され、該遮光膜の中央に光透過部としてピンホール103aが形成されている。そして、その遮光膜の上に、前述したフッ素系樹脂材料、あるいはアクリル系樹脂材料等の撥液性材料から成る撥液膜が形成されている。
【0062】
上述の照度むら計測器104は、特開昭57−117238号公報及びこれに対応する米国特許第4,465,368号明細書などに開示される照度むら計測器と同様の構成を有しており、投影光学系PLの像面上で液体Lqを介して照明光ILの照度むらを計測する。そして、照度むら計測器を構成するセンサの検出信号(光電変換信号)が不図示のホールド回路(例えばピークホールド回路など)、及びアナログ/デジタル(A/D)変換器を介して主制御装置50に供給されている。
【0063】
前記プレート部材101の開口101eの内部には、平面視円形のスリット板105が、その表面がプレート部材101表面とほぼ同一面(面一)となる状態で配置されている。スリット板105とプレート部材101との間には例えば0.3mm程度の幅寸法のギャップEが、スリット板105の周囲に形成されている。このスリット板105は、前述のパターン板103と同様に、石英ガラスと、該石英ガラスの表面に形成されたクロムなどの遮光膜とを有し、該遮光膜の所定箇所にX軸方向、Y軸方向に伸びるスリットパターンが光透過部として形成されている。そして、その遮光膜の上に、前述したフッ素系樹脂材料やアクリル系樹脂材料等の撥液性材料から成る撥液膜が形成されている。このスリット板105は、投影光学系PLにより投影されるパターンの空間像(投影像)の光強度を計測する空間像計測器の一部を構成するものである。本実施形態では、このスリット板105の下方の計測テーブルMTB(筐体120)の内部には、投影光学系PL及び液体Lqを介してプレート部材101に照射される照明光ILを、前記スリットパターンを介して受光する受光系が設けられており、これによって、例えば特開2002−14005号公報及びこれに対応する米国特許出願公開第2002/0041377号明細書などに開示される空間像計測器と同様の空間像計測器が構成されている。
【0064】
前記プレート部材101の開口101fの内部には、平面視円形の波面収差計測用パターン板107が、その表面がプレート部材101表面とほぼ同一面(面一)となる状態で配置されている。この波面収差計測用パターン板107は、前述のパターン板103と同様に、石英ガラスと、該石英ガラスの表面に形成されたクロムなどの遮光膜とを有し、該遮光膜の中央に円形の開口が形成されている。そして、その遮光膜の上に、前述したフッ素系樹脂材料、あるいはアクリル系樹脂材料等の撥液性材料から成る撥液膜が形成されている。この波面収差計測用パターン板107の下方の計測テーブルMTB(筐体120)の内部には、投影光学系PL及び液体Lqを介して照明光ILを受光する例えばマイクロレンズアレイを含む受光系が設けられており、これによって例えば国際公開第99/60361号及びこれに対応する欧州特許第1,079,223号明細書などに開示される波面収差計測器が構成されている。
【0065】
上述したパターン板103、スリット板105及び波面収差計測用パターン板107それぞれの側面の少なくともプレート部材101にそれぞれ対向する領域、並びにプレート部材101のパターン板103に対向する開口101dの内壁面、スリット板105に対向する開口101eの内壁面、及び波面収差計測用パターン板107に対向する開口101fの内壁面それぞれには、前述と同様の撥液処理がなされている。また、筐体120の底壁には、パターン板103の近傍、スリット板105の近傍、及び波面収差計測用パターン板107の近傍に前述の排出孔120aと同様の排出孔がそれぞれ形成され、これらの排出孔が前述の回収部の真空系に接続されている。
【0066】
なお、図示は省略されているが、本実施形態では、筐体120の内部に、前述した各種計測器を構成する受光素子(センサ)が配置されているので、それらの受光素子の発熱の影響を極力回避すべく、それらの受光素子及び筐体120の冷却機構が設けられている。受光素子の冷却機構としては、例えば筐体120の底壁に設けられたヒートシンク及びこれに接続されたペルチェ素子の組み合わせなどが挙げられる。また、筐体120そのものの冷却機構としては、例えば配管系の内部に冷却液を流す液冷方式の機構を採用することができる。
【0067】
なお、熱の影響を抑制する観点から、上記の空間像計測器や波面収差計測器などでは、例えば光学系などの一部だけが計測ステージMSTに搭載されていても良い。
【0068】
さらに、本実施形態の露光装置100では、図1では不図示であるが、照射系110a及び受光系110b(図6参照)を含む、例えば特開平6−283403号公報(対応米国 特許第5,448,332号)等に開示されるものと同様の斜入射方式の多点焦点位置検出系が設けられている。
【0069】
図6には、露光装置100の制御系の主要な構成が示されている。この制御系は、装置全体を統括的に制御するマイクロコンピュータ(又はワークステーション)から成る主制御装置50を中心として構成されている。この図6において、符号143は、前述の計測テーブルMTB上に設けられた照度モニタ122、照度むら計測器104、空間像計測器、波面収差計測器などの計測器群を示す。
【0070】
次に、本実施形態の露光装置100における、ウエハステージWSTと計測ステージMSTとを用いた並行処理動作について、図2等に基づいて説明する。なお、以下の動作中、主制御装置50が、液浸装置132を制御して投影光学系PLの先端レンズ191の直下に常時液体Lqを満たしている。
【0071】
図2には、ウエハステージWST上のウエハW(ここでは、一例として、あるロット(1ロットは25枚又は50枚)の最後のウエハとする)に対するステップ・アンド・スキャン方式の露光が行われている状態が示されている。このとき、計測ステージMSTは、ウエハステージWSTと衝突しない所定の待機位置にて待機している。
【0072】
上記の露光動作は、主制御装置50により、事前に行われた例えばエンハンスト・グローバル・アライメント(EGA)などのウエハアライメントの結果等に基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTが移動されるショット間移動動作と、各ショット領域に対するレチクルRに形成されたパターンを走査露光方式で転写する走査露光動作とを繰り返すことにより、行われる。なお、上記の露光動作は、先端レンズ191とウエハWとの間に液体Lqを保持した状態で行われる。
【0073】
そして、ウエハステージWST側で、ウエハWに対する露光が終了した段階で、主制御装置50は、干渉計システム118の計測値に基づいてステージ駆動系124を制御して、計測ステージMST(計測テーブルMTB)を露光終了位置にあるウエハステージWSTの−Y側に近接する位置まで移動させる。このとき、主制御装置50は、干渉計システム118のうち、各テーブルのY軸方向位置を計測する干渉計の計測値をモニタして計測テーブルMTBとウエハテーブルWTBとをY軸方向に関して例えば300μm程度離間させて、非接触の状態を保っている。なお、これに限らず、主制御装置50は、計測テーブルMTBの−Y側面とウエハテーブルWTBの+Y側面とを接触させても良い。
【0074】
次いで、主制御装置50は、ウエハテーブルWTBと計測テーブルMTBとのY軸方向の位置関係を保ちつつ、両ステージWST、MSTを+Y方向に同時に駆動する動作を開始する。
【0075】
このようにして、主制御装置50により、ウエハステージWST、計測ステージMSTが同時に移動されると、そのウエハステージWST及び計測ステージMSTの+Y側への移動に伴って、投影ユニットPUの先端レンズ191とウエハWとの間に保持されていた液体Lqが、ウエハW→プレート93→計測テーブルMTB上を順次移動する。すなわち、計測テーブルMTBと先端レンズ191との間に液体Lqが保持された状態となる。
【0076】
次いで、主制御装置50は、ウエハステージWSTの位置を干渉計システム118の計測値に基づいてステージ駆動系124を制御して、所定のウエハ交換位置にウエハステージWSTを移動させるとともに次のロットの最初のウエハへの交換を行い、これと並行して、計測ステージMSTを用いた所定の計測を必要に応じて実行する。
【0077】
上記の所定の計測としては、例えばアライメント系ALGのベースライン計測が一例として挙げられる。
【0078】
具体的には、主制御装置50では、計測テーブルMTB上に設けられた基準マーク板FM上の一対の第1基準マークと対応するレチクルR上の一対のレチクルアライメントマークを前述のレチクルアライメント系RAa、RAbを用いて同時に検出して一対の第1基準マークと対応するレチクルアライメントマークの位置関係を検出する。このとき、第1基準マークは投影光学系PL及び液体Lqを介して検出される。また、これと同時に、主制御装置50では、上記基準マーク板FM上の第2基準マークをアライメント系ALGで検出することで、アライメント系ALGの検出中心と第2基準マークとの位置関係を検出する。
【0079】
そして、主制御装置50は、上記一対の第1基準マークと対応するレチクルアライメントマークの位置関係とアライメント系ALGの検出中心と第2基準マークとの位置関係と、既知の一対の第1基準マークと第2基準マークとの位置関係とに基づいて、投影光学系PLによるレチクルパターンの投影中心とアライメント系ALGの検出中心との距離(又は位置関係)、すなわちアライメント系ALGのベースラインを求める。
【0080】
そして、上述した両ステージWST、MST上における作業が終了した段階で、主制御装置50は、計測ステージMSTとウエハステージWSTとを、前述の近接状態に設定して、ウエハステージWSTと計測ステージMSTのY軸方向の位置関係を保ちつつ、投影光学系PLの下に液体Lqを保持したまま先程とは逆に両ステージWST、MSTを−Y方向に同時に駆動して、ウエハステージWST(ウエハ)を投影光学系PLの下方に移動させた後、計測ステージMSTを所定の位置に退避させる。
【0081】
その後、主制御装置50では、新たなウエハに対してウエハアライメント、ステップ・アンド・スキャン方式の露光動作を実行し、ウエハ上の複数のショット領域にレチクルパターンを順次転写する。以降、同様の動作を繰り返し行う。
【0082】
なお、上記の説明では、計測動作として、ベースライン計測を行う場合について説明したが、これに限らず、ウエハステージWST側で各ウエハの交換を行っている間に、計測ステージMSTの計測器群を用いて、照度計測、照度むら計測、空間像計測、波面収差計測などの少なくとも一つを行い、その計測結果をその後に行われるウエハの露光に反映させることとしても良い。具体的には、例えば、計測結果に基づいて結像特性補正コントローラ52により投影光学系PLの調整を行うこととすることができる。また、上述の空間像計測器、照度ムラ計測器、照度モニタ及び波面収差計測器は、必ずしもその全てが備えられている必要はなく、必要に応じて一部のみを計測ステージMSTに搭載するだけでも良い。
【0083】
また、主制御装置50は、上述の一連の動作を行っている間、液浸装置132を制御して、液体供給ノズル131Aから所定量の液体Lqを供給するとともに、液体回収ノズル131Bから所定量の液体Lqを回収することによって、投影光学系PLの像面側の光路空間を液体Lqで満たし続ける。
【0084】
また、主制御装置50はコントローラ80を制御して、比抵抗値を低下させた液体Lqを液浸装置132の液体供給ノズル131Aから供給する。主制御装置50は、ウエハW表面の膜の物性(液体Lqとの接触角など)、及び露光中のウエハWの走査速度などの諸条件から、投影光学系PLの像面側光路空間を液体Lqで満たしつづけるために液体供給ノズル131Aから供給すべき液体Lqの供給量を決定し、その決定した供給量の指令値をコントローラ80に入力する。コントローラ80は、主制御装置50からの供給量の指令値に対応する量の液体Lqが液体供給ノズル131Aから供給されるように流量制御用電磁弁86Aを制御するとともに、液体供給ノズル131Aから供給される液体Lqが所定の比抵抗値となるように、比抵抗計76をモニタしつつ、流量制御用電磁弁86Bを制御する。なお、本実施形態においては、液体Lqの比抵抗値は、10[MΩ・cm]以下、望ましくは0.1〜1.0[MΩ・cm]に調整される。
【0085】
ところで、本実施形態では、純水中に二酸化炭素(CO2)を混入させて溶解させるので、その二酸化炭素の溶解量によっては、二酸化炭素が混入されていない純水と照明光ILに対する屈折率が異なり、この屈折率の差が無視できない場合も考えられる。このような場合、純水に対する二酸化炭素の混入割合は、既知の所望の値であり、その混入後の液体の屈折率を、予め計測することが可能である。例えば純水に対する二酸化炭素の混入割合と混入後の液体の屈折率との関係を主制御装置50に記憶させておき、主制御装置50が、その記憶された情報に基づいて二酸化炭素(所定の物質)の溶解に起因する液体(純水)の屈折率を考慮して前述の結像特性補正コントローラ52を介して投影光学系PLの少なくとも一部を調整することしても良い。かかる場合には、液体の屈折率の変動を受けることなく、精度良くレチクルRのパターンを投影光学系PL、液体Lqを介してウエハW上に転写することができる。
【0086】
また、純水中に二酸化炭素を混入させて溶解させる場合、その二酸化炭素の溶解量によっては、二酸化炭素が混入されていない純水と照明光IL(又は露光光と同一波長の光)に対する透過率が異なり、この透過率の差が無視できない場合も考えられる。この場合、二酸化炭素を混入しない状態で照度モニタ122によって照明光ILを受光した結果と二酸化炭素を混入した後の状態で照度モニタ122によって照明光ILを受光した結果とに基づいて所定の演算を行うことで、二酸化炭素(所定の物質)の溶解に起因する純水(液体)の照明光IL(又は露光光と同一波長の光)に対する透過率変動を求めることができる。従って、主制御装置50が、その透過率変動を考慮して、走査露光の際のウエハWに対するドーズ制御(積算露光量の制御)を行うこととしても良い。例えば、主制御装置50は、照明系ILS内部のエネルギ粗調器を切り換えたり、光源から発射される照明光ILのパルスエネルギ又は発光周波数(繰り返し周波数)を調整したり、レチクルステージRST及びウエハステージWSTの走査速度を制御したりすることで、ドーズ制御を行う。かかる場合には、照明光IL(又は露光光と同一波長の光)に対する液体の透過率の変動の影響を受けることなく、精度良くレチクルRのパターンを投影光学系PL、液体Lqを介してウエハW上に転写することができる。
【0087】
以上説明したように、本実施形態の露光装置100によると、液浸装置132は、先端レンズ191の光射出側に配置される部材、すなわち計測テーブルMTBの一部(プレート部材101及び各計測器の表面の少なくともいずれかの一部)、又はウエハテーブルWTBの一部(プレート93及びウエハWの少なくとも一方の一部)上の膜(撥液膜又はレジストにより形成された膜(レジスト膜)(あるいはレジストを覆うように形成されているトップコート層))上に液浸領域を形成するために供給される液体にその液体Lqの比抵抗を低下させる二酸化炭素を混入(溶解)させる機構を有している。このため、その液体Lqの帯電が防止ないしは効果的に抑制され、液浸領域が形成される膜の絶縁破壊の発生が効果的に抑制される。
【0088】
これをさらに詳述すると、例えば、照度計測を行う場合には、照度モニタ122(光センサ128)によって撥液膜WRFとその撥液膜WRF上の液体Lqとを介して、照明光ILが受光され、照明光ILの照度計測が行われる。この照度計測に際し、仮に、撥液膜WRF上に帯電した液体Lqの液浸領域を形成した場合には、撥液膜WRFを介して、撥液膜WRFの下の減光膜(金属薄膜)129と液体Lqとの間で放電(絶縁破壊)が発生し、撥液膜WRFを損傷させる可能性がある。また、帯電した液体Lqとの接触によって撥液膜WRFの液体接触面近傍が帯電し、撥液膜WRFの下の金属薄膜129と撥液膜WRFとの間で放電(絶縁破壊)が発生して、撥液膜WRFを損傷させる可能性がある。撥液膜WRFが損傷(劣化)すると、撥液膜WRFの光学特性が不均一となったり、撥液性が低下して水染み(ウォーターマーク)が発生したりするおそれがある。
【0089】
しかるに、本実施形態においては、純水に二酸化炭素(炭酸ガス)を溶解して、比抵抗値を低下させた液体Lqを液体供給ノズル131Aから供給するようにしているので、液体Lqの帯電が防止され、これにより絶縁破壊に起因する撥液膜WRFの損傷を効果的に抑制することができる。したがって、照度モニタ122によって長期に渡って高精度な照度計測を実行することができ、その計測結果を反映させてウエハWに対する露光を行うことで、高精度な露光を長期に渡って行うことが可能となる。
【0090】
なお、上述の説明においては、照度モニタ122を挙げて説明したが、液体Lqの帯電を抑制することで、計測ステージMST上面の撥液膜の損傷を防止することができる。また液体Lqの帯電を抑制することで、計測ステージMST上面の撥液膜だけでなく、ウエハステージWSTのプレート93上面の撥液膜の損傷(劣化)も抑制することができる。
【0091】
また、本実施形態の露光装置100によると、照明光ILによりレチクルRを照明し、その照明光ILに対してレチクルRとウエハWとを同期移動して、投影光学系PL及び液体Lqを介してレチクルR上の回路パターンをウエハW上に転写する走査露光が行われる。この走査露光に際し、仮に、ウエハW表面のレジスト膜(又はトップコート膜)上に帯電した液体Lqの液浸領域を形成した場合には、レジスト膜(又はトップコート膜とレジスト膜)を介して、液体LqとウエハWの基材(シリコンなど)との間で放電(絶縁破壊)が発生し、レジスト膜(又はトップコート膜とレジスト膜)を損傷又は改質させる可能性がある。また、帯電した液体Lqとの接触によってレジスト膜(又はトップコート膜)の液体接触面近傍が帯電し、レジスト膜(又はトップコート膜)とウエハWの基材(シリコンなど)との間で放電(絶縁破壊)が発生して、レジスト膜(又はトップコート膜)を損傷又は改質させる可能性がある。レジスト膜(又はトップコート膜)に損傷が生じると、その損傷部分から液体Lqが浸透して、ウエハW上に形成されるパターンに欠陥が生じる虞がある。またレジスト膜に損傷や改質が生じると、照明光ILの照射に対する反応特性が変化して所望のパターンがウエハW上に形成されない虞もある。
【0092】
しかるに、本実施形態においては、純水に二酸化炭素(炭酸ガス)を溶解して、比抵抗値を低下させた液体Lqを液体供給ノズル131Aから供給するようにしているので、ウエハW上のレジスト膜(レジスト膜にトップコート層が形成されている場合には、レジスト膜及びトップコート層)の絶縁破壊が効果的に抑制される。
【0093】
また、本実施形態の露光装置100では、液浸露光により、高解像度かつ空気中と比べて大焦点深度の露光を行うことで、レチクルRのパターンを精度良くウエハ上に転写することができ、例えばArFエキシマレーザ光で、デバイスルールとして45〜100nm程度の微細パターンの転写を実現することができる。
【0094】
なお、上記実施形態では、純水中に二酸化炭素が溶解させた液体(炭酸水)を液浸用の液体Lqとして用いるものとしたが、本発明がこれに限定されないことは勿論である。例えば、ウエハWに形成されているデバイスなどに悪影響がなければ、純水中に塩素を溶解させて液体Lqの帯電を防止するようにしても良い。
【0095】
また、純水以外の液体を用いる場合にも、液体の比抵抗を調整することによって、液体の帯電に起因する物体上の膜の劣化を防止するため、その液体の比抵抗を調整可能な所定の物質を混入して溶解させた液体を用いることが望ましい。
【0096】
なお、上記実施形態では、液体(純水)中への所定の物質(二酸化炭素)の混入を、液体温度調整機構72の上流側で行う場合について説明したが、これに限らず、液体の温度調整及び流量制御の少なくとも一方を行う液体調整機構と液体供給ノズルとの間で液体中に所定の物質を混入して溶解させることとしても良い。
【0097】
例えば、液体Lq中の微生物の増殖などが懸念される場合には、炭酸が微生物の栄養源とならないように、二酸化炭素(炭酸ガス)の注入は、投影光学系PLの像面に極力近い位置で、例えば供給ノズル131Aの直前あるいは供給ノズル131A内で行うのが望ましい。
【0098】
また、上述のCO2溶解槽82などを使わずに、あるいはCO2溶解槽82などと併用して、液体Lqの供給流路を形成する部材の少なくとも一部を、二酸化炭素(炭酸ガス)が液体Lq中に溶け出すような材料で形成しても良い。
【0099】
なお、液体Lqの比抵抗値の調整の有無にかかわらず、液浸領域を形成した場合には、液体LqとウエハW(トップコート層及びレジスト膜の少なくとも一方を含む)との摩擦、液体Lqと物体(プレート93(撥液膜を含む)、プレート部材101(撥液膜を含む)、パターン板103(撥液膜を含む)、スリット板105(撥液膜を含む)、パターン板(撥液膜を含む)、又は基準マーク板FM(撥液膜を含む)など)との摩擦、液体Lqとノズル部材(131A,131Bなど)との摩擦などによって、液体Lq、ウエハW、上述の物体及びノズル部材の少なくとも1つが帯電する可能性があるので、ウエハW、上述の物体及びノズル部材などの少なくとも1つを接地(アース)しておくことが望ましい。このようにすることによって、液体Lqが帯電したとしても、液体Lqの電荷を除去することができる。また、上述の物体の帯電、ノズル部材の帯電などによって、パーティクルなどの異物がその物体に付着することも防止されるので、その異物に起因する液体Lq、ウエハWの汚染も防止することができる。勿論、ウエハW上に形成されているトップコート層及びレジスト膜の少なくとも一方、並びに上述の物体上の撥液膜の劣化も防止することができる。
【0100】
また、国際公開第2005/031824号などに開示されているように、投影光学系PLの像面側の空間に供給される液体Lqの電荷を除去するようにしても良い。この場合、投影光学系PLの像面側の空間に供給される液体Lqの帯電をより確実に防止することが可能となる。
【0101】
また、投影光学系PLの像面側の空間近傍に、特開2003−332218号公報などに開示されているような除電装置(イオナイザなど)を配置し、投影光学系PLの像面側の空間(液体Lqの周囲)にイオン(例えばマイナスイオン)を供給することによって、液体Lq、ウエハW、物体及びノズル部材の少なくとも1つを除電するようにしても良い。この場合、仮に、液体Lq、ウエハW、物体及びノズル部材の少なくとも1つが帯電したとしても、除電装置によって除電されるので、液体Lq、ウエハW、上述の物体及びノズル部材などがパーティクルなどの汚染物を吸引して、液体LqやウエハWなどが汚染されるのを防止することもできる。また、液体Lqにより局所的に形成される液浸領域の界面付近に除電機能を有する気体(例えば、イオンを含む気体)を吹き付けることによって、その気体に除電機能だけでなく、液浸領域を形成する液体の漏洩防止機能を持たせるようにしても良い。例えば、特開2004−289126号公報及びこれに対応する米国特許出願公開第2006/0023189号明細書などに開示されているように、液浸領域を形成する液体の漏洩を防止するためのガスシール機構を露光装置100が搭載している場合には、そのガスシール機構で使用される気体にイオンを含ませることができる。
【0102】
また、液体Lqの比抵抗値の調整の有無にかかわらず、ウエハW上に液浸領域を形成した場合には、液体LqとウエハWとの摩擦によって、ウエハW(レジスト膜及びトップコート膜の少なくとも一方を含む)が帯電する可能性がある。帯電状態のウエハWは、パーティクルなどの異物を吸引してしまうため、ウエハWが汚染される可能性がある。
【0103】
そこで、ウエハW表面のレジスト膜(又はトップコート膜)を導電性物質で形成し、ウエハW(レジスト膜及びトップコート膜の少なくとも一方を含む)の帯電を防止するようにしても良い。あるいは、ウエハWを保持するウエハホルダを導電性材料で形成したり、ウエハホルダに保持されたウエハWと接触する導電性材料の接触部材を配置したりして、ウエハW(レジスト膜及びトップコート膜の少なくとも一方を含む)の帯電を防止するようにしても良い。
【0104】
また、プレート部材93などに形成されている撥液膜を導電性にしても良い。
【0105】
また、帯電状態のウエハW(レジスト膜及びトップコート膜の少なくとも一方を含む)が搬出されてしまう可能性がある場合には、露光前及び露光後の少なくとも一方のウエハWを搬送する搬送部材を導電性材料で形成して、ウエハWに帯電した電荷を逃がす(除去する)ようにしても良い。あるいは、露光装置100内に、ウエハステージWSTへ搬入するウエハW、及びウエハステージWSTから搬出されたウエハWの少なくとも一方の除電を行うために、導電性の液体(二酸化炭素を溶解させた純水など)でウエハWをソーク(soak)する(例えば洗浄する)ユニットをウエハWの搬送経路に配置したり、ウエハWの搬送経路中にイオナイザなどの除電装置を配置したりするようにしても良い。なお露光装置100内に露光後のウエハWに残留(付着)した液体Lqの滴などを除去する液体除去ユニットが設置されている場合には、液体除去ユニット内で液体除去だけでなく、電荷除去も行うことが望ましい。また、露光装置100内に、ウエハステージWSTへ搬入される前にウエハWの温度調整を行う温度調整ユニットが設置されている場合には、その温度調整ユニット内で電荷除去を行うようにしても良い。
【0106】
また、露光装置100に接続された基板処理装置(露光装置100へ露光前のウエハWを搬出する塗布装置及び露光装置100で露光されたウエハWが搬入される現像装置の少なくとも一方を含む)内に、ウエハWの除電を行うために、導電性の液体(二酸化炭素を溶解させた純水など)でウエハWをソークする(例えば洗浄する)ユニットを配置したり、イオナイザなどの除電装置を配置したりしても良い。あるいは露光装置100で露光されたウエハWが搬入される現像装置内で露光後のウエハWの現像を行う際に導電性のリンス液を使用するようにしても良い。なお、露光装置100と基板処理装置との間にインターフェース部が配置されている場合には、インターフェース部内でウエハWから電荷を取り除く除電処理を行うようにしても良い。
【0107】
また、上記実施形態では、ウエハステージWSTとは別に計測ステージMSTを備えた露光装置について説明したが、計測ステージを必ずしも設ける必要はなく、物体が載置される物体ステージ(ウエハステージWST)上にガラス部材126を含む照度モニタ122等の各種計測器を設けても良い。かかる場合であっても、照度モニタ122等によって長期に渡って高精度な計測を実行することができ、その計測結果を反映させてウエハWに対する露光を行うことで、高精度な露光を長期に渡って行うことが可能となる。
【0108】
なお、上記実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、本発明の適用範囲がこれに限定されないことは勿論である。すなわちステップ・アンド・リピート方式の投影露光装置、さらに、ステップ・アンド・スティッチ方式の露光装置、又はプロキシミティ方式の露光装置などにも、本発明は適用できる。
【0109】
また、本発明は、特開平10−163099号公報及び特開平10−214783号公報、及びこれらに対応する米国特許第6,341,007号明細書、並びに特表2000−505958号公報及びこれに対応する米国特許第5,969,441号明細書などに開示されているようなウエハを保持するウエハステージを複数備えたマルチステージ型の露光装置にも適用できる。
【0110】
また、上述の液浸法を適用した露光装置は、投影光学系PLの終端光学素子の光射出側の光路空間を液体(純水)で満たしてウエハWを露光する構成になっているが、国際公開第2004/019128号及びこれに対応する米国特許出願公開第2005/0248856号明細書などに開示されているように、投影光学系PLの終端光学素子の光入射側の光路空間も液体で満たすようにしても良い。
【0111】
また、上述の実施形態においては、投影光学系PLとウエハWとの間に局所的に液体を満たす露光装置を採用しているが、本発明は、特開平6−124873号公報、特開平10−303114号公報、米国特許第5,825,043号などに開示されているような露光対象のウエハなどの表面全体が液体中に浸かっている状態で露光を行う液浸露光装置にも適用可能である。
【0112】
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスクを用いても良い。
【0113】
また、国際公開第2001/035168号などに開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも本発明を適用することができる。
【0114】
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
【0115】
なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源や、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、投影光学系は縮小系のみならず等倍および拡大系のいずれでも良い。
【0116】
なお、半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、上記実施形態の露光装置で、レチクルに形成されたパターンを前述の液浸露光によりウエハ等の物体上に転写するリソグラフィステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の液浸露光方法が実行され、物体上にデバイスパターンが形成されるので、高集積度のデバイスを歩留り良く製造することができる。
【産業上の利用可能性】
【0117】
本発明の露光方法及び露光装置は、液体を介して物体を露光するのに適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。
【符号の説明】
【0118】
50…主制御装置、52…結像特性補正コントローラ、72…液体温度調整機構、82…CO2溶解槽、84…純水供給管、88…CO2供給管、90…加圧ポンプ、PL…投影光学系、Lq…液体、W…ウエハ、IL…照明光、100…露光装置、122…照度モニタ、128…部材、131A…液体供給ノズル、132…液浸装置、WST…ウエハステージ、WRF…撥液膜、MST…計測ステージ。
図1
図2
図3
図4
図5
図6