特許第6255481号(P6255481)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社アルバックの特許一覧

<>
  • 特許6255481-真空溶解鋳造装置 図000002
  • 特許6255481-真空溶解鋳造装置 図000003
  • 特許6255481-真空溶解鋳造装置 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6255481
(24)【登録日】2017年12月8日
(45)【発行日】2017年12月27日
(54)【発明の名称】真空溶解鋳造装置
(51)【国際特許分類】
   B22D 11/06 20060101AFI20171218BHJP
   B22D 11/113 20060101ALI20171218BHJP
   B22D 11/124 20060101ALI20171218BHJP
【FI】
   B22D11/06 360B
   B22D11/113
   B22D11/124 J
【請求項の数】3
【全頁数】7
(21)【出願番号】特願2016-509937(P2016-509937)
(86)(22)【出願日】2015年2月10日
(86)【国際出願番号】JP2015000611
(87)【国際公開番号】WO2015145945
(87)【国際公開日】20151001
【審査請求日】2016年7月15日
(31)【優先権主張番号】特願2014-65733(P2014-65733)
(32)【優先日】2014年3月27日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000231464
【氏名又は名称】株式会社アルバック
(74)【代理人】
【識別番号】110000305
【氏名又は名称】特許業務法人青莪
(72)【発明者】
【氏名】田代 成司
(72)【発明者】
【氏名】大日向 陽一
(72)【発明者】
【氏名】日比野 直樹
(72)【発明者】
【氏名】大和田 貴志
【審査官】 酒井 英夫
(56)【参考文献】
【文献】 国際公開第2011/067910(WO,A1)
【文献】 特開2010−137934(JP,A)
【文献】 実公昭46−029303(JP,Y1)
【文献】 特開2006−192466(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B22D 11/06,
B65G 33/12
(57)【特許請求の範囲】
【請求項1】
真空排気管が接続された密閉容器内に、溶解炉と、溶解炉から出湯される溶湯を一次冷却して鋳造物を形成する冷却ロールと、冷却ロールで形成された鋳造物を受け入れて二次冷却する回転自在な冷却ドラムとを備える真空溶解鋳造装置において、
冷却ドラムが、一側に開設されて鋳造物を受け入れる受入開口と、他側に開設されて二次冷却された鋳造物を排出する排出開口とを有する一方向に長手の筒状部材と、筒状部材の回転に応じて受入開口から受け入れた鋳造物を排出開口に移送する移送手段とを備え
前記移送手段は、前記筒状部材の内周面にその長手方向略全長に亘って螺旋状に第1突条が設けられると共に、その長手方向略全長に亘って線状の第2突条が周方向に180度間隔で2本設けられ、
前記筒状部材内での鋳造物の二次冷却を促進する冷却ガスを導入する冷却ガス導入手段を更に備えることを特徴とする真空溶解鋳造装置。
【請求項2】
前記冷却ロールで一次冷却された鋳造物を受入開口に移送する前に、この一次冷却された鋳造物を粉砕する粉砕手段を更に備えることを特徴とする請求項1記載の真空溶解鋳造装置。
【請求項3】
前記冷却ドラムは、筒状部材の外周面に設けられ、冷却媒体を循環させて筒状部材の内周面を冷却する冷却部材と、筒状部材に連結される回転軸とを更に備え、この回転軸の内部に前記冷却部材に通じる冷却媒体用循環路が形成されることを特徴とする請求項1または請求項2記載の真空溶解鋳造装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属材料を溶解してストリップキャスト法により鋳造物を形成する真空溶解鋳造装置に関する。
【背景技術】
【0002】
この種の真空溶解鋳造装置は例えば特許文献1で知られている。このものは、真空排気管と気体導入管とが接続された密閉容器内に、溶解炉と、溶解炉から出湯される溶湯をストリップキャストして一次冷却することで鋳造物を形成する冷却ロールと、冷却ロールで形成された鋳造物を受け入れて二次冷却する回転自在な冷却ドラムとを備える。冷却ドラムは、密閉容器内に水平姿勢で収納される有底筒状の部材で構成され、その外周面には水冷ジャケットが設けられいる。冷却ドラムの底側の閉塞端には、回転軸が回転シール部を介して外部に突出され、回転軸にはベルトを介してモータに連結されてモータにより冷却ドラムが正逆転できるようにしている。
【0003】
冷却ドラムの内周面には、螺旋状の突条が設けられている。そして、冷却ドラムを正転させて、突条によって鋳造物を冷却ドラム一側の開口端から閉塞端側に送り、冷却ドラム内に鋳造物を一旦溜めながら冷却する。所定量の鋳造物が溜まると、冷却ドラムを逆転させて、二次冷却済みの鋳造物を冷却ドラムの開口端側に送り、開口端から排出するようにしている。
【0004】
ここで、上記従来例のものでは、ストリップキャストされた鋳造物を全て冷却ドラム内に一旦溜めるため、生産性を考慮すれば、冷却ドラム自体を大型化する必要があり、これでは、真空溶解鋳造装置の大型化が避けられないという問題がある。また、冷却ドラム内に鋳造物を一旦溜めながら冷却すると、冷却ドラムの内周面に近い位置と遠い位置とでは鋳造物の冷却速度に差が生じ、鋳造物全体を略均等に二次冷却できないという問題もある。
【0005】
ところで、鋳造物がネオジム鉄ボロン系の焼結磁石用の合金原料である場合、冷却ロールで一次冷却されたときに主成分が凝固している一方で、希土類成分の一部は液相として存在し、二次冷却されたときに凝固するようになる。このような場合、上記の如く、冷却速度に差が生じると、希土類成分の凝固状態が変化し、その結果、焼結磁石を得たときに所望の磁気特性が得られない。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】再表2011/67910号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
そこで、本発明は、以上の点に鑑み、鋳造物を略均等に二次冷却することができて小型化が可能な真空溶解鋳造装置を提供することをその課題とするものである。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明の真空溶解鋳造装置は、真空排気管が接続された密閉容器内に、溶解炉と、溶解炉から出湯される溶湯を一次冷却して鋳造物を形成する冷却ロールと、冷却ロールで形成された鋳造物を受け入れて二次冷却する回転自在な冷却ドラムとを備える真空溶解鋳造装置において、冷却ドラムが、一側に開設されて鋳造物を受け入れる受入開口と、他側に開設されて二次冷却された鋳造物を排出する排出開口とを有する一方向に長手の筒状部材と、筒状部材の回転に応じて受入開口から受け入れた鋳造物を排出開口に移送する移送手段とを備え、前記移送手段は、前記筒状部材の内周面にその長手方向略全長に亘って螺旋状に第1突条が設けられると共に、その長手方向略全長に亘って線状の第2突条が周方向に180度間隔で2本設けられ、前記筒状部材内での鋳造物の二次冷却を促進する冷却ガスを導入する冷却ガス導入手段を更に備えることを特徴とする。
【0009】
本発明によれば、冷却ドラムに受け入れられた鋳造物を冷却ドラムの回転数に応じて受入開口側から排出開口側へと順次移送し、この移送過程で冷却ドラムの内周面との熱交換により二次冷却して排出開口から排出する構成を採用したため、上記従来例の如く、鋳造物を一旦溜め込むものとは異なり、鋳造物を略均等に冷却することができ、しかも、冷却ドラムの回転数を変えれば冷却速度を変化させることも可能になる。また、生産性に捉われず、鋳造物を冷却すべき温度に応じた長さや内径を冷却ドラムが持っていればよいため、冷却ドラムの小型化が可能となり、その結果、真空溶解鋳造装置の小型化も可能となる。
【0010】
本発明において、前記移送手段は、前記筒状部材の内周面に螺旋状に設けた第1突条と線状に設けた少なくとも1本の第2突条とを備えることが好ましい。冷却ドラムに受け入れられた鋳造物が当該冷却ドラム内に局所的に留まることが抑制され、鋳造物を所定量ずつ受入開口側から排出開口側へと効率よく順次移送することができる。
【0011】
また、本発明においては、前記冷却ロールで一次冷却された鋳造物を受入開口に移送する前に、この一次冷却された鋳造物を粉砕する粉砕手段を更に備えることが好ましい。これによれば、冷却ロールに受け入れる前に、ストリップキャストされた鋳造物を粉砕して当該鋳造物の大きさを略均等に揃えておくことで、鋳造物をより一層均等に二次冷却することができる。
【0012】
更に、前記筒状部材内での鋳造の二次冷却を促進する冷却ガスを導入する冷却ガス導入手段を更に備える構成を採用すれば、冷却ドラムの長さや径をより一層小さくでき、更なる真空溶解鋳造装置の小型化が可能となる。
【図面の簡単な説明】
【0013】
図1】本発明の実施形態の真空溶解鋳造装置の構成を示す模式断面図。
図2図1の要部を拡大して示す断面図。
図3】冷却ドラム内に設けられる移送手段の側面図。
【発明を実施するための形態】
【0014】
以下、図面を参照して、本発明の真空溶解鋳造装置の実施形態を説明する。以下においては、上、下、左、右といった方向を示す用語は図1を基準にする。
【0015】
図1を参照して、CMは、本発明の実施形態の真空溶解鋳造装置であり、真空溶解鋳造装置CMは、図外の真空ポンプからの真空排気管11が接続された密閉容器(真空チャンバ)1を備える。密閉容器1は、縦型筒状の主容器部1aと、主容器部1aの下部に連設した横型筒状の副容器部1bとで構成されている。主容器部1aの上端には、開閉自在な蓋体12が設けられている。また、主容器部1a内には、溶解炉2とタンデッシュ3と冷却ロール4とが収納され、副容器部1b内には、冷却ドラム5と、上面が開口した回収ボックス6とが収納されている。
【0016】
溶解炉2は、その上端部において主容器部1a内に立設した支柱21で軸支され、シリンダ22によって、図1中、実線で示す上向き姿勢から仮想線で示す前下がりの傾斜姿勢に傾動されようになっている。そして、蓋体12を開いた状態で上向き姿勢の溶解炉2内に金属材料を投入した後、蓋体12を閉じ、溶解炉2内で金属材料を誘導加熱して溶解する。金属材料の溶解が完了すると、溶解炉2を傾斜姿勢に傾動させて、溶解炉2内の溶湯をタンデッシュ3に出湯する。なお、金属材料としては、例えばネオジム鉄ボロン系の焼結磁石用の合金原料が挙げられる。
【0017】
タンデッシュ3は、セラミック製の箱形状のものであり、その底面部のノズル31に設けた横長のスリットから溶湯を冷却ロール4に定量的にストリップキャストする。冷却ロール4は、周速0.1〜5.0m/secで回転するものであり、その外周面が内部から水冷されるようになっている。冷却ロール4にストリップキャストされた溶湯は、冷却ロール4の外周面で一次冷却されて凝固し、薄帯状の鋳造物となって冷却ロール4から剥離する。
【0018】
また、主容器部1aには、不活性ガス等の気体供給源に連なるガス導入管14が接続されている。そして、溶解炉2に投入した金属材料を溶解する際、先ず、真空排気管11を介しての排気で密閉容器1内を真空にして、金属材料に含まれる水分等のガス化する成分を脱気し、その後、金属材料がある程度溶解したところで、密閉容器1内にガス導入管14から不活性ガスを導入して密閉容器1の内圧を上昇させ、溶解炉2内の金属材料の蒸散を抑制するようにしている。そして、鋳造物は、冷却ロール4の下方に位置させて主容器部1a及び副容器部1bに夫々開設した投入口13を介して副容器部1bへと落下し、副容器部1b内に設けた右下がりに傾斜する樋7を介して冷却ドラム5内に投入され、冷却ドラム5内で二次冷却される。この場合、主容器部1a内で冷却ロール4から投入口13への鋳造物の落下経路には、一対のローラ81,82からなる粉砕手段8が設けられ、冷却ドラム5に受け入れられる前に、鋳造物を略均等の大きさに粉砕して揃えるようにしている。
【0019】
冷却ドラム5は、図2及び図3に示すように、一方向に長手の筒状部材51を備え、筒状部材51は、副容器部1bの右側壁で片持ち支持されて副容器部1b内に水平姿勢で収納されている。筒状部材51の左端面には、樋7の先端部が挿入される鋳造物の受入開口52が開設されると共に、筒状部材51の右端外周面には、二次冷却された鋳造物を排出する2個の排出開口53が周方向に180度間隔で開設されている。また、筒状部材51の内周面には、その長手方向略全長に亘って螺旋状に第1突条54が設けられると共に、その長手方向略全長に亘って線状の第2突条55が周方向に180度間隔で2本設けられている。本実施形態では、回転する筒状部材51内の第1突条54及び第2突条55が移送手段を構成し、冷却ドラム5を一方向に回転させたとき、第1突条54及び第2突条55によって鋳造物が所定量ずつ受入開口52側から排出開口53側へと効率よく順次移送される。この場合、筒状部材51は、二次冷却すべき鋳造物の温度等に応じて1〜60rpmの回転速度で回転される。更に、筒状部材51の外周面には冷却ジャケット56が設けられ、冷却媒体(例えば、冷却水)を循環させて筒状部材51の内面を冷却できるようにしている。また、容器部1bには、アルゴンガスやヘリウムガス等の鋳造の二次冷却を促進する冷却ガスの供給源に連なり、受入開口52に向けて冷却ガスを導入する冷却ガス導入手段のガス管9が設けられている。

【0020】
筒状部材51の右端面には、ジョイント部57が形成され、ジョイント部57に副容器部1bの側面を挿通する回転軸58が連結されている。回転軸58は、副容器部1bの側面に設けた筒状の支持部材59に軸受59aを介して支持されている。回転軸58の内部には、冷却媒体用の往き循環路58aと往き循環路58aの周囲に形成した戻り循環路58bとが形成され、ジョイント部57内に設けた接続管57aを介して冷却ジャケット56に冷却媒体を循環できるようにしている。また、回転軸58には、その端部に設けたプーリ―Mp1と、副容器部1bの外側に配置したモータMの回転軸Maに設けたプーリ―Mp2とに巻き掛けられたベルトMvを介して連結され、モータMにより回転ドラム5を一方向に回転できるようにしている。なお、筒状部材51の長さ、径や第1突条54の間隔は、冷却ロール4の回転速度や鋳造物の冷却すべき温度等を考慮して適宜設定される。
【0021】
回収ボックス6は、副容器部1b内で冷却ドラム5の排出開口53の直下に配置され、排出開口53から落下する鋳造物を受け入れて回収する。回収ボックス6にはキャスター61が設けられる共に、副容器部1bの右側壁の下側には開閉扉15が設けられ、回収ボックス6を走行させて副容器部1b内に出し入れ自在となっている。
【0022】
以上の実施形態によれば、筒状部材51に受け入れられた鋳造物を筒状部材51の回転数に応じて受入開口52側から排出開口53側へと順次移送し、この移送過程で筒状部材51の内周面との熱交換により二次冷却して排出開口53から排出するため、上記従来例の如く、鋳造物を一旦溜め込むものとは異なり、鋳造物を略均等に冷却することができ、しかも、筒状部材51の回転数を変えれば冷却速度を変化させることも可能になる。また、生産性に捉われず、鋳造物を冷却すべき温度に応じた長さや内径を筒状部材51が持っていればよいため、冷却ガス導入手段を備えることと相俟って、筒状部材51の長さや径をより一層小さくでき、更なる真空溶解鋳造装置の小型化が可能となる。
【0023】
更に、筒状部材51の内面に第1突条54と第2突条55とを設けたため、筒状部材51に受け入れられた鋳造物が当該筒状部材51内に局所的に留まることが抑制され、所定量の鋳造物が受入開口52側から排出開口53側へと効率よく順次移送することができる。しかも、粉砕手段8を備えて筒状部材51に受け入れる前に、鋳造物を粉砕して当該鋳造物の大きさを略均等に揃えるため、一層均等に二次冷却することができる。
【0024】
以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、筒状部材51の内周面に螺旋状に設けた第1突条54と線状に設けた2本の第2突条55とで移送手段を備えたものを例に説明したが、所定量の鋳造物が受入開口52側から排出開口53側へと効率よく順次移送することができるものであればその形態は問わない。また、偏心したリング状の部材を所定間隔で筒状部材51の内面に夫々設けて全体として螺旋状の第1突条54としているが、これに限定されるものではなく、一体に形成することもできる。また、筒状部材51を副容器部1bの壁面で水平に片持ち支持したものを例に説明したが、筒状部材51の周面を支持する支持ローラを副容器部1bに設けるようにしてもよい。また、筒状部材51を右下がりに傾斜させて配置し、鋳造物が受入開口52側から排出開口53側へと効率よく順次移送されるようにしてもよい。この場合、筒状部材51自体が移送手段を構成する。
【符号の説明】
【0025】
CM…真空溶解鋳造装置、1…密閉容器、2…溶解炉、4…冷却ロール、5…冷却ドラム、51…筒状部材(冷却ドラム)、52…受入開口、53…排出開口、54…第1突条(移送手段)、55…第2突条(移送手段)、8…粉砕手段、9…ガス管(冷却ガス導入手段)。
図1
図2
図3