【実施例】
【0046】
以下、実施例により本発明をさらに具体的に説明する。
【0047】
(実施例1)
<ニッケル被覆銀粉の製造>
硫酸ニッケル16g及びクエン酸アンモニウム17gを水125mLに溶解し、液温を30℃に保ち攪拌しながら、非被覆銀粉31.5g、続いて還元剤として次亜リン酸ナトリウム水溶液を添加した。この次亜リン酸ナトリウム水溶液は、次亜リン酸ナトリウム14gを水50mLに溶解したものである。攪拌を継続しながら液温を90℃に加温し、還元反応により非被覆銀粉の表面にニッケルを析出させ、ニッケル被覆銀粉含有スラリーを得た。このスラリーを濾別して採集物を水洗し、次いで75℃で真空乾燥することにより、実施例1に係るニッケル被覆銀粉Aを得た。ニッケル被覆銀粉Aの5000倍のSEM写真を「
図1」に示す。
【0048】
<ニッケル被覆銀粉の評価>
ニッケル被覆銀粉Aのニッケル含有率、粒度分布、及び比表面積(BET値)の測定結果を「表1」に示す。非被覆銀粉はニッケルを含まないため、ニッケル被覆銀粉Aのニッケル含有率2.0質量%は、そのままニッケル被覆量とみなせる。なお、ニッケル含有率は、重量法(質量法)と発光分光分析(ICP)とを用いた組成分析により算出した。具体的には、ニッケル被覆銀粉を硝酸で溶解した後、塩酸を加えて塩化銀を沈殿させて濾別し、塩化銀の質量を測定して銀の含有量を算出した。また、ニッケルが溶解しているろ液にアンモニア水を加えて水酸化ニッケルを沈殿させて濾別し、水酸化ニッケルを焼成して酸化ニッケルとしてから質量を測定してニッケルの含有量を算出した。さらに、ニッケル被覆銀粉を硝酸で溶解した溶液についてICPを用いることにより、不純物の量を測定した。
【0049】
ニッケル被覆銀粉Aの粒度分布は、ニッケル被覆銀粉A0.3gをイソプロピルアルコール50mLに入れ、50W超音波洗浄器で5分間分散処理後、マイクロトラック9320−X100(ハネウエル−日機装社製)を用いて測定した。表1には、D10(累積10質量%粒径)、D50(累積50質量%粒径)、D90(累積90質量%粒径)、及びDmax(最大粒径)の値を示す。
【0050】
ニッケル被覆銀粉Aの比表面積は、BET値で0.76m
2/gであった。ニッケル被覆銀粉Aにおけるニッケル含有率は2.0質量%であるから、ニッケル被覆銀粉の比表面積から計算されるニッケル被覆膜の平均厚さは3nmとなる。
【0051】
<導電ペーストの製造>
ニッケル被覆銀粉A0.86質量部と、平均粒径3μmの非被覆銀粉85.14質量部と、軟化点が530℃のBa系ガラスフリット1質量部と、エチルセルロース1質量部(樹脂バインダー)と、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート11質量部(有機溶剤)と、ステアリン酸0.5質量部(分散剤)と、ステアリン酸マグネシウム1質量部と、二酸化テルル2質量部とを、それぞれ秤量して配合した。この配合物を三本ロールミルで混合することによりペースト状にした。さらに、後述するスクリーン印刷時のペースト粘度が約400Pa・sとなるように、このペーストに有機溶剤を適宜添加し、実施例1に係る導電ペーストを得た。
【0052】
<導電ペーストの印刷>
外形が156mm×156mmの大きさで、表面にn型拡散層が形成され、さらにn型拡散層の上にSiNxの反射防止層が形成されたp型単結晶シリコンウエハを準備した。裏面電極形成用のアルミニウムペーストを、シリコンウエハの裏面全面にスクリーン印刷により塗布し、200℃で20分間乾燥を行った後、自然放冷により室温まで冷却した。そして、シリコンウエハの表面側に、実施例1に係る導電ペーストをスクリーン印刷により塗布し、200℃で20分間乾燥を行った後、自然放冷により室温まで冷却した。
【0053】
<太陽電池素子の製造>
導電ペーストがスクリーン印刷されたシリコンウエハを、高速焼成炉に挿入して最大温度780℃で1分間焼成し、実施例1に係る太陽電池素子を得た。
【0054】
<太陽電池素子の特性評価>
太陽電池素子をソーラーシミュレータに装填し、太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。表1における直列抵抗値、曲線因子(FF)、及び変換効率(η
n)の値は、後述するニッケル被覆銀粉を含まないペーストを用いた比較例1に係る太陽電池素子の各特性値を基準値として正規化した値である。表1から明らかなように、実施例1に係る太陽電池は、比較例1に係る太陽電池素子に比べて、直列抵抗値が低下し、曲線因子及び変換効率(公称変換効率)は向上した。
【0055】
ここで、曲線因子(FF:Fill Factor)は、下記式(1)で表記される。
【0056】
【数1】
【0057】
また、照射光による入力エネルギーを100mW/cm
2(又は1000W/m
2)で規格化した測定による変換効率(公称変換効率:η
n)は、下記式(2)で表記される。
【0058】
【数2】
【0059】
【表1】
【0060】
(実施例2)
<ニッケル被覆銀粉の製造>
硫酸ニッケル32g、クエン酸アンモニウム34g、水酸化ナトリウム0.5gを水750mLに溶解し、液温を30℃に保ち攪拌しながら、非被覆銀粉80g、続いて次亜リン酸ナトリウム水溶液を添加した。この次亜リン酸ナトリウム水溶液は、次亜リン酸ナトリウム30gを水50mLに溶解したものである。攪拌を継続しながら液温を80〜95℃に加温して、ここにステアリン酸を加えた。ステアリン酸の存在下で、還元反応によりニッケルを銀粒子表面に析出させ、ニッケル被覆銀粉含有スラリーを得た。このスラリーを濾別して採集物を水洗した後に75℃で真空乾燥を行い、実施例2に係るニッケル被覆銀粉Bを得た。ニッケル被覆銀粉Bの5000倍のSEM写真を「
図2」に示す。
【0061】
<ニッケル被覆銀粉の評価>
ニッケル被覆銀粉Bのニッケル含有率、粒度分布、及び比表面積(BET値)を実施例1と同じ方法で測定した。その測定結果を「表1」に示す。非被覆銀粉はニッケルを含まないため、ニッケル被覆銀粉Bのニッケル含有率2.7質量%は、そのままニッケル被覆量とみなせる。ニッケル被覆銀粉の比表面積は0.75m
2/gであるから、計算されるニッケル被覆膜の平均厚さは4nmとなる。
【0062】
<導電ペーストの製造>
ニッケル被覆銀粉Aの代わりにニッケル被覆銀粉Bを用いた以外は、実施例1と同じ製造方法で実施例2に係る導電ペーストを得た。
【0063】
<導電ペーストの印刷>
実施例2に係る導電ペーストを、実施例1と同じペーストの印刷方法でシリコンウエハの表面側にスクリーン印刷により塗布し、乾燥を行った後、自然放冷により室温まで冷却した。
【0064】
<太陽電池素子の製造>
実施例2に係る導電ペーストがスクリーン印刷されたシリコンウエハを、実施例1と同じ方法で焼成し、実施例2に係る太陽電池素子を得た。
【0065】
<太陽電池素子の特性評価>
実施例2に係る太陽電池素子をソーラーシミュレータに装填し、実施例1と同じ方法で太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。
【0066】
表1に示す結果から明らかなように、実施例2に係る太陽電池素子は、比較例1に係る太陽電池素子に比べて、直列抵抗値が低下し、曲線因子及び変換効率(公称変換効率)は向上した。
【0067】
(比較例1)
<導電ペーストの製造>
ニッケル被覆銀粉を用いず、平均粒径3μmの非被覆銀粉を86重量部用いた以外は、実施例1と同じ製造方法で導電ペーストを得た。
【0068】
<導電ペーストの印刷>
比較例1に係る導電ペーストを、実施例1と同じ方法でシリコンウエハの表面側にスクリーン印刷により塗布し、乾燥を行った後、自然放冷により室温まで冷却した。
【0069】
<太陽電池素子の製造>
比較例1に係る導電ペーストがスクリーン印刷されたシリコンウエハを、実施例1と同じ方法で焼成し、比較例1に係る太陽電池素子を得た。
【0070】
<太陽電池素子の特性評価>
比較例1に係る太陽電池素子をソーラーシミュレータに装填し、実施例1と同じ方法で太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。
【0071】
表1から明らかなように、比較例1に係る太陽電池は、実施例1及び2に係る太陽電池素子に比べて、直列抵抗値が高く、曲線因子及び変換効率(公称変換効率)は低いものであった。
【0072】
(実施例3)
<ニッケル被覆銀粉の製造>
硫酸ニッケル・6水和物27g、クエン酸ニアンモニウム27gを水400mLに溶解し、ここに次亜リン酸ナトリウム水溶液を添加した。この次亜リン酸ナトリウム水溶液は、次亜リン酸ナトリウム29.5gを水50mLに溶解したものである。室温で攪拌しながら、非被覆銀粉(平均粒径3μm、球形)20gを水50mLと共に添加した。攪拌を継続しながら液温を94℃に加温し、還元反応によりニッケルを非被覆銀粉の表面に析出させ、ニッケル被覆銀粉含有スラリーを得た。このスラリーに分散剤としてBTA−Na0.07gを希釈して加えた。次いで、このスラリーを濾別して採集物を水洗した後に70℃で8時間の真空乾燥を行った。次いで、真空乾燥したニッケル被覆銀粉の凝集体を解砕して、実施例3に係るニッケル被覆銀粉Cを得た。
【0073】
<ニッケル被覆銀粉の評価>
ニッケル被覆銀粉Cのニッケル含有率、粒度分布、及び比表面積(BET値)を実施例1と同じ方法で測定した。その測定結果を「表1」に示す。非被覆銀粉はニッケルを含まないため、ニッケル被覆銀粉Cのニッケル含有率6.0質量%は、そのままニッケル被覆量とみなせる。
【0074】
また、ニッケル被覆銀粉Cの比表面積(BET値)は1.1m
2/gであった。ニッケル被覆銀粉Cにおけるニッケル含有率は6.0質量%であるから、ニッケル被覆銀粉Cの比表面積から計算されるニッケル被覆膜の平均厚さは6nmとなる。なお、銀の含有率は91.8質量%であった。銀とニッケル以外の不純物の総量は2.2質量%となり、それらは分散剤や、除去しきれなかった還元剤などの成分であると考えられる。
【0075】
<導電ペーストの製造>
ニッケル被覆銀粉Aの代わりにニッケル被覆銀粉Cを用いた以外は、実施例1と同じ製造方法で実施例3に係る導電ペーストを得た。
【0076】
<導電ペーストの印刷>
実施例3に係る導電ペーストを、実施例1と同じ方法でシリコンウエハの表面側にスクリーン印刷により塗布し、乾燥を行った後、自然放冷により室温まで冷却した。
【0077】
<太陽電池素子の製造>
実施例3に係る導電ペーストがスクリーン印刷されたシリコンウエハを、実施例1と同じ方法で焼成し、実施例3に係る太陽電池素子を得た。
【0078】
<太陽電池素子の特性評価>
実施例3に係る太陽電池素子をソーラーシミュレータに装填し、実施例1と同じ方法で太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。
【0079】
(実施例4)
実施例3の導電ペーストの製造において、ニッケル被覆銀粉Cの配合量を半分の0.43質量部とし、非被覆銀粉の配合量を85.57質量部とした以外は、実施例3と同じ方法で太陽電池素子を製造し、その特性を評価した。実施例4に係る太陽電池素子の構成及び特性評価結果を「表1」に記載する。
【0080】
(参考例1)
実施例2の導電ペーストの製造において、ニッケル被覆銀粉Bの配合量を3倍の2.58質量部とし、非被覆銀粉の配合量を83.42質量部とした以外は、実施例2と同じ方法で太陽電池素子を製造し、その特性を評価した。参考例1に係る太陽電池素子の構成及び特性評価結果を「表1」に記載する。
【0081】
(太陽電池素子の特性の比較検討)
実施例1〜4、比較例1、及び参考例1で製造した太陽電池素子の特性を比較すれば、導電ペーストにおけるニッケル被覆銀粉の含有量が多すぎると、太陽電池素子の直列抵抗値が上昇し、その曲線因子及び変換効率は悪化することが分かる。導電ペーストの組成にも因ると考えられるが、混合粉におけるニッケル含有率には適量領域が存在すると強く推認される。具体的には、混合粉におけるニッケル含量率が0.01質量%以上0.07質量%以下であれば、太陽電池素子の変換効率は確実に改善し、特に混合粉におけるニッケル含量率が0.020質量%以上0.027質量%以下の範囲において、太陽電池素子の変換効率が最高域に達する。