(58)【調査した分野】(Int.Cl.,DB名)
投影レンズ(22)と、該投影レンズ(22)のビーム経路に配置され、該ビーム経路(48)の断面にわたって分散されて該ビーム経路(48)内で個々に調節可能な光学効果を備えた複数のゾーン(146、246、346)を有する少なくとも1つの光学マニピュレータ(136、236、336)とを含むマイクロリソグラフィ投影露光装置(10)を制御する方法であって、
前記投影露光装置(10)の像視野内の波面誤差を決定する段階と、
前記決定波面誤差に基づく移動発生最適化アルゴリズムを用いて前記光学マニピュレータ(136、236、336)の各ゾーン(146、246、346)に対する移動を備えた該波面誤差を補正するのに適する移動ベクトルを発生させる段階と、
前記光学マニピュレータの少なくとも1つのゾーンに対する前記移動に関する制約パラメータを確立する段階と、
前記確立制約パラメータを考慮した実現可能性に関して前記発生された移動ベクトルの前記移動を検査し、該実現可能性に制約が存在する場合に、
前記制約パラメータと前記発生された移動ベクトルとに基づいて、前記光学マニピュレータの複数の前記ゾーンに対する補正値を備えた補正値ベクトルを取得する段階、
前記発生された移動ベクトルの前記移動を前記補正値ベクトルの対応する前記補正値に基づいて補正することによって補正移動ベクトルを確立する段階、及び
前記波面誤差を補償するための前記補正移動ベクトルを用いて前記光学マニピュレータの全てのゾーン(146、246、346)の前記光学効果を調節する段階、
を実施する段階と、
を含むことを特徴とする方法。
前記制約パラメータは、前記光学マニピュレータ(136、236、336)の少なくとも1つのゾーン(146、246、346)に対する最大許容移動を指定することを特徴とする請求項1に記載の方法。
移動範囲に関するターゲット仕様を遵守することに関して前記光学マニピュレータ(136、236、336)の前記ゾーン(146、246、346)のアクチュエータ特性を検査する段階と、該ターゲット仕様から外れるアクチュエータ特性を有する不良ゾーン(346c)に対する最大許容移動に前記制約パラメータを固定する段階とを更に含むことを特徴とする請求項1又は請求項2に記載の方法。
前記光学マニピュレータ(136)は、変形可能ミラー(136a、136b、136c)を含み、前記ゾーンは、該ミラーの反射コーティングのそれぞれ変形可能な領域であり、該変形可能ミラーの各ゾーンに関する前記光学効果は、前記補正された移動ベクトルの前記移動に即した変形によって調節されることを特徴とする請求項1から請求項3のいずれか1項に記載の方法。
前記光学マニピュレータ(236)は、照射デバイス(238)と、前記投影レンズ(22)のビーム経路(48)に配置された光学要素(28)とを含み、該光学要素(28)上の前記ゾーン(246)は、前記波面誤差を補償するための前記光学効果が該ゾーンの加熱に起因して得られるように、前記投影露光装置(10)の露光波長から外れる波長の放射線を用いて各場合に別々に該照射デバイスによって照射されることを特徴とする請求項1から請求項4のいずれか1項に記載の方法。
前記光学マニピュレータは、前記ゾーン(146)の前記光学効果が、圧電層(180)に接触する制御電極(192)を用いて個々に調節可能であり、かつ2つのゾーンの前記制御信号の前記不正な同期が、2つの隣接制御電極の短絡によって行われる変形可能ミラー(136c)として構成されることを特徴とする請求項6に記載の方法。
前記光学マニピュレータ(336)は、前記ゾーン(346)の前記光学効果を調節するための前記制御信号が該ゾーンの個々の電気加熱によって発生される電流作動式熱マニピュレータとして構成され、
更に、2つのゾーンの前記制御信号の不正な同期に関して検査する前記段階は、2つの隣接ゾーン(346a、346b)の前記加熱において両方のゾーン(346a、346b)を同じ程度まで加熱させる電気短絡に関して検査する段階を含み、前記制約パラメータは、短絡が存在する場合に該2つの隣接ゾーン(346a、346b)に対する均一な移動を指定する、
ことを特徴とする請求項6に記載の方法。
前記補正値ベクトルを取得する前記段階は、メモリ(68)に前記投影露光装置(10)に対して与えられた複数の補正値ベクトルから補正値ベクトルを選択する段階を含むことを特徴とする請求項1から請求項8のいずれか1項に記載の方法。
前記補正値ベクトルを取得する前記段階は、前記制約パラメータに基づいてベース移動を備えたベース補正ベクトルを確立する段階と、前記発生された移動ベクトルと該確立されたベース補正ベクトルとに基づいてスケーリング係数を確立する段階と、該確立されたスケーリング係数を用いて該ベース補正ベクトルをスケーリングすることにより該補正値ベクトルを計算する段階とを含むことを特徴とする請求項1から請求項8のいずれか1項に記載の方法。
前記ベース補正ベクトルを確立する前記段階は、メモリ(68)に前記投影露光装置(10)に対して与えられた複数のベース補正ベクトルからベース補正ベクトルを選択する段階を含むことを特徴とする請求項10に記載の方法。
ターゲット仕様から外れる移動範囲を有する前記光学マニピュレータ(336)の不良ゾーン(346c)が存在する場合に前記ベース補正ベクトルを確立する前記段階は、
前記ターゲット仕様と実際の移動範囲とに基づいて前記不良ゾーン(346c)に対する最大補正移動を決定する段階と、
前記マニピュレータの全ての他のゾーン(346)に対する最大移動範囲を決定する段階と、
前記不良ゾーン(346c)の前記最大補正移動、全ての他のゾーン(346)の前記最大移動範囲、及び最小又は予め決められた収差を前記ベース補正ベクトルの前記ベース移動を決定するための制約として有する最適化問題を解く段階と、
を含む、
ことを特徴とする請求項10又は請求項11に記載の方法。
不良ゾーンの存在を確立するために前記光学マニピュレータ(336)の前記ゾーン(346)のアクチュエータ特性を検査する段階と、不良ゾーン(346c)が存在する場合にベース補正ベクトルを計算する前記段階とは、該光学マニピュレータの生産中に行われ、該光学マニピュレータは、該計算されたベース補正ベクトルと共に前記投影露光装置(10)に与えられることを特徴とする請求項12に記載の方法。
ターゲット仕様から外れる移動範囲を有する前記光学マニピュレータ(136、236、336)の不良ゾーン(346c)が存在する場合に前記スケーリング係数を確立する前記段階は、前記発生された移動による該移動範囲の超過値と、該不良ゾーンに対して確立された前記ベース補正ベクトルの公称設計とに基づいていることを特徴とする請求項12又は請求項13に記載の方法。
前記光学マニピュレータは、前記ゾーンの前記光学効果が圧電層(180)に接触する制御電極(192)を用いて個々に調節可能である変形可能ミラー(136c)として、又は該ゾーン(346)の該光学効果が電気加熱によって個々に調節可能である電流作動式熱マニピュレータ(336)として構成され、前記ベース補正ベクトルを計算する前記段階は、該光学マニピュレータ(136c、336)の2つの隣接する電気短絡ゾーンに対して行われることを特徴とする請求項15に記載の方法。
前記スケーリング係数を確立する前記段階は、同期制御信号を有する前記2つのゾーン(346a、346b)に対する前記発生された移動の前記差と、同期制御信号を有する該ゾーン(346a、346b)に対して確立された前記ベース補正ベクトルの公称設計とに基づいていることを特徴とする請求項15又は請求項16に記載の方法。
前記光学マニピュレータ(336)は、前記投影露光装置(10)の前記露光放射線に対して透過性を有する板(338)を含み、該板の前記光学効果は、温度依存性であり、前記ゾーン(346)は、それぞれ、該板(338)の別々の電気加熱可能領域であり、該透過性板(338)の各ゾーン(346)に対する該光学効果を調節する段階が、前記補正された移動ベクトルの前記移動に即した加熱によって行われることを特徴とする請求項1から請求項17のいずれか1項に記載の方法。
前記光学マニピュレータ(336)は、前記投影露光装置(10)の前記露光放射線に対して透過性を有する第2の板(340)を含み、該第2の板の前記光学効果は、温度依存性であり、該マニピュレータ(336)の更に別のゾーン(346)が、それぞれ、該第2の板(340)の別々の電気加熱可能領域であり、両方の板(338、340)の各ゾーン(346)に対する該光学効果を調節する段階が、前記補正された移動ベクトルの前記移動に即した加熱によって行われることを特徴とする請求項18に記載の方法。
前記補正デバイス(66)は、前記制約パラメータに基づいてベース移動を有するベース補正ベクトルを確立し、前記発生された移動ベクトルに基づいてスケーリング係数を確立し、かつ該確立されたスケーリング係数を用いて該ベース補正ベクトルをスケーリングすることにより前記補正値ベクトルを計算するように具現化されることを特徴とする請求項20に記載の投影露光装置。
【背景技術】
【0004】
マイクロリソグラフィ投影露光装置は、特に集積回路又は他の微細構造化又はナノ構造化構成要素を生成するときに使用され、マスク又はレチクルのパターンを基板の感光層上に結像するように機能する。この目的に対して、従来の投影露光装置は、光源と、光源によって放出された電磁放射線を調製してそれをパターンの上に向ける照明系とを含む。照明系によって照明されるパターンの一部分は、基板の感光層上に投影露光装置の投影レンズを用いて結像される。一般的に、半導体材料から製造されるいわゆるウェーハが基板として使用される。
【0005】
半導体構成要素の構造の益々進む小型化、及びより短い露光時間によるより高速な製造工程への要求は、投影露光装置、特に投影レンズの結像特性に対する絶えず高まる要件をもたらしている。パターンは、投影露光装置の全作動期間中に可能な限り小さい結像収差しか伴わずに感光層上に結像しなければならない。
【0006】
製造及び組立て公差に起因する結像収差に加えて、作動中にしか発生しない結像収差も公知である。一例として、経時効果、例えば、材料の収縮及び従って局所的に限定された形状変化は、光学要素内で比較的長い時間にわたって特に高い光強度で露光される場所において発生する可能性がある。作動中の結像収差に対する更に別の原因は、投影レンズの光学要素における露光に使用される電磁放射線の一部の回避不能な吸収にある。工程において吸収されるパワーは、光学要素の不均一な加熱をもたらし、その結果、屈折率変化、膨張、及び機械的張力がもたらされる。「レンズ加熱」と呼ぶこの効果の結果として、投影レンズ内を伝播する波面の収差がもたらされる。レンズ加熱は、使用電磁放射線の望ましいパワー増大及び進む小型化に起因して、半導体リソグラフィにおいて益々高まる問題を代表するものである。
【0007】
作動中に発生又は変化する結像収差の動的補正のオプションはこれまで以上に重要になってきているので、最新の投影露光装置は、複数の光学マニピュレータを含む。これらの光学マニピュレータでは、光学効果は、作動中に適切なアクチュエータを用いて特定の方式で修正することができる。測定又は推定による波面誤差に基づいて、現時点で発生している波面誤差を補償するのに少なくとも部分的に適する波面変形を作動中にマニピュレータによって誘起することができる。
【0008】
ビーム経路の断面にわたって分散されて個々に調節可能な光学効果を有する複数のゾーンを有する様々なマイクロリソグラフィ光学マニピュレータは公知である。一例として、US 2008/0204682 A1は、レンズ要素の形態にある光学要素上に赤外線放射線を印加するマニピュレータを記載している。この工程では、レンズ要素は、2次元で可変的に照射される。赤外線放射線の吸収の結果として、照射されるレンズ要素セクションの対応する加熱がもたらされる。
【0009】
更に、マイクロリソグラフィ投影露光装置のためのマニピュレータとしての適応ミラーは公知である。一例として、DE 102011081603 A1は、圧電層と、その上に配置された反射コーティングとを有するミラーを示している。圧電層にわたって分散された複数の制御電極を用いて、印加電圧に基づいて反射コーティングの異なる局所変形をもたらすことができる。このようにして構成されたミラーは、WO 2011/074319にも記載されている。更に、例えば、JP 2013−161992 A又はJP 2013−106014 Aは、圧電アクチュエータ又は超音波モータの形態にあるアクチュエータが、ミラーの後面に様々な点で接触する適応ミラーを開示している。従って、ミラーは、個々に又は組合せで作動されるゾーンに分散されたものと考えることができる。
【0010】
更に、WO 2008/034636A2は、平行平面石英板を有する電流作動式熱マニピュレータを記載している。この板は、導体トラックとオーミック構造とによって個々に加熱することができる加熱ゾーンの2次元マトリクスを含む。導入電力を調節することにより、各ゾーンに対して個々の温度及び従って特定の屈折率を設定することができる。
【0011】
投影露光装置の作動中に発生又は変化する波面誤差を補償するために、上述のマニピュレータの各ゾーンは、可能な限り理想的な全体補正が得られるように適切な移動命令によって作動させなければならない。この場合に、移動を決定するときに、投影露光装置の他のマニピュレータの調節オプションを考慮しなければならない。更に、いくつかの境界条件を遵守しなければならない。一例として、1つのゾーンに対する移動は、隣接ゾーンに影響を及ぼすか又はこれらの隣接ゾーンの移動を制限する可能性がある。更に、熱マニピュレータの場合に、隣接構造の劣化を回避するために、全てのゾーンにわたる熱的中立性を維持しなければならない。従って、測定波面誤差を補償するための移動を決定することは、一般的に、もはや投影露光装置の作動中に実時間では解くことができない非常に複雑な最適化問題をもたらす。
【0012】
従って、従来法では、全てのゾーンの移動、並びに投影露光装置内に設けられた他のマニピュレータの移動は、特定の波面誤差、例えば、特定のゼルニケ係数に対して予め計算され、投影露光装置の制御ユニットに対するメモリ内に移動ベクトルとして与えられる。その後に、制御ユニットは、作動中に格納された移動ベクトルを用いて、測定又は推定による波面誤差に関する波面誤差を補償するのに適する全てのゾーンに対する移動を有する移動ベクトルを発生させる。
【0013】
この手順の欠点は、事前に計算されて供給される移動ベクトルが、特定のターゲット仕様範囲の移動特性を有するマニピュレータを仮定することである。1又は2以上のゾーン内でターゲット仕様から外れる移動特性が欠陥の結果として生じる場合に、移動ベクトルを発生させるときにこの移動特性を考慮することができない。従って、波面誤差は、もはや理想的な方式では補正されない。外れる移動特性を考慮する全てが与えられた移動ベクトルの新しい計算は過度に時間を消費するので、欠陥構成要素は、最終的には交換しなければならない。
【0014】
そのような欠陥の例は、熱マニピュレータの2つの隣接ゾーンの間の電気短絡であり、その結果、両方のゾーンが常に同じ電力で作動される。更に、1又は2以上のゾーンの移動特性が製造後にターゲット仕様から既に過度に外れている光学要素、例えば、変形可能ミラー又は加熱可能板は、マニピュレータに使用することができない。
【0015】
上述の欠陥の更に別の例は、マニピュレータの補正機能が局所的に壊れるという結果を有する赤外線光を光学要素上に印加するマニピュレータのチャネルの故障である。更に、適応ミラー上に圧力又は張力を作用する機械構成要素が、故障によって影響を受ける可能性がある。同様に、例えば、圧電層を有する適応ミラーの接触は、個々の作動可能ゾーンを以後作動させることができないような損壊を被る可能性がある。
【0016】
移動命令を生成するときに1又は2以上の移動の予め決められた移動範囲を超過することが可能であることによって更に別の問題が出現する。これらの移動は、引き続いてもはや完全には実施することができないと考えられる。過度駆動に起因するそのようなクリッピングは、存在する波面誤差の不正な補償又は更に別の波面誤差の生成をもたらすであろう。更に、制御命令の生成全体が不安定になる可能性があると考えられる。与えられた移動ベクトルを使用する公知の制御方法は、兆候が見られるか又は発生しているクリッピングに対して不十分な反応しか可能にしないので、マニピュレータは、始まりから範囲境界まで駆動されないことになる。その結果、不利なことに、これらのマニピュレータの完全な機能は使用されない。
【発明の概要】
【発明が解決しようとする課題】
【0018】
本発明の目的は、上述の問題を解決するのに使用されるものであり、かつ特に光学マニピュレータの1又は2以上のゾーンの移動の実現可能性に制限がある場合でさえも作動中に波面誤差の十分な補償を可能にする投影露光装置を制御する方法及び投影露光装置を提供することである。
【課題を解決するための手段】
【0019】
本発明により、上述の問題は、例えば、投影レンズと、ビーム経路の断面にわたって分散されてビーム経路内で個々に調節可能な光学効果を有する複数のゾーンを有し、投影レンズのビーム経路に配置された少なくとも1つの光学マニピュレータとを含むマイクロリソグラフィ投影露光装置を制御する方法によって達成される。本方法は、投影露光装置の像視野内の波面誤差を決定する段階と、光学マニピュレータの各ゾーンに対する移動を有して波面誤差を補正するのに適する移動ベクトルを移動発生最適化アルゴリズムを用いて決定波面誤差に基づいて発生させる段階と、光学マニピュレータの少なくとも1つのゾーンに対する移動に関する制約パラメータを確立する段階と、確立制約パラメータを考慮した実現可能性に関して発生された移動ベクトルの移動を検査する段階とを含む。更に、実現可能性において制約が存在する場合に、制約パラメータと発生された移動ベクトルとに基づいて光学マニピュレータの複数のゾーンに対する補正値を有する補正値ベクトルを取得する段階と、発生された移動ベクトルの移動を補正値ベクトルの対応する補正値に基づいて補正することにより、例えば、発生された移動ベクトルの対応する移動への補正値ベクトルの補正値のスケーリングされた加算により、補正された移動ベクトルを確立する段階と、波面誤差を補償するために、補正された移動ベクトルを用いて光学マニピュレータの全てのゾーンの光学効果を調節する段階とが実施される。
【0020】
更に、本発明により、上述の目的は、以下に説明するマイクロリソグラフィ投影露光装置によって達成することができる。投影露光装置は、投影レンズの物体平面から投影レンズの像平面にパターンを結像するための投影レンズと、ビーム経路の断面にわたって分散されてビーム経路内で個々に調節可能な光学効果を有する複数のゾーンを有し、投影レンズのビーム経路にある少なくとも1つの光学マニピュレータとを含む。更に、投影露光装置は、投影露光装置の像視野内の波面誤差を決定するための決定モジュールと、光学マニピュレータの各ゾーンに対する移動を有して波面誤差を補正するのに適する移動ベクトルを決定波面誤差に基づく移動発生最適化アルゴリズムを用いて発生させるための移動発生器と、光学マニピュレータの少なくとも1つのゾーンに対する移動に関して制約パラメータを確立し、確立制約パラメータを考慮した実現可能性に関して発生された移動ベクトルの移動を検査するための試験デバイスと、少なくとも1つの移動の実現可能性における制限の場合に発生された移動ベクトルを補正するための補正デバイスとを含む。補正デバイスは、制約パラメータと発生された移動ベクトルとに基づいて光学マニピュレータの複数のゾーンに対する補正値を有する補正値ベクトルを取得し、補正値ベクトルの対応する補正値に基づいて発生された移動ベクトルの移動を補正することにより、例えば、発生された移動ベクトルの対応する移動への補正値ベクトルの補正値のスケーリングされた加算により、補正された移動ベクトルを確立するように具現化される。更に、投影露光装置は、波面誤差を補償するために、補正された移動ベクトルを用いて光学マニピュレータの全てのゾーンを調節するための作動デバイスを含む。特に、本発明による投影露光装置は、発生された移動ベクトルを格納するためのメモリ、及び特に補正値ベクトルを格納するための更に別のメモリを含むことができる。
【0021】
本発明は、投影露光装置の作動中に最適化アルゴリズムを用いて発生され、かつ完全に実施することができない光学マニピュレータの少なくとも1つのゾーンに対する移動を他のゾーンに対する補正された移動によって補償するという原理に基づいている。実施不能な移動によって引き起こされるマニピュレータの不良光学効果を補正された移動によって発生される他のゾーンの光学効果によって補償することが意図される。この目的に対して、発生された移動は、最初に確立制約パラメータに基づいて検査される。この目的に対して、制約パラメータは、少なくとも1つのゾーンに対する移動制限を指定する。1又は2以上のゾーンに対して、発生された移動の実現可能性における制限、従って、完全に実施することができない移動が決定された場合に、発生された移動ベクトルは、補正値ベクトルを用いて全てのゾーンに対する移動によって補正される。補正値ベクトルは、光学マニピュレータの複数のゾーン、特に全てのゾーンに対する補正値を含み、制約パラメータによって指定される移動制限と、発生された移動ベクトル、特にその中に含まれる実施不能移動とを用いて確立される。一例として、補正は、発生された移動ベクトルへの補正値ベクトルの成分毎の加算によって実施される。光学マニピュレータの全てのゾーンを調節するのに、この補正によって確立された補正移動ベクトルが発生された移動ベクトルの代わりに使用され、発生された移動ベクトルによって発生させることが意図されていたマニピュレータの光学効果を生成する。
【0022】
本明細書では、移動は、光学要素の空間的な変位又は回転だけではなく、特に、光学要素に対する熱、非熱、力、モーメント、特定の波長を有する光、又は電流の局所印加又は2次元印加も意味すると理解しなければならない。マニピュレータの作動によって実施される移動による光学要素又はマニピュレータの状態変数の変化は、この光学要素又はマニピュレータの光学効果を特定の方式で変化させる。
【0023】
本明細書では、移動ベクトル又は補正値ベクトルは、各々光学マニピュレータの異なるゾーンに対する複数の移動又は補正値の集合を意味すると理解しなければならない。本明細書では、移動ベクトル又は補正値ベクトルは、投影露光装置の他のマニピュレータに対する移動又は補正値を更に含むことができる。
【0024】
本発明による方法及び本発明による投影露光装置を使用すると、1又は2以上の不良ゾーンを有する光学マニピュレータと、波面誤差を補償するための発生された移動ベクトルとの両方を用い続けることができる。この場合に、移動ベクトルの実際の生成に対する最適化アルゴリズムの適応が必要であり、これは、かなりの時間支出を意味するであろう。更に、移動範囲を外れた移動による光学マニピュレータの1又は2以上のゾーンの過度駆動及びそれからもたらされるクリッピングは、補償することができる。
【0025】
本発明による方法の一実施形態により、補正値ベクトルの取得段階は、投影露光装置に対してメモリ内に与えられた複数の補正値ベクトルからの補正値ベクトルを選択する段階を含む。言い換えれば、予め確立された補正値ベクトルが作動される。この補正値ベクトルは、投影露光装置の内部又は外部で計算されていたもの、すなわち、投影露光装置の露光作動の前に計算されたものとすることができる。補正値ベクトルを非常に迅速に取得することができる結果として、作動中に実時間で発生された移動ベクトルを補正する段階が簡素化される。
【0026】
本発明による方法の更に別の実施形態により、補正値ベクトルの取得段階は、制約パラメータに基づくベース移動を有するベース補正ベクトルを確立する段階と、発生された移動ベクトルと確立されたベース補正ベクトルとに基づくスケーリング係数を確立する段階と、確立されたスケーリング係数を用いてベース補正ベクトルをスケーリングすることによる補正値ベクトルを計算する段階とを含む。制約パラメータに基づいてベース移動を有するベース補正ベクトルを確立する上述の段階も、予め、すなわち、投影露光装置の露光作動の前に投影露光装置の内部又は外部に実施することができる。
【0027】
一例として、ベース補正ベクトルは、完全実施することができないゾーンの移動に対して確立することができ、
スケーリング係数を用いたスケーリングによって、発生された移動ベクトルを補正するために、完全実施することができないゾーンの多くの他の移動に対して使用すること
もできる。対応する陳述は、複数のゾーンの場合に制約パラメータによって予め決定される移動制限に適用される。従って、ベース補正ベクトル
の使用は、複数の異なる発生された移動ベクトルに対する補正値ベクトルの確立を有意に簡素化する。
【0028】
特に、この場合に、ベース補正ベクトルを確立する段階は、投影露光装置に対してメモリ内に与えられた複数のベース補正ベクトルからのベース補正ベクトルを選択する段階を含む。一例として、ベース補正ベクトルは、様々なゾーン及び異なる移動制限欠陥に対してコンピュータを用いて予め決定され、その後にメモリに格納することができる。それによって新たに発生する光学マニピュレータの1又は2以上のゾーンの移動制限欠陥の場合に、ベース補正ベクトルを確立する段階及び従って同じく発生された移動ベクトルを補正する段階を容易に実施することができる。
【0029】
本発明の更に別の実施形態により、制約パラメータは、光学マニピュレータの少なくとも1つのゾーンに対する最大許容移動を指定する。一例として、ターゲット仕様に対応するゾーンに対する移動範囲の限界値を最大移動として使用することができる。このようにして、作動中に発生される不良移動及びそれからもたらされるクリッピングの結果として生じるゾーンの過度駆動を補正することができる。
【0030】
本発明による方法の実施形態は、移動範囲に関するターゲット仕様を遵守することに関する光学マニピュレータのゾーンのアクチュエータ特性を検査する段階と、ターゲット仕様から外れるアクチュエータ特性を有する不良ゾーンに対する最大許容移動への制約パラメータを固定する段階とを含む。マニピュレータに基づいて、例えば、熱マニピュレータのための板又は異なる光学要素の電気加熱可能ゾーンの抵抗特性、IR放射線を用いて作動するマニピュレータの利用可能であるか又は現時点に使用されている放射線パワー、又は適応ミラーのゾーンの変形特性が検査される。1又は2以上のゾーン内でターゲット仕様から外れるアクチュエータ特性を有するマニピュレータは、波面誤差を補償するために依然として使用することもできる。
【0031】
本発明による方法の更に別の実施形態において、ベース補正ベクトルの確立は、ターゲット仕様から外れる移動範囲を有する光学マニピュレータの不良ゾーンが存在するときに、ターゲット仕様と実際の移動範囲とに基づいて不良ゾーンに対する最大補正移動を決定する段階と、マニピュレータの全ての他のゾーンに対する最大移動範囲を決定する段階と、不良ゾーンの最大補正移動、全ての他のゾーンの最大移動範囲、及び最小収差又は予め決められた収差をベース補正ベクトルのベース移動を決定するための制約として有する最適化問題を解く段階とを含む。
【0032】
一例として、意図する移動範囲の限界値と実際の移動範囲の限界値との差を最大補正移動として使用することができる。言い換えれば、ベース補正ベクトルは、最適化問題の解として、不良ゾーンを除く全てのゾーンに対するベース移動であって、その組合せ光学効果が、現実には実施することができない最大補正移動の光学効果に対応するベース移動を含む。ベース補正ベクトルは、完全実施することができない不良ゾーンの更に別の移動に対してスケーリングすることによって迅速に適応させることができる。このようにして、不良ゾーンに起因して完全実施することができない移動を有する複数の異なる移動ベクトルに対して、作動中に実時間に実施することができる補正値ベクトル確立段階が可能になる。
【0033】
本発明による方法の更に別の実施形態により、光学マニピュレータの製造中に不良ゾーンの存在を確立するための光学マニピュレータのゾーンのアクチュエータ特性を検査する段階と、不良ゾーンが存在する場合のベース補正ベクトルを計算する段階とがあり、光学マニピュレータは、投影露光装置に対して計算されたベース補正ベクトルと共に与えられる。この対策の結果として、欠陥ゾーンが存在する場合であっても、これらのゾーンを有するマニピュレータ又はマニピュレータの光学要素を投影露光装置に対して与えて使用することができ、不適格として除外する必要はない。
【0034】
更に別の実施形態により、ターゲット仕様から外れる移動範囲を有する光学マニピュレータの不良ゾーンが存在する場合のスケーリング係数を確立する段階は、発生された移動による移動範囲の超過値と、不良ゾーンに対して確立されるベース補正ベクトルの公称設計とに基づいている。一例として、その補正に向けてベース補正ベクトルが設計されるベース超過値をスケーリング係数として使用することにより、ベース超過値に対する超過値の比を確立することができる。こうして確立されたスケーリング係数は、不良ゾーンに対するベース補正ベクトルと共に、不良ゾーンの場合に移動範囲よりも大きいことに対する複数の異なる補正値ベクトルの迅速な確立を可能にする。
【0035】
本発明の更に別の実施形態により、光学マニピュレータは、照射デバイスと、投影レンズのビーム経路に配置された光学要素とを含む。光学要素上のゾーンは、波面誤差を補償するための光学効果がこれらのゾーンの加熱に起因して得られるように、投影露光装置の露光波長から外れる波長の放射線を用いて各々個別に照射デバイスによって照射される。ゾーンを加熱するのに使用される放射線を加熱放射線と呼ぶ場合がある。先に上述のように、加熱放射線は、投影露光装置の露光波長から外れる波長を有する。露光波長は、マスク構造を投影露光装置の像平面に結像するのに使用される露光放射線の波長である。
【0036】
加熱放射線の波長は、好ましくは、光学要素上に放射される加熱放射線の大部分、特に少なくとも80%又は90%が光学要素によって吸収されるように露光波長から外れている。従って、加熱放射線のうちの僅かな部分しか投影レンズのビーム経路内の光学要素によって転送されず、それによってビーム経路内で下流に配置された光学要素は、いかなる実質的加熱も被ることはない。加熱放射線によって照射される光学要素は、例えば、レンズ要素、放射線透過性の板又はミラーとすることができる。特に、この光学要素は、投影レンズの光学要素のうちで投影レンズのビーム経路を定めることができる。すなわち、この場合に、光学マニピュレータが含む光学要素は、原理的にビーム経路内で露光放射線を案内するように機能する。
【0037】
光学マニピュレータの光学要素がレンズ要素である場合に、加熱放射線を用いた照射によるレンズ要素材料の屈折率変化がある。レンズ要素材料のゾーン依存加熱は、レンズ要素内に局所的に異なる屈折率変化をもたらし、その結果、波面操作を有する。放射線透過性板の機能も同様である。マニピュレータの光学要素がミラーである場合に、加熱放射線によるゾーン依存照射からもたらされる空間依存加熱に起因するミラー面の変形があり、この変形も同じく波面操作をもたらす。
【0038】
一実施形態により、ゾーンのそれぞれの光学効果は、それぞれの制御信号を用いて調節可能であり、更に2つのゾーンの制御信号の不正な同期に関して検査する段階がある。不正な同期が存在する場合に、制約パラメータが、影響を受ける2つのゾーンに対して均一な移動を指定する。
【0039】
一実施形態変形により、光学マニピュレータは、ゾーンの光学効果が、圧電層に接触する制御電極を用いて個々に調節可能であり、2つのゾーンの制御信号の不正な同期が2つの隣接制御電極の短絡によって引き起こされる変形可能ミラーとして構成される。
【0040】
更に別の実施形態変形により、光学マニピュレータは、ゾーンの光学効果を調節するための制御信号が、ゾーンの個々の電気加熱によって発生され、更に、2つのゾーンの制御信号の不正な同期に関して検査する段階が、2つの隣接ゾーンの加熱において両方のゾーンを同じ程度まで加熱する電気短絡に関して検査する段階を含み、短絡が存在する場合に、制約パラメータが2つの隣接ゾーンに対する均一な移動を指定する電流作動式熱マニピュレータとして構成される。異なる表現を使用すると、この実施形態変形による光学マニピュレータは、ゾーンの光学効果が電気加熱によって個々に調節され、更に、2つの隣接ゾーンの加熱において、両方のゾーンを同じ程度まで加熱する電気短絡に関して検査する段階が実施され、短絡が存在する場合に、制約パラメータが2つの隣接ゾーンに対する均一な移動を指定する電流作動式熱マニピュレータとして構成される。特に、電気短絡に関して検査する段階は、マニピュレータが作動状態に入れられた後に行うことができる。その結果、均一な移動によって誘起される欠陥の補正が可能である。2つの隣接ゾーンの間の短絡の場合であっても、補正された移動を用いてこのマニピュレータを用い続けることができる。
【0041】
本発明による方法の更に別の実施形態により、光学マニピュレータは、ゾーンの光学効果が電気加熱によって個々に調節される電流作動式熱マニピュレータとして構成され、更に、ベース補正ベクトルの確立は、2つの短絡ゾーンに対する異なる移動の間の予め決められた差と、熱マニピュレータの全ての他のゾーンに対する最大移動範囲と、最小収差とをベース補正ベクトルのベース移動を決定するための制約として有する最適化問題を解くことによる電流作動式熱マニピュレータの2つの隣接短絡ゾーンに対するベース補正ベクトルの計算を含む。一例として、ベース差を有する2つの移動は、異なる移動として使用することができる。言い換えれば、ベース補正ベクトルは、最適化問題の解として、2つの短絡隣接ゾーンの除く全てのゾーンに対するベース移動であって、その組合せ光学効果が、現実には実施することができない短絡ゾーンに対する2つの異なる移動の光学効果に対応するベース移動を含む。スケーリングにより、ベース補正ベクトルは、短絡ゾーン内には実施することができない他の移動差に迅速に適応させることができる。その結果、短絡ゾーンに対して異なる移動を有する複数の異なる移動ベクトルに対して、作動中に実時間に実施することができる補正値ベクトルの確立が実施可能になる。
【0042】
更に別の実施形態により、ゾーンのそれぞれの光学効果は、それぞれの制御信号を用いて調節可能であり、ベース補正ベクトルの確立は、制御信号が同期するマニピュレータの2つのゾーンに対するベース補正ベクトルの計算を更に含む。この計算は、同期制御信号を有する2つのゾーンに対する異なる移動の間の予め決められた差と、光学マニピュレータの全ての他のゾーンに対する最大移動範囲と、最小収差とをベース補正ベクトルのベース移動を決定するための制約として有する最適化問題を解くことによって実施される。
【0043】
一実施形態変形により、光学マニピュレータは、ゾーンの光学効果が圧電層に接触する制御電極を用いて個々に調節可能である変形可能ミラーとして、又はゾーンの光学効果が電気加熱によって個々に調節可能である電流作動式熱マニピュレータとして構成される。ベース補正ベクトルを計算する段階は、光学マニピュレータの2つの隣接電気短絡ゾーンに対して実施される。従って、第2の変形により、光学マニピュレータは、ゾーンの光学効果が電気加熱によって個々に調節される電流作動式熱マニピュレータとして構成される。この場合に、ベース補正ベクトルを確立する段階は、特に、影響を受けるゾーンに対する可能な最大の予め決められた移動と、熱マニピュレータの全ての他のゾーンに対する最大移動範囲と、最小収差とをベース補正ベクトルのベース移動を決定するための制約として有する最適化問題を解くことによる電流作動式熱マニピュレータの1又は2以上のゾーンの抵抗偏差に対するベース補正ベクトルの計算を更に含む。
【0044】
本発明による更に別の実施形態は、電流作動式熱マニピュレータの2つの隣接ゾーンの間の複数の可能な短絡に対するベース補正ベクトルの計算及び具備を含む。特に、ベース補正ベクトルは、マニピュレータの全ての隣接ゾーンの間の全ての可能な短絡に対して計算され、投影露光装置に対して与えられる。この対策の結果として、短絡が発生した時に、補正値ベクトルを確立するのに適切なベース補正ベクトルが容易に利用可能である。
【0045】
本発明の更に別の実施形態により、スケーリング係数を確立する段階は、同期制御信号を有する2つのゾーン、特に2つの隣接短絡ゾーンに対する発生された移動の差と、同期制御信号を有するゾーン、特に短絡ゾーンに対して確立されるベース補正ベクトルの公称設計とに基づいている。一例として、その補正に向けてベース補正ベクトルが設計される2つの異なる移動の間のベース差を用いて、ベース差に対する移動の差の比をスケーリング係数として確立することができる。こうして決定されたスケーリング係数は、短絡ゾーンに対するベース補正ベクトルと共に、実施することができない短絡ゾーンに対して異なる移動を有する発生された移動ベクトルに対する複数の異なる補正値ベクトルの確立を簡素化する。
【0046】
本発明による方法の更に別の実施形態により、光学マニピュレータは、投影露光装置の露光放射線に対して透過性を有してその光学効果が温度に依存する板を含み、ゾーンは、それぞれ、板の個別の電気加熱可能領域であり、透過性板の各ゾーンに対する光学効果を調節する段階は、補正された移動ベクトルの移動に即した加熱によって行われる。ゾーンの大きい個数の結果として、そのような板は、多くの異なる波面誤差を補償するのにマニピュレータの非常に柔軟な調節を可能にする。この実施形態において、不良ゾーンを有していてもこの板を波面誤差の補償に用い続けることができる。
【0047】
本発明による方法の更に別の実施形態により、光学マニピュレータは、投影露光装置の露光放射線に対して透過性を有してその光学効果が温度に依存する第2の板を含み、マニピュレータの更に別のゾーンが、それぞれ、第2の板の個別の電気加熱可能領域であり、両方の板の各ゾーンに対する光学効果を調節する段階が、補正された移動ベクトルの移動に即した加熱によって行われる。この実施形態を使用することにより、非常に多数のゾーンを有するそのようなマニピュレータを1又は2以上のゾーンの移動制限欠陥の場合であっても用い続けることができる。
【0048】
本発明による方法の更に別の実施形態により、光学マニピュレータは、変形可能ミラーを含み、ゾーンは、ミラーの反射コーティングのそれぞれ変形可能な領域であり、変形可能ミラーの各ゾーンに関する光学効果は、補正された移動ベクトルの移動に即した変形によって調節される。変形は、圧電層を用いて、ラムの形態にあるアクチュエータからの圧力又は張力により、又は加熱光の印加によって達成することができる。そのような適応ミラーを使用するマニピュレータは、特に、深紫外スペクトル範囲(DUV及びVUV)及び極紫外スペクトル範囲(EUV)内の露光放射線を使用する投影露光装置に使用される。これらのマニピュレータも、1又は2以上のゾーンにおける移動制限欠陥の場合に波面誤差を補正するために用い続けることができる。
【0049】
本発明による方法の1つの更に別の実施形態により、発生された移動ベクトルは、これに加えて、投影露光装置の少なくとも1つの更に別の光学マニピュレータに対する移動を含み、確立補正値ベクトルは、更に別のマニピュレータの移動に対する補正値を含み、更に別のマニピュレータは、補正された移動ベクトルを用いて設定される。従って、完全実施することができない光学マニピュレータのゾーンに対する移動を補正するときに、少なくとも1つの更に別の光学マニピュレータの調節可能な光学効果が更に考慮される。
【0050】
本発明による投影露光装置の一実施形態により、補正デバイスのための複数の補正値ベクトルを格納するためのメモリが具備される。補正デバイスを用いて補正値ベクトルを取得する段階は、記憶された補正値ベクトルへのアクセスによって迅速に実施することができ、それによって作動中の発生された移動ベクトルの補正が可能になる。
【0051】
本発明による投影露光装置の更に別の実施形態により、補正デバイスは、制約パラメータに基づいてベース移動を有するベース補正ベクトルを確立し、発生された移動ベクトルに基づいてスケーリング係数を確立し、確立されたスケーリング係数を用いてベース補正ベクトルをスケーリングすることによって補正値ベクトルを計算するように具現化される。完全実施することができない移動に対して、制約パラメータによる指定を用いて確立されたベース補正は、スケーリング係数を用いてスケーリングすることにより、完全実施することができない多くの他の移動に対して発生された移動ベクトルを補正するために使用することができる。対応する方法請求項により、複数の発生された移動ベクトルに対する補正値ベクトルを取得する段階は、ベース補正ベクトルの使用によって有意に簡素化される。
【0052】
更に、本発明による投影露光装置の一実施形態において、補正デバイスに対する複数のベース補正ベクトルを格納するためのメモリが具備される。様々なゾーン及び異なる移動制限欠陥に対して確立されたベース補正ベクトルは、メモリに格納され、補正デバイスに向けて与えることができる。その結果、補正ユニットによってベース補正ベクトルを確立する段階が高速化及び簡素化される。
【0053】
上記に列挙した本発明による方法の実施形態、例示的実施形態、及び実施形態変形等に関して指定した特徴は、本発明による投影露光装置に相応に転用することができる。それとは逆に、本発明による投影露光装置の実施形態、例示的実施形態、及び実施形態変形に関して指定した特徴は、本発明による方法に相応に転用することができる。本発明による実施形態のこれら及び他の特徴に対して、図の説明及び特許請求の範囲に説明する。個々の特徴は、個別又は組合せのいずれかで本発明の実施形態として実施することができる。更に、これらの特徴は、個々に保護可能な有利な実施形態を表すことができ、適切な場合には本出願の係属中のみ又はその後のこれらの実施形態に対する保護を主張するものである。
【0054】
本発明の上記及び更に別の有利な特徴を以下に続く本発明による例示的実施形態の詳細説明において添付の模式図面を参照して例示する。
【発明を実施するための形態】
【0056】
以下に説明する例示的実施形態又は実施形態又は実施形態変形では、互いに機能的又は構造的に似通った要素に対して可能な限り同じか又は類似の参照符号を付与している。従って、特定の例示的実施形態の個々の要素の特徴を理解するために、本発明の他の例示的実施形態又は基本説明を参照されたい。説明を容易にするために、いくつかの図面では、図内に例示する構成要素のそれぞれの位置関係を明らかにする直交xyz座標系を示している。
【0057】
図1は、微細構造化構成要素、例えば、集積回路を製造するためのマイクロリソグラフィ投影露光装置10を模式図に例示している。投影露光装置10を用いて、レチクルとも呼ぶマスク12の構造が基板14の感光層に転写される。一般的に、シリコン又はそれとは異なる半導体材料から製造されたいわゆるウェーハが基板として使用される。
【0058】
この目的のために、投影露光装置10は、電磁放射線を生成するための放射線源16を含む。一例として、特に約365nm、248nm、又は193nmの波長を有するUV範囲の電磁放射線を生成するレーザなどが放射線源16として使用される。これに代えて、放射線源16は、より短い波長を有する放射線、例えば、100nmよりも短い波長、特に約13.5nm又は約6.8nmの波長を有する極紫外波長領域(EUV)内の放射線を生成することができる。
【0059】
光源16によって発生される露光放射線とも呼ぶ電磁放射線16は、最初に投影露光装置10の照明系18を通過する。照明系18は、複数の光学要素20、例えば、レンズ要素又はミラーを含み、
図1には、そのうちの1つだけを偏向ミラーに加えて象徴的に描示している。照明系18は、適切な照明ビームによってマスク12を照明するように機能する。この目的に対して、照明系18は、光学要素20を用いてビーム断面の形状、波面の形状、偏光などの観点から望ましい特性を有するような放射線を形成する。一例として、照明系は、矩形断面を有する照明ビームによるマスク12の連続走査に向けてスキャナスリットを含み、マスク19上の個々の点をそれぞれ異なる方向から照射する二重極照明、四重極照明、又は多重極照明を可能にする。この例示的実施形態において、マスク12は透過マスクとして具現化される。これに代えて、マスクは、特にEUVリソグラフィのための反射マスクとして構成することができる。
【0060】
投影露光装置10の投影レンズ22は、その物体平面24に配置されたマスク12の構造を基板14の感光層が内部に配置された像平面26に結像する。この目的に対して、投影レンズ22は、その設計と放射線波長とに依存する方式でレンズ要素、ミラーなどとして構成された投影レンズのビーム経路48を定める複数の光学要素を含む。
図1には、レンズ要素28の形態にある光学要素とミラー70の形態にある光学要素とを例示的に描示している。
【0061】
更に、投影露光装置10は、マスクを保持して正確に位置決めするための位置決めシステム30と、基板14を固定し、移動し、正確に位置決めするための位置決めシステム32とを含む。マスク12に対する位置決めシステム30は、作動中であってもアクチュエータを用いてマスク12の空間変位、回転、又は傾斜を可能にする。位置決めシステム30は、投影レンズ22の光軸34と垂直にマスク12を変位させるための走査作動に向けて具現化することができる。
【0062】
従って、基板14に対する位置決めシステム32も、アクチュエータを用いた作動中の基板14の空間変位、回転、又は傾斜に向けて具現化される。更に、位置決めシステム32は、ステッパ作動又はスキャナ作動の目的で光軸34に対して垂直な基板14の変位を可能にする。
【0063】
マスク12の構造を基板14上に結像するときには、投影レンズ22の結像収差を可能な限り小さく保たなければならない。製造及び組立て公差に起因する結像収差に加えて、投影レンズ22内では投影露光装置10の作動中のみの結像収差が発生する可能性もある。一例として、経時効果、例えば、材料の収縮又は膨張及び従って局所的に限定された形状変化が、レンズ要素28内で比較的長い時間にわたって特に高い光強度で露光される場所において発生する可能性がある。
【0064】
作動に起因する結像収差の更に別の原因は、通過する電磁放射線の一部分の回避不能な吸収による例えばレンズ要素28のような個々の光学要素の局所加熱にある。その結果、面幾何学形状の局所変化が、膨張又は機械的張力の結果として発生する可能性がある。屈折率のような材料特性の変化が存在する可能性もある。
【0065】
多くの場合に、レンズの結像収差は、理想的な光学波面からの計測光学波面の偏位として記載される。この偏位を波面変形又は波面誤差とも呼び、級数展開によって個々の成分に分解することができる。この場合に、分解の個々の項を例えば非点収差又はコマ収差のような特定の結像収差にそれぞれ割り当てることができるので、ゼルニケ多項式による分解が特に適切であることが見出されている。ゼルニケ関数の定義は、例えば、US 2011/0216303 A1に示されている。
【0066】
作動中に発生又は変化するそのような波面誤差を補償するために、投影レンズ22は、ビーム経路48の断面にわたって分散され、個別に調節可能な光学効果を有する複数のゾーンを有する少なくとも1つの光学マニピュレータ136、236、及び/又は336を含む。例示目的で、投影レンズ22内に、変形可能ミラー70を使用する光学マニピュレータ136と、赤外線光による照射を受けることによって加熱される熱マニピュレータ236と、電流によって加熱される熱マニピュレータ336とを例示的に提供している。別の実施形態において、異なる個数の光学マニピュレータと、光学効果に関して個々に調節可能な複数のゾーンを有する異なる設計のマニピュレータとの両方を使用することができる。
【0067】
光学マニピュレータ136は、変形可能ミラー70と操作デバイス138とを含む。光学マニピュレータ136は、投影レンズ22の視野平面又は瞳平面、又はこれらの間、すなわち、視野平面と瞳平面の間に配置することができる。光学マニピュレータ136のミラー70は、複数の個別に変形可能な反射コーティング領域を光学効果に関して個々に調節可能なゾーンとして有する調節可能ミラーとして具現化される。ゾーンは、操作デバイス138によって変形される。そのようなミラーを使用する光学マニピュレータ136は、特にEUVスペクトル範囲の電磁露光放射線に適している。
【0068】
図2は、変形可能凹ミラー70と、ミラー70の後面142と垂直に(Y方向に)作用するアクチュエータ140とを含む光学マニピュレータ136の第1の例示的実施形態136aを描示している。一例として、そのような光学マニピュレータ136は、JP 2013−161992 Aに記載されている。ミラー70は、その前面上に反射コーティング144を有し、ミラーホルダ145によって固定される。マニピュレータ136は、ハウジング148と、それに締結された複数のアクチュエータ140とを有する操作デバイス138を更に含む。各アクチュエータ140は、圧力センサ150と、駆動要素152と、バネ154と、接触要素156とを含む。駆動要素152は、Y方向に膨張可能及び収縮可能な方式で具現化され、この目的で、例えば、圧電要素又は超音波モータを含むことができる。駆動要素152の広がりに基づいて、対応する力が、バネ154及び接触要素156を通してミラー70の後面142上の接触領域内で作用する。その結果、反射コーティング144の局所変形がもたらされる。作用する力は、圧力センサ150によって検出され、予め決められた変形を設定するためにコントローラ(この図には描示していない)によって処理することができる。
【0069】
図3は、
図2の線A−Aに沿った光学マニピュレータ136aの断面を示している。アクチュエータ140は、ミラー70の後面142にミラー70の光軸158に関して対称に配置される。各アクチュエータ140は、個々に作動させることができ、ミラー70の圧力領域においてミラー70の局所変形をもたらす。従って、これらの圧力領域は、光学効果に関して個々に調節可能な光学マニピュレータ136aのゾーン146を構成する。
【0070】
図4は、例えば、JP 2013−106014に開示されているような変形可能凹ミラー70を使用する光学マニピュレータ136の第2の例示的実施形態136bを描示している。ミラー70は、ミラーホルダ145によって固定され、前面上に反射コーティング144を有する。更に、光学マニピュレータ136bは、複数のアクチュエータ140を有する操作デバイス138を含む。アクチュエータ140は支持板160に締結され、ミラー70の後面142に締結されて支持板160内の凹部162を通ってY方向に延びるミラーポスト164に対して作用する。
図2に記載の例示的実施形態とは対照的に、アクチュエータ140は、X方向とZ方向とに、すなわち、ミラー70の後面142と平行に、従って、ミラーポスト164に対して横方向から力を作用し、それによってミラー70の反射コーティング144の局所変形をもたらす。更に、光学マニピュレータ136bは、ミラーポスト164のX−Z偏向を決定するための位置センサ166が配置されたハウジング148を含む。
【0071】
図5は、
図4に記載の光学マニピュレータ136のアクチュエータ140の詳細な模式図を示している。アクチュエータ140は駆動要素152を含む。駆動要素152は支持板160に締結され、Y方向に延伸又は収縮することができる。工程において移動する駆動要素152の端部は、支持板160に締結されたL字形レバー168のアームに対してピボット回転可能方式で作用する。その結果、このアクチュエータ140内のレバー168の異なるアームがX方向に移動し、接続要素170を通してミラーポスト164に対して作用する。ミラーポスト164は、バネ172によって予備張力が与えられ、凹部を通ってミラー70の方向に延びている。ミラーポスト164は、締結要素174を通してミラー70の後面142から突出する部分176に締結される。ミラーポスト164をZ方向に偏向するために、アクチュエータ140は、更に別の駆動要素と、接続要素を有する相応に配置されたレバーと、更に別のバネとを含む。
【0072】
図6は、
図4の線A−Aに沿った
図4に記載の光学マニピュレータ136bの断面図である。明確に識別することができることは、各アクチュエータ140が、ミラーポスト164をX方向とZ方向とに偏向するためのバネ172と駆動要素152とをそれぞれ有することである。アクチュエータは、ミラー70の後面142においてミラー70の光軸158に関して部分的に対称に配置される。各アクチュエータ140は、個々に作動させることができ、ミラー70の反射コーティング144の局所変形をもたらす。アクチュエータ140内のこれらの局所領域は、光学効果に関して個別に調節可能にすることができる光学マニピュレータ136bのゾーン146に対応する。
【0073】
図7は、変形可能凹ミラー70を使用する光学マニピュレータ136の第3の例示的実施形態136cの模式断面を示している。光学マニピュレータ136cは、反射コーティング144の下に圧電層180を含み、それを用いて電圧の局所印加によって反射コーティング144の局所変形をもたらすことができる。一例として、そのような光学マニピュレータ136cは、DE 10 2011 081 603 A1に記載されている。
【0074】
光学マニピュレータ136cは、複数の電線184がその上に配置された凹面基板182を含む。
図8は、基板182上の電線184の例示的な配置を上面図に示している。各電線184は、基板182の外周の直近に第1の接触区域185を含む。更に、各電線184は、貫通孔の場合に電線184の上に設けられた絶縁層190に配置された第2の接触区域186を含む。絶縁層190は、貫通孔188を通して対応する電線184にそれぞれ電気接続した2次元実施形態を有する制御電極192の層を支持する。この場合に、対電極194を支持する圧電層180は、制御電極192の上に配置される。対電極194は、圧電層180の全域にわたって延び、保護層196を支持する。最後に、反射コーティング144が保護層196上に配置される。第1の接触区域185と対電極194の間に適切な電圧を印加することにより、関連付けられた制御電極192の領域内で圧電層180の局所変形が得られる。従って、制御電極192の各々のものでの反射コーティング144の局所領域は、光学効果に関して個々に調節可能な光学マニピュレータ136cのゾーン146に対応する。2つの隣接制御電極192の間の短絡の場合に、関連付けられたゾーン146の制御信号の不正な同期が存在する。この場合に、影響を受けるゾーン146に対して均一な移動を設定することしかできない。
【0075】
図1に描示する赤外線光によるレンズ要素28の局所領域の照射を使用する熱マニピュレータ236は、赤外線光源240によって供給される赤外線光を各々調節可能な強度を用いてレンズ要素28の特定の領域又はゾーン上にそれぞれ放射する複数の照射ユニット238を含む。熱マニピュレータ236は、投影レンズ22の視野平面又は瞳平面、又はこれらの間、すなわち、視野平面と瞳平面の間に配置することができる。赤外線光をレンズ要素28の特定の領域又はゾーン上に放射する熱マニピュレータ236は、深紫外スペクトル範囲(DUV)又はVUVスペクトル範囲の電磁露光放射線に特に適している。
【0076】
図9は、例えば、US 2008/0204682 A1に開示されているそのような熱マニピュレータ236の実施形態を模式的に描示している。赤外線光源240は、赤外線放射線244を加熱放射線として生成する。IR放射線244は、光電センサ245の方向に伝播する。このビーム経路には複数のピボット回転可能偏向ミラー248が連続して配置される。ピボット回転可能偏向ミラー248のそれぞれは、第1の回転位置においてIR放射線244のビーム経路の外側に置かれ、このIR放射線を光電センサ245の方向に通過させる。第2の回転位置では、各偏向ミラー248が、IR放射線244をそれぞれの光導波路250内に結合されるように偏向する。IR放射線244は、光導波路250を通して照射ユニット238に案内される。各照射ユニット238に対して偏向ミラー248と光導波路250とが設けられる。
【0077】
照射ユニット238内では、IR放射線244は、光導波路250から射出した後に最初に第1のコンデンサーレンズ要素252を通過し、次いで、ビームスプリッタ254を通過する。ビームスプリッタ254は、IR放射線244の僅かな部分を光電センサ256上に偏向する。IR放射線244の大部分は、第2のコンデンサーレンズ要素258を通って照射ユニット238から射出し、レンズ要素28の特定の領域を照射する。この目的に対して、全ての照射ユニット238は、適切に具現化されたホルダ260を用いて適切なアラインメントで保持される。レンズ要素28上の各領域又は各ゾーンに対する照射強度及び従って温度増大は、それぞれの偏向ミラー248がIR放射線244を対応する光導波路250内に結合する際の継続時間と周波数とに直接に依存する。IR放射線の強度は、各ゾーンに対して光電子センサ256によって検出することができる。
【0078】
図10は、レンズ要素28の様々な局所ゾーン246内に異なる温度を有する温度プロファイルを生成するための
図9に記載の照射ユニット238によるレンズ要素28の照射の模式図を示している。大きい円は、高い照射強度を象徴し、小さい円は、低い強度を象徴する。露光ビーム経路48の例示的な断面264も同じく描示しており、この断面264は、描示す事例では非対称である。露光放射線は、断面264の領域内に、この場合は望ましくない温度増大ももたらす。例えば、屈折率のようなレンズ要素材料の温度依存特性は、温度増大の結果として変化する。露光放射線によって誘起されるレンズ要素28の光学特性変化は、照射ユニット238によるレンズ要素28の適切な照射によって補償することができる。
【0079】
一例示的実施形態により、
図1に描示す光学マニピュレータ336は、電流加熱又は電流作動式熱マニピュレータとして具現化され、光学要素として透過性の第1の光学板338と透過性の第2の光学板340とを含む。光学板338、340は、投影レンズ22のビーム経路に光軸34と垂直に配置され、各々非常に小さい導電性のオーミック構造を用いて局所的に加熱することができる。光学板338、340の間には、冷却目的で空気流344が通して案内される間隙342が形成される。
【0080】
図11は、第1の光学板338の模式図を示している。板338は、個別に加熱可能なゾーン346の2次元マトリクスを含む。この例示的実施形態において、第1の光学板338は、ゾーン346の14×14マトリクスを有する。この図では、96個の個別に加熱可能なゾーン346が、投影レンズ22のビーム経路48内に光学的に有効な方式で配置されている。第2の光学板340は、光学マニピュレータ336が、ビーム経路48内に合計で192個の加熱可能ゾーン346を有するように、対応する実施形態を有する。これに代えて、ゾーン346の異なる個数、配置、形状も可能であり、一例として、これらのゾーンを放射状に配置するか又は帯形又は円弧形に配置することができる。更に別の例示的実施形態により、第1の光学板338は、少なくとも5×5個のゾーンを有するマトリクス、特に少なくとも10×10個のゾーンを有するマトリクス、例えば、21×21個のゾーンを有するマトリクスを有する。
【0081】
ゾーン346は、周囲温度に対して低温の領域と高温の領域とが全体的に互いに補償し合うように常に加熱される。更に、投影レンズ22の他の構成要素と熱接触状態にある光学板338、340の縁部にあるゾーン346は、周囲温度まで能動的に加熱される。それによって光学マニピュレータ336の熱的中立性を確実にする。
【0082】
この例示的実施形態において、光学マニピュレータ336の光学板338、340は、平行平面石英板として具現化される。これに代えて、光学マニピュレータは、例えば、1つだけの光学板、2つよりも多い光学板、平行平面ではない板、又は複数の加熱可能ゾーンを有する1又は2以上のレンズなどを含むことができる。
【0083】
石英では、193nmの波長での温度増大が屈折率の増大をもたらす。この効果は、取りわけ、レンズ加熱の結果として生じる波面誤差の原因である。光学マニピュレータ336では、この効果は、投影レンズ22内で現時点で発生している波面誤差を補償する波面変形を生成するのに使用される。複数のゾーン346の結果として、光学マニピュレータ336は、作動中に発生又は変化する複数の異なる波面誤差を補償するために非常に柔軟に使用することができる。
【0084】
続く説明では、
図1と
図11の両方を参照する。下記で光学マニピュレータ336に関して始めるマニピュレータの作動の説明は、その大部分を変形可能ミラーを使用する光学マニピュレータ136又は赤外線加熱を使用する光学マニピュレータ236に同じく転用することができる。光学マニピュレータ336は、両方の光学板338、340に対して予め決められた温度プロファイルを設定するための作動デバイス350を更に含む。そのような温度プロファイルは、W/m
2を単位とする加熱電力のような温度値又は対応する値を両方の光学板338、340の各ゾーン346に対する移動として指定する。従って、温度プロファイルは、移動ベクトルに対応する。作動デバイス350は、光学マニピュレータ336の各ゾーン346に、予め決められた移動ベクトルを設定するための適切な加熱電流を供給し、空気流344を通じた冷却を更に調整することができる。
【0085】
投影露光装置10は、作動中に発生又は変化する波面誤差を補償するための光学マニピュレータ136、236、及び336のうちの1又は2以上を制御するためのマニピュレータコントローラ52を更に含む。マニピュレータコントローラ52は、現時点で存在する波面誤差に関する決定モジュール54と、存在する波面誤差を補正するのに適する移動ベクトルを発生させるための移動発生器56とを含む。光学マニピュレータ136、236、及び336のうちの1又は2以上に対する移動に加えて、発生される移動ベクトルは、投影露光装置10の他のマニピュレータ、例えば、投影レンズ22の光学要素28の位置決めデバイス又は変形デバイス(
図1には描示していない)に対する移動を含むことができる。下記では、移動ベクトルの発生を
図11に描示する光学板338を参照して光学マニピュレータ336の例を用いて説明する。説明する原理は、光学マニピュレータ136、光学マニピュレータ236、又は異なるタイプの光学マニピュレータにこの移動ベクトル発生と類似の方式で転用することができる。
【0086】
現時点で存在する波面誤差を決定するために、決定モジュール54は、測定か、又は過去に測定した波面誤差及び例えば周囲圧力などのような更に別のパラメータに基づく推定かのいずれかを実施する。更に、そのような推定は、過去に測定した波面誤差とレンズ加熱を予想するモデルとに基づいて実施することができる。特に、波面誤差は、位置決めシステム32内に統合された波面センサ58を用いて干渉計によって測定される。干渉計による波面決定のためのシステムは、例えば、US 2002/0001088 A1に記載されている。決定モジュール54は、測定波面誤差を例えばn=64までのゼルニケ多項式に数値的に分解する。これに代えて、異なる次数、特に36、49、又は100を使用するか、又は異なる関数系、好ましくは正規直交関数系への分解を使用することができる。次いで、測定又は推定による波面誤差のゼルニケ係数又は対応する他の係数が、移動発生器56に対して供給される。
【0087】
一実施形態により、移動発生器56は、光学マニピュレータ336の各ゾーン346と、光学マニピュレータ136の各ゾーン146又は光学マニピュレータ236の各ゾーン246のような投影露光装置10の更に別のマニピュレータとに対する移動を有する移動ベクトルを測定又は推定による波面誤差のゼルニケ係数又は他の適切なパラメータに基づいて生成する。この場合に、移動ベクトルは、投影レンズ22の波面が意図する波面に近似されるように移動発生器によって構成される。一実施形態により、意図する波面は、像平面26内の個々の視野点に存在する球面波面によって定めることができ、像平面26に沿うこれらの波面の包絡面は平面波面をもたらす。本出願の範囲では、そのような意図する波面を基準波面と呼ぶ。基準波面への実波面の近似は、投影レンズ22の波面誤差の最小化を意味する。
【0088】
更に別の実施形態により、移動ベクトルを用いて投影レンズ22の波面をそれに対して近似する意図する波面は、基準波面からターゲットを定めた方式で偏位する波面によって定められる。ターゲットを定めた方式で偏位するそのような意図する波面は、いわゆる画像強調法を用いて決定することができる。この場合に、個々の事例において結像されるマスク構造にターゲットを定めた方式で適応させる波面偏位が設定され、これらの波面偏位は、対応するマスク構造をより高い分解能で結像させることを可能にする。
【0089】
移動ベクトルは、例えば、隣接ゾーン346への熱伝導を考慮するために3×3マトリクス、5×5マトリクス、又は7×7マトリクスを有する各ゾーン346に対するベース関数に基づく移動発生最適化アルゴリズムを用いて発生される。最適化アルゴリズムは、当業者に公知のアルゴリズム、例えば、特異値分解(SVD)又はチコノフ正則化に基づくとすることができる。
【0090】
ゼルニケ係数の大きい個数、マニピュレータの移動又は自由度の大きい個数、及び例えば光学マニピュレータ336の熱的中立性のような工程において遵守される境界条件は、非常に複雑な最適化問題をもたらし、この問題は、一般的に投影露光装置10の露光作動中にもはや実時間で解くことができない。従って、特定の波面誤差、例えば、特定のゼルニケ係数に対して過去に確立された移動ベクトルは、移動発生器56のメモリ60に格納される。これらの移動ベクトルは、最適化問題を解くための最適化アルゴリズムによって移動を発生させるときに考慮される。このようにして、移動発生器56による移動発生は、投影露光装置10の露光作動中に可能である。
【0091】
投影露光装置10は、光学マニピュレータ336の各ゾーン346の機能を検査するためのゾーン検査ユニット62を更に含む。特に、ゾーン検査ユニット62は、各ゾーン346内で移動及び従って温度が、予め決められた意図する移動範囲で調節可能であるか否かを検査する。加熱可能ゾーン346内の移動制限の原因は、2つの隣接ゾーン346a、346bの間の電気短絡の形態における2つの隣接ゾーン346a、346bの制御信号の不正な同期にある場合がある。その結果、両方のゾーン346a、346bが常に同じ加熱電力で作動される。ゾーン346a、346bに対して均一な移動を設定することしかできない。移動制限に対する更に別の理由は、作動中に発生するか又は実作動の前に既に存在している可能性があるゾーン346cの不正な抵抗特性である場合がある。公差を外れた抵抗特性は、特に制限付き移動範囲をもたらす可能性がある。
【0092】
ゾーン検査ユニット62は、ゾーン346a、346bの間に短絡を検出した場合に、短絡ゾーン346a、346bに対する制約パラメータとして均一な移動を指定する。これは、
図7に描図示の実施形態を参照して記述した2つの隣接制御電極192の短絡に同じく適用される。ゾーン検査ユニット62は、不正な抵抗特性に起因する制限付き移動範囲を決定した場合に、不良ゾーン346bに対する制約パラメータとして最大許容移動を指定する。光学マニピュレータ136の場合に、ゾーン検査ユニット62を変形可能ミラー70の各ゾーンのアクチュエータ特性の対応する検査に向けて具現化することができる。更に、ゾーン検査ユニット62は、赤外線加熱を使用する光学マニピュレータ236の各ゾーンのアクチュエータ特性を検査するように構成することができる。
【0093】
欠陥を有するゾーン346a、346b、346cに起因する移動制限は、光学マニピュレータ336の不正な設定をもたらし、従って、発生された移動ベクトルが、これらのゾーン346a、346b、346cのうちの1又は2以上に対して完全に実施することができない移動を有する場合に存在する波面誤差の不十分な補償をもたらす。新しい波面誤差が誘起される可能性もある。移動を発生させる最適化アルゴリズムの移動制限への適応は、非常に大きい時間支出をもたらすことになる。移動制限への最適化アルゴリズムの適応に必要とされる大きい時間支出量は、特に、最適化アルゴリズムによって使用されて特定の波面誤差に対して予め決定される移動ベクトルがもはや有効ではなく、複雑な最適化問題の時間を消費する求解によって完全に再確立する必要があることに起因する。
【0094】
従って、投影露光装置10の試験デバイス64は、最初に1又は2以上のゾーン346に対して制約パラメータが予め決定されているか否かを確立し、次いで、予め決められた制約パラメータを有するゾーン346a、346b、346cに対する移動を各発生された移動ベクトルの場合の可能性に関して検査する。試験デバイス64が、予め決められた制約を有するゾーンのうちの1又は2以上に対する実施不能移動を決定した場合に、発生された移動ベクトルの対応する補正が起動される。完全実施することができない移動の例は、例えば、短絡ゾーン346a、346bに対して異なる移動、又は不良ゾーン346cに対する制限付き移動範囲よりも大きい移動である。更に、試験デバイス64は、完全に機能するゾーン346に対する全ての移動を各発生された移動ベクトルの場合に意図する移動範囲を遵守することに関して検査することができる。欠陥を用いて発生され、意図する移動範囲よりも大きい移動の場合にも同じく補正が起動される。光学マニピュレータ136及び236の一方に対して移動ベクトルを発生させる場合に、試験デバイス64は、ゾーン146及び246それぞれに対して適用可能な移動を対応する意図する移動範囲の遵守に関して検査することができる。ゾーン検査ユニット62と試験デバイス64とをいわゆる検査システムを形成するように組み合わせることができる。
【0095】
投影露光装置10は、完全に実施することができない1又は2以上の移動が存在する場合に発生された移動ベクトルを補正するための補正デバイス66を更に含む。補正デバイス66は、実現可能ではない1つ又は複数の移動に対する補正値ベクトルがメモリ68内で既に利用可能であるか否かを最初に検査する。利用可能なものがある場合に、発生された移動ベクトルを補正するためにそれが使用される。
【0096】
そうでなければ又はこれに代えて、補正デバイス66は、制約パラメータによって予め決められた制約及び1つ又は複数のゾーンに対するベース補正ベクトルがメモリ68内で利用可能か否かを検査する。ベース補正ベクトルは、1つ又は複数のゾーンと存在する制約とに関するベース欠陥に対する補正値ベクトルを表す。ベース補正ベクトルが利用可能である場合に、補正デバイス66は、発生された移動ベクトルに基づいて、特に実現可能ではない1つ又は複数の移動に基づいて適切なスケーリング係数を確立する。次いで、試験デバイス66は、確立したスケーリング係数を用いてベース補正ベクトルをスケーリングすることによって補正値ベクトルを計算する。これに加えて、補正デバイスは、ベース補正ベクトルを計算する段階に向けて具現化することができる。
【0097】
補正値ベクトルとベース補正ベクトルとの両方は、発生された移動ベクトルの全ての移動に対する値を含む。補正デバイス66は、補正値ベクトルのそれぞれの補正値を発生された移動ベクトルの対応する移動に加算することによって補正された移動ベクトルを発生させる。
【0098】
次いで、作動デバイス50は、補正された移動ベクトルの移動に則して光学マニピュレータ336の全てのゾーン346に対する加熱電力を調節する。光学マニピュレータ336の場合は、このようにして、1又は2以上の欠陥を有するゾーンにも関わらず、発生された移動ベクトルによって指定される光学効果が設定される。例えば、光学マニピュレータ136又は光学マニピュレータ236のような投影露光装置10の他のマニピュレータ内の補正された移動ベクトルの対応する移動に則した調節もある。
【0099】
下記では、投影露光装置10の構成要素の機能及び相互作用、特にベース補正ベクトル、並びにスケーリング係数の計算の更なる説明を投影露光装置を制御する方法の2つの例示的実施形態の説明と共に行う。
【0100】
図12は、投影露光装置10を制御する方法の第1の例示的実施形態を解説するための流れ図を描示している。本方法は、電流加熱式光学マニピュレータ336の2つの隣接ゾーン346a、346bの間に電気短絡が存在するときに投影露光装置10を制御するように機能する。短絡の結果として、2つのゾーン346a、346bは、同じ加熱電力又は同じ移動を用いて作動させることしかできない。
【0101】
従って、本方法は、複数の個別に調節可能なゾーンを有し、更に2つの隣接ゾーンの欠陥によって引き起こされた均一な移動を有する他のマニピュレータ、例えば、適応ミラー70を使用するマニピュレータ136又は赤外線光による加熱を使用するマニピュレータ236に適用することができる。
【0102】
第1の段階S01において、2つの隣接ゾーン346の間で可能な複数の短絡又は可能な全ての短絡に対するコンピュータ上のベース補正ベクトルの計算がある。この工程では、例えば、導体トラックの構造の結果として特定のゾーン346の間の短絡は、除外するか又は他のものよりも可能性が高いと見なすことができる。最初に、短絡に対するベース補正ベクトルを計算するために、関わっている2つのゾーン346の間にベース差が設定される。一例として、第1のゾーンに対して意図する移動範囲の平均値が使用され、第2のゾーンに対して可能な最大移動が使用される。一例として、例えば、全てのゾーンに対して−65W/m
2から+65W/m
2への冷却を考慮する意図する移動範囲の場合に、第1のゾーンに対して0W/m
2を設定することができ、第2のゾーンに対して65W/m
2を設定することができる。更に、両方の光学板338、340の全ての他のゾーン346に対して最大移動範囲、例えば、±20W/m
2及び±0.1Kが設定される。
【0103】
次いで、全ての他のゾーン346に対する移動は、両方の光学板338、340の全ての他のゾーン346に対する設定された最大範囲を遵守し、ベース差に則して第1及び第2のゾーンに対する予め決められた値を設定し、更に2つの光学板338、340による最小収差を設定するという最適化問題を解くことによって決定される。更に、投影露光装置10の他のマニピュレータの設定オプションを考慮することができる。この場合に、ベース補正ベクトルは、他のマニピュレータに対する補正値も含む。最適化問題を解くために、例えば、2次計画法(QuadProg)、逐次次計画法(SQP)、チコノフ正則化、及び/又はハンセンによるL字曲線法に基づくアルゴリズムを使用することができる。
【0104】
これに代えて、例えば、第1のゾーンに対する−1W/m
2及び第2のゾーンに対する+1W/m
2のような例えば意図する移動範囲の平均の前後に形成される差のような異なるベース差を使用することができる。同様に、第1のゾーン及び第2のゾーンそれぞれに対して移動s1及びs2が既に発生されている場合に、第1のゾーンに対して(s1−s2)/2のベース差を第2のゾーンに対して(s2−s1)/2のベース差を設定することができる。このようにして確立されたベース補正ベクトルは、第1及び第2のゾーンに対する移動として平均値(s1+s2)/2を使用する場合に補正値ベクトルとして容易に使用することができる。従って、補正値ベクトルをこれらの指定を用いて直接計算することができる。
【0105】
他のマニピュレータを考えることなく、上述のようにして確立された他のゾーン346に対する移動は、第1及び第2のゾーンに対する予め決められた移動の光学効果を補償する。それとは逆に、第1のゾーンと第2のゾーンとに対して同じ移動の場合の他のゾーンの移動は、短絡に起因して設定することができないベース差に対応する光学効果を誘起する。確立されたベース補正ベクトルは、適切なスケーリングを用いて第1のゾーンの移動と第2のゾーンの移動の間の他の差に適応させることができる。
【0106】
第2の段階S02において、投影露光装置10に対する確立されたベース補正値が、投影露光装置10のメモリ68内に与えられる。従って、これらのベース補正値は、短絡の発生直後に発生された移動ベクトルを補正するために使用することができる。これに代えて、ベース補正値は、異なるメモリに格納され、ネットワーク上で供給することができる。
【0107】
投影露光装置10のゾーン検査ユニット62を用いてゾーン346を検査する時にS03、2つのゾーン346a、346bの間で短絡が検出された場合に、ゾーン検査ユニット62は、短絡ゾーン346a、346bに対する制約パラメータとして均一な移動を指定する。従って、発生された移動ベクトルの補正が与えられる。別の例示的実施形態において、ベース補正ベクトルの計算は、例えば、補正デバイス66によってこの時点で初めて実施することができる。
【0108】
第4の段階S04において、投影露光装置10の作動中に決定モジュール54によって現時点で存在する波面誤差の測定又は推定が実施される。次いで、測定又は推定による波面誤差は、移動発生器56に送られる。
【0109】
次いで、光学マニピュレータ336の各ゾーン346に対する移動、更に移動発生器56を用いた投影露光装置10の更に別のマニピュレータに対する移動を有する移動ベクトルの発生があるS05。移動は、投影レンズ22の測定又は推定による現時点での波面誤差に基づいて上述の方式で発生される。
【0110】
第6の段階S06において、試験デバイス64は、2つのゾーン346の間の短絡に関する制約パラメータが存在するか否かを最初に確立する。2つのゾーン346a、346bに関して短絡が予め決められている場合に、短絡ゾーン346a、346bに対して発生された移動が、次に、試験デバイス64によって等値性に関して検査される。
【0111】
短絡ゾーン346a、346bの発生された移動が同じか又は予め決められた差未満だけ異なる場合に、測定又は推定による波面誤差を補償するための発生された移動ベクトルの移動に則した光学マニピュレータ336の全てのゾーン346、並びに投影露光装置10の他のマニピュレータの全てのゾーンの調節S07がある。
【0112】
短絡ゾーン346a、346bの発生された移動が、予め決められた差よりも大きく異なる場合に、補正デバイス66による発生された移動ベクトルの補正S08がある。この目的に対して、メモリ68内に与えられる短絡ゾーン346a、346bに関するベース補正ベクトルが最初に確立される。次いで、短絡ゾーン346a、346bに対する発生された移動s1とs2との差とベース補正ベクトルの公称値Nとを用いたS=(s1−s2)/Nであるスケーリング係数Sの計算がある。公称値は、ベース補正ベクトルを計算するのに使用されるベース差に対応する。
【0113】
上述の差を考慮するための別の実施形態において、スケーリング係数を計算するために、移動s1とs2との直接差の代わりに、ゾーン346の更に別のパラメータを用いて重み付けされた差を使用することができる。一例として、加熱電力Pを用いた電流加熱ゾーンの場合に、スケーリング係数Sは、重み付き差ΔPと、公称値としてのベース差PNとを用いた移動として、S=ΔP/PNによって計算される。この場合に、ΔPは、個々のゾーンの抵抗特性を考慮するために、ゾーンz1及びz2の可能な最大の加熱電力によって重み付けされた差を次式として表すことができる。
【数1】
P
m(z):短絡ゾーンz1、z2の可能な最大の加熱電力
P
NP(z):マニピュレータの中立状態に対するゾーンz1及びz2の予め決められた加熱電力
P
UC(z):波面誤差を補償するためのゾーンz1及びz2に対する予め決められた加熱電力
【0114】
補正値ベクトルは、確立されたスケーリング係数を用いてベース補正ベクトルをスケーリングすることによって決定される。次いで、補正値ベクトルの補正値を成分毎に発生された移動ベクトルの移動に加算することによって補正された移動ベクトルが計算される。
短絡ゾーン346a、346bに対して、意図する移動範囲の平均値
についての移動のベース差の場合
の発生された移動の平均値(s1+s2)/2か、又は意図する移動範囲の平均値と最大値とのベース差の場合の第1のゾーン346aに対する発生された移動のいずれかが、補正された移動ベクトルにおいて移動として設定される。
【0115】
次いで、段階S09において、光学マニピュレータ336の全てのゾーン346、並びに投影露光装置10の他のマニピュレータの全てのゾーンは、測定又は推定による波面誤差を補償するために補正された移動ベクトルの移動に則して調節される。
【0116】
図13は、投影露光装置10を制御する方法の第2の例示的実施形態を解説するための流れ図を描示している。本方法は、公差を外れた抵抗特性を有する不良ゾーン346cが存在する場合に投影露光装置10を制御するように機能する。不良ゾーン346cの存在の結果として、特にゾーン346cの制限付き移動範囲が引き起こされ、その結果、ゾーン346cに対するある一定の発生された移動を完全に実施することができない。従って、本方法は、複数の個別に調節可能なゾーンを有し、更に制限付き移動範囲を有する不良ゾーンを有する他のマニピュレータ、例えば、適応ミラーを使用するマニピュレータ136又は赤外線光による加熱を使用するマニピュレータ236に適用することができる。
【0117】
第1の段階S11において、全てのゾーン346は、光学板338、340の製造中に、意図する範囲を外れた抵抗特性に起因する制限付き移動範囲の存在に関して既に検査されたものである。
【0118】
ゾーン346c内で制限付き移動範囲が決定された場合に、第2の段階S12において不良ゾーン346cに対するベース補正ベクトルが計算される。この目的に対して、最初に最大補正移動が決定される。一例として、実施することができない最大の意図する移動の部分が、最大補正移動として設定される。更に、両方の光学板338、340の全ての他のゾーン346に対して最大移動範囲、例えば、各ゾーンに対して±20W/m
2及び±0.1Kが設定される。
【0119】
次いで、全ての他のゾーン346に対する移動は、両方の光学板338、340の全ての他のゾーン346に対する設定された最大範囲を遵守し、欠陥を有するゾーン346cに対する最大補正移動を設定し、更に2つの光学板338、340による最小収差を設定するという最適化問題を解くことによって決定される。更に、投影露光装置10の他のマニピュレータの設定オプションを考慮することができる。この場合に、ベース補正ベクトルは、他のマニピュレータに対する補正値も含む。最適化問題を解くために、例えば、2次計画法(QuadProg)、逐次次計画法(SQP)、チコノフ正則化、及び/又はハンセンによるL字曲線法に基づくアルゴリズムを使用することができる。
【0120】
上述のようにして確立されたベース補正ベクトルの移動は、不良ゾーンに対する最大移動のうちの実施不能部分に対応する光学マニピュレータ336の光学効果を生成する。適切なスケーリングにより、ベース補正ベクトルは、不良ゾーン346cに対して完全実施することができない他の移動に適応させることができる。
【0121】
第3の段階S13において、投影露光装置に対して光学マニピュレータ336が、確立されたベース補正ベクトルと共に与えられる。この場合に、ベース補正ベクトルは、投影露光装置10のメモリ68に格納される。更に、ゾーン346cに対する制限付きの可能な最大の移動が制約パラメータとして設定される。一例として、この設定は、ゾーン検査ユニット62を用いて実施することができる。従って、発生された移動ベクトルの補正の作動がある。
【0122】
次いで、投影レンズ22の現時点で存在する波面誤差の測定又は推定S14、及び投影露光装置10の作動中の移動ベクトルの発生S15がある。これらの段階は、
図12に記載の例示的実施形態の段階S04及びS05に対応する。
【0123】
第6の段階S16において、最初にゾーン346に対する制限付き最大移動を有する制約パラメータの存在に対して試験デバイス64による検査がある。ゾーン346cに対する最大移動に関して制約が存在する場合に、不良ゾーン346cに対して発生された移動ベクトルがゾーン346cに対する制限付き最大移動よりも大きいか否かに関して次に検査される。
【0124】
不良ゾーン346cの発生された移動が制限付き最大移動を超過していない場合に、測定又は推定による波面誤差を補償するための発生された移動ベクトルの移動に則した光学マニピュレータ336の全てのゾーン346、並びに投影露光装置10の他のマニピュレータの全てのゾーンの調節S17がある。
【0125】
不良ゾーン346cの発生された移動が制限付き最大移動を超過している場合に、補正デバイス66を用いた発生された移動ベクトルの補正S18がある。最初に、メモリ68内に与えられる不良ゾーン346cに対するベース補正ベクトルが確立される。次いで、発生された移動と制限付き最大移動の間の差Δsと、ベース補正ベクトルの公称値Nとを用いたS=Δs/Nとしてのスケーリング係数Sの計算がある。公称値は、ベース補正ベクトルを計算するときに使用される最大補正移動に対応する。確立されたスケーリング係数を用いてベース補正ベクトルをスケーリングすることにより、補正値ベクトルを決定する段階が実施される。次いで、補正値ベクトルの補正値を成分毎に発生された移動ベクトルの移動に加算することによって補正された移動ベクトルが計算される。不良ゾーン346cに対して、制限付き最大移動は、補正された移動ベクトルにおける移動として設定される。
【0126】
最後に、段階S19において、測定又は推定による波面誤差を補償するために、光学マニピュレータ336の全てのゾーン346、並びに投影露光装置10の他のマニピュレータの全てのゾーンが、補正された移動ベクトルの移動に則して調節される。
【0127】
本方法の更に別の例示的実施形態において、段階S12に従って計算されたベース補正ベクトルは、発生された移動が最大の意図する移動よりも大きいことによる過度駆動の結果として生じるクリッピングを補償するために使用することができる。この場合に、最初に発生された移動ベクトルの全ての移動は、最大の意図する移動よりも大きいことに関して検査される。超過が存在する場合に、段階S18と類似の方式で、影響を受けるゾーン346に対するベース補正ベクトルが確立され、スケーリング係数が決定され、補正値ベクトルが計算される。この場合に、スケーリング係数を確立するときに、制限付き最大移動の代わりに最大の意図する移動が使用される。次いで、段階S19に従う光学マニピュレータ336の全てのゾーン346及び更に別のマニピュレータの全てのゾーンの調節がある。
【0128】
例示的実施形態の本説明は、例示的なものであるように理解されるものとする。本説明によって行う開示は、第1に、当業者が本発明とそれに関連付けられた利点とを理解することを可能にし、第2に、当業者の理解において同じく明らかである本説明の構造及び方法の変形及び修正を網羅する。従って、全てのそのような変形及び修正は、それらが特許請求の範囲及びその均等物における定義に即した本発明の範囲に収まる限り、特許請求の範囲の保護によって網羅されるように意図している。