【実施例】
【0026】
(実施例1)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度340℃においてInSbの原料としてトリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給し、V/III比=5.0の条件で第1の化合物半導体層としてInSb層を形成した。V/III比は、III族元素供給量に対するV族元素の供給量の比のことである。このInSb層の形成には、MOCVD装置を用いた。このInSb層の膜厚は700nmであった。
【0027】
このInSb層上に、基板温度500℃においてAlInSbの原料として、トリターシャリーブチルアルミニウム(TTBAl)、トリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給し、第2の化合物半導体層としてAlInSb層を形成した。このAlInSb層の形成には、MOCVD装置を用いた。このAlInSb層を成長させる際に、AlとInの原料比がAl/(Al+In)=0.50となるように、Al原料をIn原料とSb原料と共に供給した。
【0028】
1分間の成長の後に、AlInSb層の各元素比率を決める所望の供給量であるAl/(Al+In)=0.70まで、Al原料の供給量を増加させる。このときV/III比=5.0の条件で成膜を行った。通常、原料はIII族、V族原料を族毎にそれぞれの配管で成長室まで供給するが、今回はTTBAlのみをブロックバルブを経由することなく、成長室直前まで単独で供給を行った。すなわち、Sb原料は成長室に単独で供給し、Al原料とIn原料は成長室直前までは単独で供給した。このAlInSb層の膜厚は700nmであった。
【0029】
このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は18%であり、ωスキャンロッキングカーブから算出される半値幅は620arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が3×10
18cm
−3、炭素原子が9×10
16cm
−3、窒素原子が5×10
17cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは0.3nmであった。実施例1において得られた化合物半導体基板は、式(1)(2)を満たしていた。
【0030】
(実施例2)
AlInSb形成時のAlとInの原料比をAl/(Al+In)=0.63とした以外は、実施例1と同様の方法で化合物半導体基板を製造した。このAlInSb層の膜厚は700nmであった。このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は1%であり、ωスキャンロッキングカーブから算出される半値幅は205arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が3×10
16cm
−3、炭素原子が1×10
15cm
−3、窒素原子が1×10
17cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは0.1nmであった。実施例2において得られた化合物半導体基板は、式(1)を満たしていた。
【0031】
(実施例3)
AlInSb形成時のAlとInの原料比をAl/(Al+In)=0.75とした以外は、実施例1と同様の方法で化合物半導体基板を製造した。このAlInSb層の膜厚は700nmであった。このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は40%であり、ωスキャンロッキングカーブから算出される半値幅は1120arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が2×10
18cm
−3、炭素原子が4×10
17cm
−3、窒素原子が3×10
17cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは1.5nmであった。実施例3において得られた化合物半導体基板は、式(1)(2)を満たしていた。
【0032】
(実施例4)
AlInSb形成時のAlとInの原料比をAl/(Al+In)=0.90とした以外は、実施例1と同様の方法で化合物半導体基板を製造した。このAlInSb層の膜厚は700nmであった。このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は70%であり、ωスキャンロッキングカーブから算出される半値幅は1800arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が2×10
19cm
−3、炭素原子が5×10
18cm
−3、窒素原子が3×10
18cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは3.0nmであった。実施例4において得られた化合物半導体基板は、式(1)(2)を満たしていた。
【0033】
(実施例5)
AlInSb形成時の基板温度を420℃とした以外は、実施例1と同様の方法で化合物半導体基板を製造した。このAlInSb層の膜厚は700nmであった。このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は3%であり、ωスキャンロッキングカーブから算出される半値幅は230arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が2×10
17cm
−3、炭素原子が5×10
16cm
−3、窒素原子が2×10
17cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは0.2nmであった。実施例5において得られた化合物半導体基板は、式(1)を満たしていた。
【0034】
(実施例6)
AlInSb形成時の基板温度を525℃とした以外は、実施例1と同様の方法で化合物半導体基板を製造した。このAlInSb層の膜厚は700nmであった。このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は25%であり、ωスキャンロッキングカーブから算出される半値幅は720arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が3×10
18cm
−3、炭素原子が9×10
16cm
−3、窒素原子が8×10
17cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは0.4nmであった。実施例6において得られた化合物半導体基板は、式(1)(2)を満たしていた。
【0035】
(実施例7)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度340℃においてInSbの原料としてトリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給して、第1の化合物半導体層としてInSb層を形成した。このInSb層の形成には、MOCVD装置を用いた。
このInSb層上に、基板温度500℃においてAlInSbの原料として、トリターシャリーブチルアルミニウム(TTBAl)、トリメチルインジウム(TMIn)、トリメチルアンチモン(TMSb)を供給して、第2の化合物半導体層としてAlInSb層を形成した。このAlInSb層の形成には、MOCVD装置を用いた。このAlInSb層を成長させる際に、AlとInの原料比がAl/(Al+In)=0.50となるようなAl原料をIn原料とSb原料と共に供給した。1分間の成長の後に、AlInSb層の各元素比率を決める所望の供給量であるAl/(Al+In)=0.70まで供給量を増加させた。
【0036】
通常、原料はIII族、V族原料を族毎にそれぞれの配管で成長室まで供給するが、今回はTTBAlのみをブロックバルブを経由することなく、成長室直前まで単独で供給を行った。このAlInSb層の膜厚は700nmであった。
このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は10%であり、ωスキャンロッキングカーブから算出される半値幅は400arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子が1×10
19cm
−3、炭素原子が3×10
18cm
−3、窒素原子が1×10
15cm
−3であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは0.3nmであった。実施例7において得られた化合物半導体基板は、式(1)を満たしていた。
【0037】
(比較例1)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度340℃においてInSbの原料としてトリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給して、InSb層を形成した。このInSb層の形成には、MOCVD装置を用いた。
このInSb層上に、基板温度500℃においてAlInSbの原料として、トリターシャリーブチルアルミニウム(TTBAl)、トリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給してAlInSb層を形成した。このAlInSb層の形成には、MOCVD装置を用いた。Al/(Al+In)=0.70となるようなAlとInの原料比で、AlInSb層を形成した。
【0038】
通常、原料はIII族、V族原料を族毎にそれぞれの配管で成長室まで供給するが、今回はTTBAlのみをブロックバルブを経由することなく、成長室直前まで単独で供給を行った。このようにして形成された試料(AlInSb層)について、外観は白濁しており、XRD測定からAlInSbのピークを分離すること、ωスキャンロッキングカーブから半値幅を算出することは困難であった。また、この試料(AlInSb層)の表面は凹凸が大きいことから、正確な膜厚およびSIMS測定を行うことが困難であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは15.0nmであった。
【0039】
(比較例2)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度340℃においてInSbの原料としてトリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を用いて、InSb層を形成した。このInSb層の形成には、MOCVD装置を用いた。
このInSb層上に、基板温度535℃においてAlInSbの原料として、トリターシャリーブチルアルミニウム(TTBAl)、トリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給してAlInSb層を形成した。このAlInSb層の形成には、MOCVD装置を用いた。このAlInSb層を成長させる際に、Al/(Al+In)=0.50となるようなAl原料をIn原料とSb原料と共に供給した。1分間の成長の後に、所望の原料比であるAl/(Al+In)=0.70まで、Alの供給量を増加させた。このときV/III比=5.0の条件で成膜を行った。
【0040】
通常、原料はIII族、V族原料を族毎にそれぞれの配管で成長室まで供給するが、今回はTTBAlのみをブロックバルブを経由することなく、成長室直前まで単独で供給を行った。
このようにして形成された試料(AlInSb層)について、外観は白濁しており、XRD測定からAlInSbのピークを分離すること、ωスキャンロッキングカーブから半値幅を算出することは困難であった。また、この試料(AlInSb層)の表面は凹凸が大きいことから、正確な膜厚およびSIMS測定を行うことが困難であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは13.5nmであった。
【0041】
(比較例3)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度340℃においてInSbの原料としてトリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を用いて、InSb層を形成した。このInSb層の形成には、MOCVD装置を用いた。
このInSb層上に、基板温度400℃においてAlInSbの原料として、トリターシャリーブチルアルミニウム(TTBAl)、トリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給してAlInSb層を形成した。このAlInSb層の形成には、MOCVD装置を用いた。このAlInSb層を成長させる際に、Al/(Al+In)=0.50となるようなAl原料をIn原料とSb原料と共に供給した。1分間の成長の後に、所望の原料比であるAl/(Al+In)=0.70まで供給量を増加させる。このときV/III比=5.0の条件で成膜を行った。
【0042】
通常、原料はIII族、V族原料を族毎にそれぞれの配管で成長室まで供給するが、今回はTTBAlのみをブロックバルブを経由することなく、成長室直前まで単独で供給を行った。
このようにして形成された試料(AlInSb層)について、外観は白濁しており、XRD測定からAlInSbのピークを分離すること、ωスキャンロッキングカーブから半値幅を算出することは困難であった。また、この試料(AlInSb層)の表面は凹凸が大きいことから、正確な膜厚およびSIMS測定を行うことが困難であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは10.5nmであった。
【0043】
(比較例4)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度340℃においてInSbの原料としてトリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を用いて、InSb層を形成した。このInSb層の形成には、MOCVD装置を用いた。
このInSb層上に、基板温度500℃においてAlInSbの原料として、トリターシャリーブチルアルミニウム(TTBAl)、トリメチルインジウム(TMIn)、トリスジメチルアミノアンチモン(TDMASb)を供給してAlInSb層を形成した。
このAlInSb層の形成には、MOCVD装置を用いた。このAlInSb層を成長させる際に、Al/(Al+In)=0.50となるようなAl原料をIn原料とSb原料と共に供給した。1分間の成長の後に、所望の原料比であるAl/(Al+In)=0.92までAl原料の供給量を増加させる。このときV/III比=5.0の条件で成膜を行った。
【0044】
通常、原料はIII族、V族原料を族毎にそれぞれの配管で成長室まで供給するが、今回はTTBAlのみをブロックバルブを経由することなく、成長室直前まで単独で供給を行った。
このようにして形成された試料(AlInSb層)について、外観は白濁しており、XRD測定からAlInSbのピークを分離すること、ωスキャンロッキングカーブから半値幅を算出することは困難であったためXRFによるAl組成測定を行ったところ、Al組成が75%であることを算出した。また、この試料(AlInSb層)の表面は凹凸が大きいことから、正確な膜厚およびSIMS測定を行うことが困難であった。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは12.5nmであった。
【0045】
(比較例5)
閃亜鉛鉱型である半絶縁GaAs基板を用意した。この半絶縁GaAs基板の電気抵抗率は8×10
7Ωcmである。この半絶縁GaAs基板上に、基板温度350℃においてV/III比=4.0の条件で第1の化合物半導体層としてInSb層を形成した。このInSb層の形成には、MBE装置を用いた。このInSb層の膜厚は700nmであった。このInSb層上に、基板温度350℃においてAlInSb層を形成した。
このAlInSb層の形成には、MBE装置を用いた。このAlInSb層を成長させる際に、Al/(Al+In)=0.08となるようなAl原料をIn原料とSb原料と共に供給した。このときV/III比=4.0の条件で成膜を行った。このAlInSb層の膜厚は700nmであった。
【0046】
このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は8%であり、ωスキャンロッキングカーブから算出される半値幅は475arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子、炭素原子、窒素原子がそれぞれ1×10
15未満であることを確認した。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは0.1nmであった。比較例5において得られた化合物半導体基板は、式(1)を満たしていなかった。
【0047】
(比較例6)
AlInSb層を成長させる際に、Al/(Al+In)=0.25となるようなAl原料量に変更した以外は比較例5と同様の方法で化合物半導体基板を製造した。このようにして形成された試料(AlInSb層)について、XRD測定を用いてAl組成を調査したところ、Al組成は25%であり、ωスキャンロッキングカーブから算出される半値幅は1400arcsecであった。この試料(AlInSb層)についてSIMS測定を行ったところ、水素原子、炭素原子、窒素原子がそれぞれ1×10
15未満であることを確認した。この試料(AlInSb層)の表面についてAFM測定を行ったところ、平均二乗粗さは1.0nmであった。比較例6において得られた化合物半導体基板は、式(1)(2)を満たしていなかった。
(結果)
上記実施例1〜7および比較例1〜6の製造方法の条件および得られた化合物半導体基板の測定結果を表1に示す。
【表1】
【0048】
上述した実施例・比較例および表1より、例えば以下のことが理解される。
(1)実施例1〜7は、表面温度420℃以上525℃以下において、In原料とSb原料に加えて、供給量を連続的および/または段階的に増やしながらAl原料を供給し、Al原料の供給量を増やした後でIn原料とSb原料とAl原料の各供給量を一定にすることによりAlInSb層を形成した。実施例1〜7によれば、Al原料を常に一定に供給した比較例1や、表面温度535℃とした比較例2、表面温度を400℃とした比較例3と比較して、良好な結晶性を示し、かつ表面平坦性に優れたAlInSb層を含む化合物半導体基板が得られた。
(2)MOCVDを用いた実施例1〜7(特に実施例3,4,6)によれば、従来方法のMBEでは良好な結晶性を保つのが困難であったAl組成比が20%以上のAlInSb層(比較例6)と比較して、良好な結晶性のAlInSb層を含む化合物半導体基板が得られた。