【実施例】
【0081】
以下、本発明による実施例について説明する。なお、本発明はこれらに限定されるものではない。
【0082】
(例1)
以下の方法で、誘電体用樹脂組成物(以下、「サンプル1」と称する)を製造し、その特性を評価した。
【0083】
(サンプル1の製造)
まず、板状の六方晶窒化ホウ素の粒子(昭和電工製UHP−1)を準備した。この六方晶窒化ホウ素の粒子の平均長軸寸法は9.9μmであり、平均厚さは0.41μmであり、平均アスペクト比は24である。
【0084】
また、熱可塑性樹脂として、アイソタクティックポリプロピレン(商品名:ノバテックPP MA3、日本ポリケム株式会社製)(以下、「iPP」と称する)を準備した。
【0085】
次に、小型二軸混練機(ThermoHAAKE社製MiniLab)を用い、この熱可塑性樹脂中に六方晶窒化ホウ素の粒子Aを混合し、200℃で溶融混練を行った。六方晶窒化ホウ素の粒子の混合量は、全体に対して10vol%とした。
【0086】
その後、射出成形機(井元製作所製18D1)を用いて、得られた混練物を押出処理し、50mmΦ×厚さ1mmの板状試験片(サンプル1と称する)を作製した。
【0087】
以下の表1の「サンプル1」の欄には、例1において使用された樹脂、六方晶窒化ホウ素の粒子の混合比、および製造プロセスをまとめて示した。
【0088】
【表1】
【0089】
(サンプル1の評価)
得られたサンプル1を用いて、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0090】
誘電特性(比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数)の測定は、JIS R 1641に準拠し、12GHzの空洞共振器をネットワークアナライザ(Agilent社製8720ES Sパラメータ・ベクトル・ネットワーク・アナライザ)に接続し、空洞共振法で測定した。測定は25℃で行なった。
【0091】
サンプル1の比誘電率および共振周波数の温度依存性は、同様の装置により、0℃と80℃における比誘電率と共振周波数を測定し、両者の差異を求めることにより評価した。
【0092】
熱膨張係数の測定には、ブルカー・エイエックスエス株式会社製熱膨張計TD5200SAを用いた。
【0093】
熱伝導率の測定には、英弘精機株式会社製熱伝導率測定装置HC−110を用い、1枚法により実施した。
【0094】
前述の表1の「サンプル1」の欄には、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種測定結果をまとめて示した。
【0095】
(例2)
前述の例1の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル2」と称する)を製造し、その特性を評価した。
【0096】
ただし、この例2では、六方晶窒化ホウ素の粒子の混合量は、全体に対して20vol%とした。その他の製造条件は、例1の場合と同様である。
【0097】
得られたサンプル2を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0098】
前述の表1の「サンプル2」の欄には、サンプル2の製造条件と、各種評価結果とをまとめて示した。
【0099】
(例3)
前述の例1の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル3」と称する)を製造し、その特性を評価した。
【0100】
ただし、この例3では、六方晶窒化ホウ素の粒子の混合量は、全体に対して30vol%とした。その他の製造条件は、例1の場合と同様である。
【0101】
得られたサンプル3を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0102】
前述の表1の「サンプル3」の欄には、サンプル3の製造条件と、各種評価結果とをまとめて示した。
【0103】
(例4)
前述の例1の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル4」と称する)を製造し、その特性を評価した。
【0104】
ただし、この例4では、六方晶窒化ホウ素の粒子の混合量は、全体に対して40vol%とした。その他の製造条件は、例1の場合と同様である。
【0105】
得られたサンプル4を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0106】
前述の表1の「サンプル4」の欄には、サンプル4の製造条件と、各種評価結果とをまとめて示した。
【0107】
(例5)
前述の例1の場合と同様の方法で、溶融混練を実施した。また、得られた混練物を、真空加熱プレス成形機(井元製作所製IMC−11FA型)を用いてプレス成形し、50mmΦ×厚さ1mmの板状試験片(サンプル5と称する)を作製した。
【0108】
得られたサンプル5を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0109】
前述の表1の「サンプル5」の欄には、サンプル5の製造条件と、各種評価結果とをまとめて示した。
【0110】
(例6)
前述の例5の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル6」と称する)を製造し、その特性を評価した。
【0111】
ただし、この例6では、六方晶窒化ホウ素の粒子の混合量は、全体に対して20vol%とした。その他の製造条件は、例5の場合と同様である。
【0112】
得られたサンプル6を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0113】
前述の表1の「サンプル6」の欄には、サンプル6の製造条件と、各種評価結果とをまとめて示した。
【0114】
(例7)
前述の例5の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル7」と称する)を製造し、その特性を評価した。
【0115】
ただし、この例7では、六方晶窒化ホウ素の粒子の混合量は、全体に対して30vol%とした。その他の製造条件は、例5の場合と同様である。
【0116】
得られたサンプル7を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0117】
前述の表1の「サンプル7」の欄には、サンプル7の製造条件と、各種評価結果とをまとめて示した。
【0118】
(例8)
前述の例5の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル8」と称する)を製造し、その特性を評価した。
【0119】
ただし、この例8では、六方晶窒化ホウ素の粒子の混合量は、全体に対して40vol%とした。その他の製造条件は、例5の場合と同様である。
【0120】
得られたサンプル8を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0121】
前述の表1の「サンプル8」の欄には、サンプル8の製造条件と、各種評価結果とをまとめて示した。
【0122】
(例9)
前述の例1と同様の六方晶窒化ホウ素の粒子およびiPPを用い、次の方法で誘電体用樹脂組成物を製造した。
【0123】
まず、10.0gのiPPを、120℃に加温した50mLのキシレンに溶解した。次に、この溶解物中に2.5g(10vol%に相当)の六方晶窒化ホウ素の粒子を投入し、1時間攪拌した。その後、溶解物からキシレンを留去して固形物を得た。
【0124】
次に、真空加熱プレス成形機(井元製作所製IMC−11FA型)を用いて、固形物を50mmΦ×厚さ1mmの寸法にプレス成形した。これにより、板状試験片(サンプル9と称する)が作製された。
【0125】
得られたサンプル9を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0126】
前述の表1の「サンプル9」の欄には、サンプル9の製造条件と、各種評価結果とをまとめて示した。
【0127】
(例10)
前述の例9の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル10」と称する)を製造し、その特性を評価した。
【0128】
ただし、この例10では、六方晶窒化ホウ素の粒子の混合量は、全体に対して20vol%とした。その他の製造条件は、例9の場合と同様である。
【0129】
得られたサンプル10を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0130】
前述の表1の「サンプル10」の欄には、サンプル10の製造条件と、各種評価結果とをまとめて示した。
【0131】
(例11)
前述の例9の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル11」と称する)を製造し、その特性を評価した。
【0132】
ただし、この例11では、六方晶窒化ホウ素の粒子の混合量は、全体に対して30vol%とした。その他の製造条件は、例9の場合と同様である。
【0133】
得られたサンプル11を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0134】
前述の表1の「サンプル11」の欄には、サンプル11の製造条件と、各種評価結果とをまとめて示した。
【0135】
(例12)
前述の例9の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル12」と称する)を製造し、その特性を評価した。
【0136】
ただし、この例12では、六方晶窒化ホウ素の粒子の混合量は、全体に対して40vol%とした。その他の製造条件は、例9の場合と同様である。
【0137】
得られたサンプル12を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0138】
前述の表1の「サンプル12」の欄には、サンプル12の製造条件と、各種評価結果とをまとめて示した。
【0139】
(例13)
前述の例9の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル13」と称する)を製造し、その特性を評価した。
【0140】
ただし、この例13では、六方晶窒化ホウ素の粒子の混合量は、全体に対して50vol%とした。その他の製造条件は、例9の場合と同様である。
【0141】
得られたサンプル13を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0142】
前述の表1の「サンプル13」の欄には、サンプル13の製造条件と、各種評価結果とをまとめて示した。
【0143】
(例14)
前述の例9の場合と同様の方法で、誘電体用樹脂組成物(以下、「サンプル14」と称する)を製造し、その特性を評価した。
【0144】
ただし、この例14では、六方晶窒化ホウ素の粒子の混合量は、全体に対して60vol%とした。その他の製造条件は、例9の場合と同様である。
【0145】
得られたサンプル14を用いて、例1の場合と同様の方法で、比誘電率ε、誘電正接tanδ、比誘電率の温度係数、共振周波数の温度係数、熱膨張係数、および熱伝導率の各種特性を評価した。
【0146】
前述の表1の「サンプル14」の欄には、サンプル14の製造条件と、各種評価結果とをまとめて示した。
【0147】
表1に示すように、今回製造した誘電体用樹脂組成物(サンプル1〜サンプル14)は、いずれも、5以下の低い比誘電率ε、および5.0×10
−4よりも低い誘電正接tanδを示した。従って、サンプル1〜サンプル14に係る誘電体用樹脂組成物は、高周波誘電体デバイス等に好適に用いることができる。
【0148】
また、サンプル1〜サンプル14は、いずれも、比誘電率の温度係数の絶対値が小さく(絶対値で176ppm/℃以下)、共振周波数の温度係数の絶対値が小さく(最大8.6ppm/℃以下)、熱膨張係数が小さい(最大73ppm/℃以下)ことがわかった。特に、同じ製造プロセスで比較した場合、六方晶窒化ホウ素の粒子の添加量の増加とともに、これらのパラメータの減少が顕著になることがわかる。
【0149】
比誘電率の温度係数の絶対値および共振周波数の温度係数の絶対値が小さい誘電体用樹脂組成物は、使用中に温度が上昇しても誘電特性が変化しにくいため、安定な誘電特性を発揮することができる。同様に、熱膨張係数が小さい誘電体用樹脂組成物は、使用中に温度が上昇しても変形が生じにくく、安定な誘電特性を発揮することができ、また、金属や半導体との熱膨張係数の差が小さいことから、接合部の剥がれ等の不具合を防ぐことができる。
【0150】
一方、表1から、同じ成形方法で比較すると、六方晶窒化ホウ素の粒子の添加量の増加とともに、誘電体用樹脂組成物の熱伝導率は、上昇する傾向にあることがわかった。また、異なる成形方法を用いることにより、同じ六方晶窒化ホウ素の粒子の添加量であっても、熱伝導率が異なることがわかった。これは、板状形状を有する六方晶窒化ホウ素粒子の配向の違いに起因すると考えられる。これらのことは、板状の無機粒子の添加量または配向によって、誘電体用樹脂組成物の熱伝導率を制御することができることを示唆するものである。すなわち、本発明による誘電体用樹脂組成物は、用途に応じて、熱伝導率を適正な値に調整し得ることが予想される。