【実施例】
【0059】
以下、実施例に基づき、本発明を説明するが、本発明はこれらに限定されるものではない。
まず、本発明における各指標の測定方法、評価方法を説明する。
【0060】
[メルトフローレート(MFR)]
温度=230℃、荷重=5kgfの条件で、JIS−K7210に準じて測定した。MFRの単位は「g/10min」である。
【0061】
[結果物(セルロース繊維分散ポリエチレン樹脂複合材)の形状]
混練後のセルロース繊維分散
ポリエチレン樹脂複合材の外観を目視にて評価した。バルク(塊)の状態を合格品(○)とし、粒径2mm以下の粉体状であるもの、あるいは混練後著しく発火したものを不合格品(×)とした。
本発明のセルロース繊維分散ポリエチレン樹脂複合材の製造方法で得られるセルロース繊維分散
ポリエチレン樹脂複合材は、上記合格品に該当するものである。
【0062】
[成形性]
射出成形の可否、及び成形後の外観を目視にて評価した。反りや表面の凹凸が確認された場合を不合格品(×)とし、不合格品以外を合格品(○)とした。
【0063】
[含水率]
製造後6時間以内に窒素雰囲気下において、23℃から120℃まで、+10℃/minの昇温速度で熱重量分析(TGA)を行った際の質量減少率(質量%)である。含水率が0%とは、質量減少が生じないことを意味する。
【0064】
[消費電力量]
水を吸収したセルロース繊維付着ポリエチレン薄膜片からセルロース繊維分散ポリエチレン樹脂複合材を連続的に作製した場合に、該複合材1kgを製造するまでに各装置(乾燥機、減容機、混練機)が消費した電力量の合計を求めた。
【0065】
[耐衝撃性]
射出成形で試験片(厚さ4mm、幅10mm、長さ80mm)を作製し、JIS−K7110に準じて、ノッチ有りの試験片を用いてアイゾット衝撃強度を測定した。耐衝撃性の単位は「kJ/m
2」である。
【0066】
[曲げ強度]
射出成形で試験片(厚さ4mm、幅10mm、長さ80mm)を作製し、支点間距離64mm、支点及び作用点の曲率半径5mm、試験速度2mm/minにて荷重の負荷を行い、JIS−K7171に準じて曲げ強度を算出した。曲げ強度の単位は「MPa」である。
【0067】
[セルロース有効質量比]
事前に絶乾状態にした試料を用い、窒素雰囲気下において+10℃/minの昇温速度で、23℃から400℃まで熱重量分析(TGA)を行った結果に基づいて、次式により算出した。
(セルロース有効質量比[%])=
(270〜390℃の重量減少[g])×100/(試料重量[g])
【0068】
[吸水率]
事前に絶乾状態にした複合材を、プレスで100mm×100mm×1mmのシート状に成形して成形体を得、この成形体を23℃の水に20日間浸漬し、浸漬前後の重量の測定値に基づいて、下記〔式A〕により吸水率を算出した(但し、浸漬後の質量を測る際は、表面に付着した水滴等を乾いた布またはフィルター紙で拭き取った。)。合否判定は、算出した吸水率が下記の評価式〔式B〕を満たす場合を合格(○)とし、満たさない場合を不合格(×)とした。
〔式A〕(吸水率[%])=
(浸漬後質量[g]−浸漬前質量[g])×100/(浸漬前質量[g])
〔式B〕(吸水率)<(セルロース有効質量比)
2×0.01
【0069】
[吸水後耐衝撃残率]
射出成形で試験片(厚さ4mm、幅10mm、長さ80mm)を作製し、この試験片を23℃の水に20日間浸漬し、JIS−K7110に準じて測定した浸漬前後の耐衝撃性の測定値に基づいて、次の計算式で算出した(但し、浸漬後の耐衝撃性を測定する際は、水から取出した後、意図的に乾燥などを行うことなく、6時間以内に測定した。)。
(吸水後耐衝撃残率[%])=
(吸水後の耐衝撃性[kJ/m
2])×100/(吸水前の耐衝撃性[kJ/m
2])
【0070】
[セルロース繊維分散性]
事前に絶乾状態にした複合材を、プレスで100mm×100mm×1mmのシート状に成形して成形体を得、この成形体を80℃の温水に20日間浸漬した後に、温水から取り出した成形体表面の任意の箇所に、40mm×40mmの正方形を書き、さらにその正方形内部に4mm間隔で40mmの線分を9本書いた。表面粗さ測定機を用いて、カットオフ値λc=8.0mmかつλs=25.0μmの条件の下、その9本の線分上の粗さ曲線(JIS−B0601にて規定、評価長さ40mm)合計9本を作製した。9本全ての粗さ曲線においてピークトップが30μm以上かつ上に凸である山の個数を数えたとき、山の個数が合計20個以上である場合を不合格品(×)とした。20個未満である場合を合格品(○)とした。
試料中にセルロース繊維が偏在している場合は局所的に吸水が起こり、その部分の表面が膨張するため、この方法でセルロース繊維の分散性を評価することができる。
【0071】
[分子量パターン]
複合材16mgにGPC測定溶媒(1,2,4−トリクロロベンゼン)5mlを加え、160℃〜170℃で30分間攪拌した。不溶物を0.5μmの金属フィルターでろ過して除去し、得られたろ過後の試料(可溶物)に対して、GPC装置(Polymer Laboratories製PL220、型式:HT−GPC−2)を用い、カラムは、ShodexHT−G(1本)、HT−806M(2本)(昭和電工製)を用い、カラム温度を145℃に設定し、溶離液として1,2,4−トリクロロベンゼン(0.1%BHT添加)を用い、流速1.0mL/minで、前記試料0.2mlを注入してGPCを測定した。これより、単分散ポリスチレン(東ソー製)、ジベンジル(東京化成工業製)を標準試料として、検量線を作成し、GPCデータ処理システム(TRC製)でデータ処理を行い分子量パターンを得た。GPC測定で得られた分子量パターンにおいて、下記(A)と(B)をともに満たすものを(◎)、(A)のみを満たすものを(○)、いずれも満たさないものを(×)とした。
(A)1.7>半値幅(Log(MH/ML))>1.3
(B)ピーク形状が平坦化した低分子側のピークの肩部が10
4〜4×10
4の範囲に存在する。
ここで分子量パターンの半値幅は、GPCにおける分子量パターンのうち、最大ピークのピークトップ(最大頻度)周辺におけるスペクトルの広がり(分子量分布の度合い)を示す。すなわち、スペクトル中の強度がピークトップ(最大頻度)の半分となっているところ(それぞれ高分子量側をMH、低分子量側をMLとする)でのGPCスペクトル線の幅を半値幅とする(
図1参照)。また、複数のピークが観測される場合は、それぞれのピークのうち、最大のものから算出する。
低分子側のピークの肩部とは、分子量パターンのピーク端部における累積度数が急激に変化する点(変化点)をいう。前記変化点は、ピークの平坦部から低分子側に接線を求め、これと平坦部から急激に分子量の累積度数が低下する部分との接線を求めて、これら2つの接線の交点直下の分子量パターンの値を読み取った点とする(
図2参照)。
【0072】
[試験例1]
セルロース繊維付着ポリエチレン薄膜片をバッチ式閉鎖型混練装置によって混練する場合の水量の影響について試験した。
【0073】
使用済みのポリエチレンラミネート加工紙からなる紙製飲料容器から、パルパーによって紙部分を剥ぎ取り除去してセルロース繊維付着ポリエチレン薄膜片を得た。かかる薄膜片は、数cm
2〜十数cm
2乃至二十数cm
2程度のさまざまな形状、大きさの小片に切断されており、紙部分の剥ぎ取り工程において水に浸漬されたことで濡れた状態(水分を多量に吸収した状態)であった。また、かかる薄膜片を構成するポリエチレンと、それに付着しているセルロース繊維の質量比(乾燥後)は、[ポリエチレン]:[セルロース繊維]=56:44であった。
このセルロース繊維付着ポリエチレン薄膜片を、80℃に設定した乾燥機で48時間乾燥して含水率を1質量%以下とし、その後意図的に水を加えて、表1に示す「実施例1」〜「実施例3」及び「比較例1」の各欄に記載の水の質量部となるように、4種類の試料材料を調製した。
次に、この4種類の試料材料を、別々にバッチ式閉鎖型混練装置(エムアンドエフ・テクノロジー株式会社製、MF式混合溶融装置、型式:MF5000 R/L)に投入し、高速攪拌して水を亜臨界状態にすると共に試料材料を混練し、4種類のセルロース繊維分散ポリエチレン樹脂複合材を作製した。
なお、各試験例において、特に断りの無い限り、バッチ式閉鎖型混練装置による混練終了時点は、バッチ式閉鎖型混練装置の回転軸の回転トルクが上昇して最大値に達した後、下降して、トルクが前記最大値の0.7倍となった後、最小値に達した瞬間(すなわち、トルク変化率が1秒当たり5%になった時点)を起点とし、この起点から7秒後としている。
各複合材の評価結果は表1に示すとおりである。
【0074】
【表1】
【0075】
表1の「比較例1」より、セルロース繊維付着ポリエチレン薄膜片の溶融混練を、全く水の無い環境下で行った場合には、本発明のセルロース繊維分散ポリエチレン樹脂複合材が得られないことが分かる。
また、「実施例1」より、水量はセルロース繊維付着ポリエチレン薄膜片との質量比で、8:100と少ないにも拘らず、優れた特性を有するセルロース繊維分散ポリエチレン樹脂複合材が得られることが分かる。また、「実施例3」より、水量はセルロース繊維付着ポリエチレン薄膜片との質量比で、120:100とかなり多いにも拘らず、優れた特性有するセルロース繊維分散ポリエチレン樹脂複合材が得られており、さらに、含水率もゼロにできることが分かる。したがって、亜臨界状態の水の存在下で溶融混練を行う本発明の製造方法では、水量は多くても少なくても良いことがわかる。エネルギー効率を考慮すると、水量は一定程度少なくした方が好ましいこともわかる。
【0076】
[試験例2]
セルロース繊維付着ポリエチレン薄膜片をバッチ式閉鎖型混練装置によって混練して得られる複合材のメルトフローレート(MFR)と他の特性との関係を調べた。
【0077】
上記実施例1と同様にして、セルロース繊維付着ポリエチレン薄膜片を得た。かかる薄膜片は、実施例1と同じく、数cm
2〜十数cm
2乃至二十cm
2程度の小片に切断されており、濡れた状態であった。また、これらの薄膜片を構成するポリエチレンと、それに付着しているセルロース繊維の質量比(乾燥後)は、「実施例4」が[ポリエチレン]:[セルロース繊維]=52:48であり、「実施例5」が[ポリエチレン]:[セルロース繊維]=56:44であり、「実施例6」及び「実施例7」が[ポリエチレン]:[セルロース繊維]=58:42であった。
次に、この4種類のセルロース繊維付着ポリエチレン薄膜片を、濡れた状態のままで、別々に実施例1と同じバッチ式閉鎖型混練装置に投入し、高速攪拌して水を亜臨界状態にすると共に試料材料を混練し、各試料材料のメルトフローレートがそれぞれ表2に記載された値を示すところで混練を停止し、4種類のセルロース繊維分散ポリエチレン樹脂複合材を作製した。
各複合材の評価結果は表2に示すとおりである。
【0078】
【表2】
【0079】
表2の結果から、MFRを変化させても、得られる複合材の特性が良好であることがわかる。ただし、実施例7は時間Aが長いためにMFRが10を超えていることから、耐衝撃強度に優れない。
【0080】
[試験例3]
セルロース繊維付着ポリエチレン薄膜片をバッチ式閉鎖型混練装置によって混練する時間の影響について試験した。
【0081】
上記実施例1と同様にして、セルロース繊維付着ポリエチレン薄膜片を得た。かかる薄膜片は、試験例1と同じく、数cm
2〜十数cm
2乃至二十数cm
2程度の小片に切断されており、濡れた状態であった。また、この薄膜片を構成するポリエチレンと、それに付着しているセルロース繊維の質量比(乾燥後)は、[ポリエチレン]:[セルロース繊維]=56:44であった。
次に、このセルロース繊維付着ポリエチレン薄膜片を、濡れた状態のままで、実施例1と同じバッチ式閉鎖型混練装置に投入し、高速攪拌して水を亜臨界状態にすると共に溶融混練し、混練時間を変更した6種類のセルロース繊維分散ポリエチレン樹脂複合材の試料を作製した。
具体的には、バッチ式閉鎖型混練装置の回転軸の回転トルクが上昇して最大値に達した後、下降して、トルクが前記最大値の0.7倍となった後、最小値に達した瞬間(トルク変化率が1秒当たり5%になった時点)を起点とし、装置を停止するまでの経過時間(秒)を「時間A」とし、表3に示す時間Aとなるようにセルロース繊維分散ポリエチレン樹脂複合材を作製した。
各試料の評価結果は表3に示すとおりである。
さらに、
図1には実施例10における分子量パターンの半値幅を示す。
図2には実施例10における分子量パターンにおける低分子側のピークの肩部の分子量を示す。
図1及び
図2において、横軸は分子量(Molecular Weight)、縦軸は単位logM当たりの重量分率(dW/dlogM)を表している。
図1の結果から、実施例10の分子例パターンは半値幅が1.54であり、本発明の規定を満足する。
図2の結果から、実施例10は低分子側のピークの肩部の分子量が1.8×10
4であり、本発明の規定を満足する。これにより、ポリエチレンとセルロース繊維との相溶性が向上し、ポリエチレンとセルロース繊維との界面の微細な空隙を減らして界面の脆弱性を改善し、耐衝撃性の低下や吸水率の増加を抑制していると考えられる。
【0082】
【表3】
【0083】
表3に示される通り、時間Aを調節することにより得られる複合材のMFRが変化させることができ、異なる特性の複合材が得られることがわかる。ただし、実施例12は時間Aが長いためにMFRが10を超えていることから、耐衝撃強度にはやや劣る結果となった。
【0084】
[試験例4]
セルロース繊維付着ポリエチレン薄膜のポリエチレンと、かかる薄膜に付着しているセルロース繊維の質量比を変更した場合の影響について試験した。
【0085】
ポリエチレンとセルロース繊維の質量比を表4に示すように変更した5種類のセルロース繊維付着ポリエチレン薄膜片を得た。これらの薄膜片は、いずれも実施例1と同じく、数cm
2〜十数cm
2乃至二十数cm
2程度の小片に切断されており、濡れた状態であった。
次に、このセルロース繊維付着ポリエチレン薄膜片を、濡れた状態のままで、実施例1と同じバッチ式閉鎖型混練装置に投入し、高速攪拌して水を亜臨界状態にすると共に溶融混練し、5種類のセルロース繊維分散ポリエチレン樹脂複合材を作製した。
各複合材の評価結果は表4に示すとおりである。なお、各試験例において、バッチ式閉鎖型混練装置による混練終了時点は、バッチ式閉鎖型混練装置の回転軸の回転トルクが上昇して最大値に達した後、下降して、トルクが前記最大値の0.7倍となった後、最小値に達した瞬間(すなわち、トルク変化率が1秒当たり5%になった時点)を起点とし、この起点から7秒後としている。
【0086】
【表4】
【0087】
表4の「比較例2」より、セルロース繊維とポリエチレンの合計質量に対しセルロース繊維が本発明の規定よりも多くなると、成形性が悪化して目的の形状の複合材を得ることができなかった。なお、比較例2は紙部分を全く除去しないポリエチレンラミネート加工紙を裁断し、吸水させたものを試料材料として用いた。
【0088】
[試験例5]
セルロース繊維付着ポリエチレン薄膜片を混練する方法(装置)の影響について試験した。
【0089】
上記実施例1と同様にして、セルロース繊維付着ポリエチレン薄膜片を得た。かかる薄膜片は、実施例1と同じく、数cm
2〜十数cm
2乃至二十数cm
2程度の小片に切断されており、濡れた状態であった。また、かかる薄膜片を構成するポリエチレンと、それに付着しているセルロース繊維の質量比(乾燥後)は、[ポリエチレン]:[セルロース繊維]=63:37であった。なお、実施例17において、バッチ式閉鎖型混練装置による混練終了時点は、バッチ式閉鎖型混練装置の回転軸の回転トルクが上昇して最大値に達した後、下降して、トルクが前記最大値の0.7倍となった後、最小値に達した瞬間(すなわち、トルク変化率が1秒当たり5%になった時点)を起点とし、この起点から7秒後としている。
このセルロース繊維付着ポリエチレン薄膜片を、表5に示すように、上記バッチ式閉鎖型混練装置を用いて亜臨界水の存在下で溶融混練した場合(実施例17)と、ニーダーを用いて混練した場合(比較例3)と、上記薄膜片を直接モウルド成形したもの(比較例4)とを用いて、表5に記載した評価を行った。
各複合材の評価結果は表5に示すとおりである。
【0090】
【表5】
【0091】
表5の実施例17より、実施例1と同じく亜臨界水の存在下で溶融混練して得たセルロース繊維分散ポリエチレン樹脂複合材は、含水率、耐衝撃性、吸水率、及びセルロース繊維の分散性に優れていることが分かる。また、実施例17はポリエチレンの分子量パターンが本発明における設定した範囲を満足している。これにより、ポリエチレンとセルロース繊維との相溶性が向上し、ポリエチレンとセルロース繊維との界面の微細な空隙を減らして界面の脆弱性を改善し、耐衝撃性の低下や吸水率の増加を抑制していると考えられる。
【0092】
他方、ニーダーを用いて混練した場合(比較例3)と、上記薄膜片を直接モウルド成形したもの(比較例4)では、水分を十分に除去することができなかった。なお、ニーダーを用いて含水率を0%になるまで処理するのは事実上困難であり、仮に、含水率を0%になるまで乾燥させることができたとしても、上記表5に示される消費電力量の数倍〜数十倍の電力量を消費することになる。また、比較例3及び4で得られた複合材は吸水率が高く、セルロース繊維の分散性にも劣っていた。
【0093】
さらに、容器リサイクル法により回収され再生された市販の再生樹脂(株式会社グリーンループ製PEリッチ品:比較例5)を用いて表5に記載の評価を行った。本発明の製造方法で作製したセルロース含有熱可塑性樹脂は、市販の再生樹脂と比較して吸水後に耐衝撃性が向上していることが分かる。
【0094】
[試験例6]
セルロース繊維付着ポリエチレン薄膜片を混練する前に減容固化を行う影響について試験した。
【0095】
上記実施例1と同様にして、セルロース繊維付着ポリエチレン薄膜片を得た。かかる薄膜片は、実施例1と同じく、数cm
2〜十数cm
2乃至二十数cm
2程度の小片に切断されており、濡れた状態であった。また、かかる薄膜片を構成するポリエチレンと、それに付着しているセルロース繊維の質量比(乾燥後)は、[ポリエチレン]:[セルロース繊維]=63:37であった。
次に、この薄膜片を、表6に示すとおり、実施例1と同じバッチ式閉鎖型混練装置を用いて、亜臨界水の存在下で溶融混練してセルロース繊維分
散ポリエチレン樹脂複合材を作製した(実施例18)。
また、セルロース繊維付着ポリエチレン薄膜片をバッチ式閉鎖型混練装置に投入する前に、減容固化機(小熊鉄工所社製、二軸式廃プラスチック減容固化機、型式:DP−3N)を用いて減容して固化し、その後バッチ式閉鎖型混練装置に投入した(実施例19)。
さらに、セルロース繊維付着ポリエチレン薄膜片を、二軸押出機(株式会社日本製鋼所製、TEX30使用)に投入して混練した(比較例6)。
また、その薄膜片を二軸押出機に投入する前に、80℃に設定した乾燥機で含水率が1質量%未満になるまで乾燥させ、その後二軸押出機に投入した(比較例7)。
各複合材の評価結果は表6に示すとおりである。
【0096】
【表6】
【0097】
表6の実施例18より、バッチ式閉鎖型混練装置を用いて亜臨界水の存在下で溶融混練して得たセルロース繊維分散ポリエチレン樹脂複合材は、含水率が0であるにもかかわらず、その作製に必要な消費電力量が低くエネルギー効率に優れていた。またセルロース分散性に優れ、吸水性も低いことが分かる。また、溶融混練前に減容処理を施した実施例19では、消費電力をさらに大幅に低減できることもわかる。
さらに、実施例18及び19は、ポリエチレンの分子量パターンが上記で設定した範囲を満足していた。
他方、二軸押出機により混練した場合には、得られる複合材の含水率が高く、セルロースの分散性に劣り、吸水性も高かった。二軸押出機により混練法を採用する場合、混練前にセルロース繊維付着ポリエチレン薄膜片を乾燥処理に付すことにより、得られる複合材の含水率を0質量%とすることができる。しかしこの場合には、消費電力量が数倍に膨れ上がり、エネルギー効率に劣る結果となった。
【0098】
[試験例7]
セルロース繊維付着ポリエチレン薄膜片を混練する際に、再生高密度ポリエチレン(再生HDPE)を添加することによる影響について試験した。
【0099】
上記実施例1と同様にして、セルロース繊維付着ポリエチレン薄膜片を得た。かかる薄膜片は、実施例1と同じく、数cm
2〜十数cm
2乃至二十数cm
2程度の小片に切断されており、濡れた状態であった。また、かかる薄膜片を構成するポリエチレンと、それに付着しているセルロース繊維の質量比(乾燥後)は、63:37であった。
次に、この薄膜片に対し、表7に示す再生HDPEの所定量を添加し、実施例1と同じバッチ式閉鎖型混練装置を用いて亜臨界水の存在下で溶融混練して、実施例20〜22の3種類の複合材を得た。
各複合材の評価結果は表7に示すとおりである。
【0100】
【表7】
【0101】
表7の実施例20〜22より、セルロース繊維付着ポリエチレン薄膜片を混練する際に、再生HDPEを加えても、物性的に問題が生ずることはないことが分かる。
【0102】
従来、使用済み飲料容器などのポリエチレンラミネート加工紙をパルパー等の処理に付して紙部分を剥ぎ取り除去した後、除去しきれなかった紙成分が不均一にポリエチレン樹脂に付着した状態で、形状、大きさもまちまちで、さらに水を多量に吸収した状態のセルロース繊維付着ポリエチレン薄膜片は、樹脂組成物として有効に再利用する技術がなく、いわばゴミ同然に埋め立てられて廃棄処分されるか、又は単に燃料として使用するしかなかった。本発明は、上記実施例でも実証しているように、かかるセルロース繊維付着ポリエチレン薄膜片を、そのままの状態で(水分調節等を要さずに)処理し、簡単に、樹脂として甦らせる技術に関する発明である。
上述した通り、特許文献1及び2記載の技術は亜臨界処理を行なうものではない。また特許文献1は、使用する材料は同様であるが溶融混練を行なわないモウルド成形品であるため、本発明とはセルロ−ス繊維の分散状態が全く異なる。特許文献2及び3の技術は、樹脂材料として既に再利用の実績があるポリプロピレン樹脂やPET樹脂を用いているに過ぎない。特許文献3の技術は、材料投入前に水分調整を行なって細かく裁断したセルロース繊維源(PPC古紙)と樹脂材料源(PET樹脂)を別々に用意し、これらを混ぜ合わせて混練する技術でありリサイクルに係る技術ではない。
【0103】
特許文献1〜4には、亜臨界処理により、薄膜状のポリエチレンフィルムの表面に固着されたセルロースを、該ポリエチレンの表面から分離して、これをポリエチレン樹脂中に繊維状に分散させる技術を記載も示唆もしていない。本発明の一態様では、亜臨界状態の水の存在下で溶融混練を行うことで、ポリエチレン樹脂を低分子化して分子量分布を制御することでMFRを所定範囲に調整すると同時に、ポリエチレン樹脂の物性を所定範囲に維持することできる。特許文献1〜4のいずれにも、ポリエチレンの分子量分布に関する記載はなく、これによりセルロース繊維分散
ポリエチレン樹脂複合材の特性を制御することについて記載も示唆もしていない。
上述してきたように、本発明は、大きさ、形状、セルロース繊維の付着状態が不均一な、セルロース繊維とポリエチレンの複合体としてのセルロース繊維付着ポリエチレン薄膜片から均一な物性のセルロース繊維分散
ポリエチレン樹脂複合材を製造することを可能にした技術に係る発明である。