(58)【調査した分野】(Int.Cl.,DB名)
請求項1〜5のいずれかに記載の再利用基材の製造方法により得られた再利用基材の前記表面側にカーボンナノチューブ合成用触媒を担持させ、前記再利用基材上に触媒層を形成する触媒層形成工程を含む、カーボンナノチューブ生成用触媒基材の製造方法。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の再利用基材の製造方法は、カーボンナノチューブ(CNT)の合成に使用された使用済み基材を原材料として使用し、表面にCNT合成用触媒を担持させることでCNTの合成に再び使用することができる再利用基材を製造する際に用いられる。また、本発明のカーボンナノチューブ生成用触媒基材の製造方法は、本発明の再利用基材の製造方法を用いて製造した再利用基材を使用し、化学気相成長法(CVD法)を用いたCNTの合成に良好に使用し得るカーボンナノチューブ生成用触媒基材を製造する際に用いられる。
【0020】
そして、本発明の再利用基材の製造方法およびカーボンナノチューブ生成用触媒基材の製造方法は、例えば
図1に示すような、基材を再利用しつつCNTを繰り返し合成するCNTの製造方法において好適に用いることができる。
【0021】
(カーボンナノチューブの製造方法)
図1に示すカーボンナノチューブの製造方法は、基材上に形成したCNTを基材から剥離するCNT剥離工程と、CNT剥離工程において基材からCNTを剥離して得られる使用済み基材を使用し、本発明の再利用基材の製造方法を用いて再利用基材を製造する工程(再利用基材製造工程)と、得られた再利用基材を使用し、本発明のカーボンナノチューブ生成用触媒基材の製造方法を用いてカーボンナノチューブ生成用触媒基材を製造する工程(触媒基材製造工程)と、得られたカーボンナノチューブ生成用触媒基材を使用し、CVD法によりカーボンナノチューブ生成用触媒基材上でCNTを合成するCNT成長工程とを含む。そして、カーボンナノチューブの製造方法では、これらの工程を繰り返し実施し、基材を再利用しつつ低コストでCNTを繰り返し製造する。
【0022】
<CNT剥離工程>
CNT剥離工程では、表面にCNTが形成された基材からCNTを剥離し、表面からCNTが剥離された使用済み基材を得る。
ここで、CNT剥離工程においてCNTを基材から剥離する方法としては、物理的、化学的あるいは機械的な剥離方法を例示できる。具体的には、例えば、電場、磁場、遠心力、表面張力等を用いて剥離する方法、機械的に直接基材から剥ぎ取る方法、並びに、圧力または熱を用いて基材から剥離する方法等が適用可能である。また、真空ポンプを用いてCNTを吸引し、基材から剥ぎ取ることも可能である。なお、簡単でCNTを損傷させ難い剥離方法としては、CNTをピンセットで直接つまんで基材から剥がす方法や、鋭利部を備えたプラスチック製のヘラまたはカッターブレード等の薄い刃物を使用してCNTを基材から剥ぎ取る方法が挙げられる。中でも、剥離方法としては、鋭利部を備えたプラスチック製のヘラまたはカッターブレード等の薄い刃物を使用してCNTを基材から剥ぎ取る方法が好適である。
【0023】
<再利用基材製造工程>
再利用基材製造工程において再利用基材を製造する際に使用する本発明の再利用基材の製造方法の一例は、使用済み基材を洗浄する初期化工程を含み、任意に、初期化工程を経た使用済み基材を清掃する清掃工程を更に含む。
【0024】
[使用済み基材]
CNT剥離工程において基材からCNTを剥離して得られる使用済み基材は、一例としてCNTの製造を一度のみ実施した基材からCNTを剥離して得られる使用済み基材の構成を
図3(a)に示すように、例えば、基材10と、基材10の両面に設けられた浸炭防止層11と、基材10の主表面側(
図3では上側)に位置する浸炭防止層11の上に設けられた下地層12と、下地層12の基材10側とは反対側の表面に設けられた触媒層13とを備えている。そして、使用済み基材の、少なくとも触媒層13側の表面(即ち、CNTが形成されていた側の表面)には、CNTの合成時に付着した炭素成分やCNTの剥離時に残存した炭素成分などの不純物14が残存している。具体的には、使用済み基材の表面には、CNTの剥離時に取りきれずに残ったCNT、グラファイト状またはアモルファス状のナノ粒子、薄片状物質等の炭素化合物が残存していると推察される。因みに、使用済み基材の、不純物14以外の構成、即ち、基材10、浸炭防止層11、下地層12および触媒層13は、CNT剥離工程において基材から剥離されたCNTを合成した際に使用されたものである。従って、例えば触媒層13は、CNTの剥離時に剥離されずに残存した微粒子状のCNT合成用触媒で構成されている。
なお、使用済み基材は、浸炭防止層を備えていなくてもよい。また、使用済み基材は、下地層を備えていなくてもよい。
【0025】
[[基材]]
ここで、CNTの合成に使用された後に使用済み基材の一部を構成する基材10としては、その表面にCNT合成用の触媒を担持することが可能であれば任意の基材が用いられる。具体的には、基材10としては、CNTの製造に実績のあるものを、適宜、用いることができる。なお、基材10は、500℃以上の高温でも形状を維持できることが好ましい。
【0026】
ここで、基材10の材質としては、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ゲルマニウムおよびアンチモンなどの金属、並びに、これらの金属を含む合金および酸化物、或いは、シリコン、石英、ガラス、マイカ、グラファイトおよびダイヤモンドなどの非金属、並びに、セラミックなどを例示できる。これらの中でも、金属は、シリコンおよびセラミックと比較して、低コスト且つ加工が容易であるから好ましく、特に、Fe−Cr(鉄−クロム)合金、Fe−Ni(鉄−ニッケル)合金、Fe−Cr−Ni(鉄−クロム−ニッケル)合金などは好適である。
【0027】
基材10の形状としては、平板状、薄膜状、ブロック状または粒子状などが挙げられ、CNTを大量に製造する観点からは、体積の割に表面積を大きくとれる平板状および粒子状が特に有利である。
【0028】
なお、平板状の基材10を使用する場合、基材10の厚さに特に制限はなく、例えば数μm程度の薄膜から数cm程度までのものを用いることができる。好ましくは、基材10の厚さは0.05mm以上3mm以下である。基材10の厚さが3mm以下であれば、CNTを合成する際に基材10を十分に加熱することができ、CNTの成長不良の発生を抑制することができる。また、基材10のコストを低減できる。一方、基材10の厚さが0.05mm以上であれば、CNT合成時の浸炭による基材10の変形を抑制することができ、また、基材自体のたわみが起こりにくいため、基材10の搬送や再利用に有利である。なお、本明細書にいう「浸炭」とは、基材10に炭素成分が浸透することをいう。
また、平板状の基材10の形状および大きさに特に制限はないが、形状としては、長方形もしくは正方形のものを用いることができる。また、基材10の一辺の長さに特に制限はないが、CNTの量産性の観点からは、一辺の長さは長いほど望ましい。
【0029】
[[浸炭防止層]]
浸炭防止層11は、CNTを合成する際に基材10が浸炭されて変形してしまうことを防止するための保護層である。浸炭防止層11は、基材10の表面および裏面のいずれか一方のみに形成してもよいが、基材10の両面に形成することが望ましい。
【0030】
浸炭防止層11は、金属またはセラミック材料によって構成されることが好ましく、特に浸炭防止効果の高いセラミック材料で構成されることが好ましい。金属としては、銅、アルミニウム等を例示できる。セラミック材料としては、例えば、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化チタン、シリカアルミナ、酸化クロム、酸化ホウ素、酸化カルシウム、酸化亜鉛等の酸化物、窒化アルミニウム、及び、窒化ケイ素等の窒化物を例示できる。これらの中でも、浸炭防止効果が高いことから、浸炭防止層11を構成する材料としては、酸化アルミニウムおよび酸化ケイ素が好ましい。
【0031】
なお、浸炭防止層11上には下地層12または触媒層13を形成するが、浸炭防止層の材質と下地層12または触媒層13の材質とが共通する場合には、浸炭防止層11を設けることなく、下地層12や触媒層13を浸炭防止層11として機能させてもよい。
【0032】
浸炭防止層11の厚さは、0.01μm以上1.0μm以下が望ましい。浸炭防止層の厚さが0.01μm以上であると、浸炭防止効果を充分に得ることができる。一方、浸炭防止層の厚さが1.0μm以下であると、基材10の熱伝導性が変化するのを抑制し、CNT合成時に基材10を十分に加熱してCNTを良好に成長させることができる。浸炭防止層11の層形成(コーティング)の方法としては、例えば、蒸着、スパッタリング等の物理的方法、CVD、塗布等の方法を用いることができる。
【0033】
[[下地層]]
下地層12は、「触媒担持層」とも称されるものであり、CNT合成用触媒の下地となる層である。そして、下地層12の材料としては、CNT合成用触媒の下地となるものであればさまざまな材料を用いることができ、例えば、アルミナ、チタニア、窒化チタン、酸化シリコンなどのセラミック材料が好適に用いられる。中でも、下地層12の材料としては、セラミック材料を用いることが好ましい。セラミック材料の方が、基材10を再利用してCNTを合成したときにCNTが良好に成長するからである。
【0034】
なお、下地層12の厚みは、CNTの成長が安定して歩留まりが向上する観点からは10nm以上であることが好ましく、生産効率の観点からは30nm以下であることが好ましい。
【0035】
[[触媒層]]
触媒層13は、CNT合成用触媒の微粒子を含む層である。ここで、触媒層13を構成するCNT合成用触媒としては、例えば、これまでのCNTの製造に実績のあるものを、適宜、用いることができる。具体的には、鉄、ニッケル、コバルトおよびモリブデン、並びに、これらの塩化物および合金等をCNT合成用触媒として例示することができる。
【0036】
なお、触媒層13の形成に使用するCNT合成用触媒の量は、例えば、これまでのCNTの製造に実績のある量を使用することができる。具体的には、例えばCNT合成用触媒として鉄を用いる場合には、触媒層13の厚さは、0.1nm以上100nm以下が好ましく、0.5nm以上5nm以下がさらに好ましく、0.8nm以上2nm以下が特に好ましい。
【0037】
因みに、触媒層13は、基材10の表面側および裏面側の両面に形成してもよい。基材10の両面に触媒層13を形成すれば、CNTを基材10の両面において成長させることができるので、生産効率を向上させることができる。もちろん、生産コストや生産工程上の都合等に応じて、触媒層13を基材10の片面のみに設けることは可能である。
【0038】
ここで、上述した下地層12および触媒層13の組み合わせとしては、例えば、アルミナ−鉄薄膜、アルミナ−コバルト薄膜、および、アルミナ−鉄−モリブデン薄膜などを例示することができる。
【0039】
なお、例えば、アルミニウム−鉄薄膜、アルミニウム−鉄−モリブデン薄膜などの形態でもCNTの合成は可能であるが、基材の再利用を行なう場合、下地層12の形成に使用する材料は、セラミック材料の方が好ましい。セラミック材料は、金属材料に比べてCVD法を用いたCNTの合成中に劣化し難いため、セラミック材料を使用すれば、CVD法を用いたCNTの合成を2度以上行なった場合でも、CNTが良好に成長するからある。
【0040】
ここで、上述した基材10、浸炭防止層11および触媒層12は、それぞれ、その表面の算術平均粗さRaが3μm以下であることが望ましい。表面の算術平均粗さRaが3μm以下であれば、使用済み基材の表面への炭素成分の付着が防止または抑制され、さらに浸炭されにくくなる。従って、基材を再利用してCNTを合成した際に、高品質のCNTを安定的に高効率で生産することが可能となる。
【0041】
なお、算術平均粗さRaは、JIS B0601(2001)に記載の通り、粗さ曲線からその平均線の方向に基準長さLだけ抜き取って、この抜き取り部分の平均線方向にX軸、直交する縦倍率の方向にY軸をとったときの表面プロファイルをy=f(x)で表したときに、次式(1)によって求められる。
【0043】
[初期化工程]
初期化工程においては、CNTが剥離された使用済み基材に対し、微細気泡を含有する液体(以下、「微細気泡含有液」と称することがある。)を用いた洗浄を実施する。具体的には、初期化工程では、使用済み基材の表面のうち、少なくともCNTが剥離された側の表面に対して微細気泡含有液を接触させ、微細気泡含有液を用いた洗浄を実施する。そして、
図3(a)に初期化工程を実施する前の使用済み基材の状態を示し、
図3(b)に初期化工程を実施した後の使用済み基材の状態を示すように、初期化工程においては、使用済み基材の表面(図示例では触媒層13の表面)に残存していた炭素成分などの不純物14が、微細気泡含有液を用いた洗浄により除去される。
【0044】
なお、初期化工程後の基材上には、
図3(b)に示すように下地層12および触媒層13が残存していてもよいし、使用済み基材の下地層12および触媒層13は、微細気泡含有液を用いた洗浄による炭素成分の除去に伴って除去されていてもよい。なお、初期化工程において下地層12および触媒層13が除去されても、後述する下地層形成工程および触媒層形成工程において下地層および触媒層を再び形成すれば、その後のCNTの生成に悪影響を及ぼすことはない。一方で、初期化工程での炭素成分の除去が不十分であると、その上に下地層および触媒層を形成したとしても、その後のCNTの生成においてCNTの生産量や品質が低下することがある。
【0045】
ここで、「微細気泡を含有する液体を用いた洗浄」とは、被洗浄物である使用済み基材の表面に対して微細気泡含有液を接触させて使用済み基材の表面を洗浄する方法である。なお、微細気泡含有液を接触させることによる使用済み基材の洗浄は、明らかではないが、(1)微細気泡による炭素成分等の吸着除去、(2)微細気泡の圧壊時に生じる衝撃波による炭素成分等の除去、(3)炭素成分等に吸着した微細気泡と、使用済み基材の表面(或いは、使用済み基材の表面に吸着した微細気泡)との間での電位反発による炭素成分等の再付着の防止などにより良好に進行すると推察されている。
【0046】
[[微細気泡]]
微細気泡含有液に含まれている微細気泡は、気泡径が1μm〜500μmのマイクロバブルおよび/または気泡径が1μm未満のナノバブルを含む。
【0047】
ここで、微細気泡含有液に含まれている微細気泡の平均気泡径は、50μm以下であることが好ましく、500nm以下であることがより好ましい。微細気泡の平均気泡径が50μm以下であれば、使用済み基材から炭素成分等を短時間で十分に除去することができるからである。
【0048】
また、微細気泡含有液に含まれている微細気泡は、任意の気体の微細気泡とすることができるが、微細気泡含有液を構成する液体や使用済み基材に対して不活性な不活性気体の微細気泡を含むことが好ましい。具体的には、微細気泡は、特に限定されることなく、空気、窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスよりなる微細気泡であることが好ましい。不活性気体の微細気泡を使用すれば、副反応による使用済み基材の劣化や汚染の発生を防止することができ、基材の劣化を抑制しつつ、基材の表面に残存している炭素成分などの不純物を良好に除去することができるからである。中でも、洗浄効率に優れることから、不活性ガスとしては空気が好ましい。
【0049】
[[液体]]
微細気泡含有液の液体としては、任意の液体を使用することができるが、液体は、水および/または有機溶剤を含むことが好ましい。即ち、微細気泡含有液の液体は、水、水溶液、有機溶剤またはそれらの混合物であることが好ましい。
なお、水溶液としては、塩酸や炭酸水溶液などの酸性水溶液、水酸化ナトリウム水溶液、アンモニア水溶液および水酸化カリウム水溶液などのアルカリ性水溶液、および、その他任意の中性水溶液が挙げられる。中でも、洗浄効率に優れることから、微細気泡含有液の液体としては、アルカリ性水溶液を用いるのが好ましい。
また、有機溶剤としては、アルコール、グリコール、ケトン、エーテル、エステル類、炭化水素類などが挙げられる。
【0050】
なお、初期化工程では、液体として酸性水溶液やアルカリ性水溶液を用いた微細気泡含有液を使用した場合であっても、基材の劣化を十分に抑制することができる。これは、微細気泡含有液を使用して使用済み基材を洗浄した場合には、微細気泡の作用によって炭素成分等を短時間で除去することができるため、および、炭素成分等を除去した後の基材の表面に微細気泡が吸着し、基材の表面を保護するためであると推察されている。
但し、基材の腐食を十分に抑制する観点からは、微細気泡含有液のpHは、例えば3以上12以下であることが好ましい。
【0051】
[[微細気泡含有液の調製方法]]
上述した微細気泡含有液は、特に限定されることなく、微細気泡を生成可能な既知の手法を利用した市販の微細気泡生成装置を用いて調製することができる。具体的には、微細気泡含有液は、超音波や衝撃波等による急激な圧力変化を利用して微細気泡を生成する圧壊(衝撃波)法、気体と液体との混合物に剪断力を与えて微細気泡を生成する剪断法、液体中へ気体を強制的に溶解させて得た過飽和状態の液体を急激に減圧させて微細気泡を析出させる加圧溶解(過飽和析出)法、液体中で微細孔を有する焼結体などに加圧気体を通過させて気泡を発生させる微細孔法、電気分解により電極にて微細気泡を発生させる電解法、微細気泡が封入された氷や半固体を液体中で溶解させて微細気泡を放出させる固体包埋法、化学反応を用いて微細気泡を発生させる化学反応法、物理的・化学的手段を用いて粗大な気泡を微細化する縮小法、或いは、それらの組み合わせを用いて調製することができる。
【0052】
[[微細気泡含有液を用いた洗浄]]
上述した微細気泡含有液を用いた使用済み基材の洗浄は、特に限定されることなく、微細気泡含有液中への使用済み基材の浸漬、使用済み基材への微細気泡含有液の噴き付け、使用済み基材への微細気泡含有液の塗布などの既知の手法を用いて行なうことができる。中でも、微細気泡含有液を用いた使用済み基材の洗浄は、使用済み基材への微細気泡含有液の塗布により行なうことが好ましく、使用済み基材へ微細気泡含有液を塗布した後、微細気泡含有液が塗布された基材の表面を樹脂製スポンジなどの吸液性を有する軟質の多孔質部材を用いて擦ることにより行なうことが更に好ましい。微細気泡含有液を塗布した後に樹脂製スポンジなどを用いて基材の表面を擦れば、微細気泡に吸着されて使用済み基材の表面から剥離した炭素成分等や使用済み基材との接着力が弱まった炭素成分等を、基材を損傷させることなく迅速かつ簡便に除去することができるからである。
【0053】
[清掃工程]
清掃工程においては、初期化工程後の基材上を清掃して、
図2に示すような、使用済み基材から炭素成分等の不純物が除去された再利用基材20を得る。清掃工程では、初期化工程において用いた洗浄方法とは異なる方法、例えば、基材表面を水洗し、布により拭き取る方法や、基材表面を水洗し、乾燥する方法等により、基材上を清掃する。微細気泡含有液を用いた洗浄を実施した後の基材表面には、炭素成分などの不純物が除去しきれずに残存している場合があるが、初期化工程後に基材を清掃することによって、残存する炭素成分などの不純物を十分に取り除くことができる。また、微細気泡含有液を用いた洗浄を実施した後の基材表面には微細気泡含有液が残存しているが、清掃工程を実施すれば、微細気泡含有液を確実に除去することができるので、後に詳細にする下地層形成工程や触媒層形成工程において基材の表面に下地層や触媒層を良好に形成することができる。なお、基材表面に残存する炭素成分等と基材との接着力は、初期化工程における微細気泡含有液を用いた洗浄により低下している。従って、清掃工程では、水洗、拭き取り等によって容易に炭素成分等を取り除くことができる。
【0054】
ここで、清掃工程では、少なくとも基材表面の水洗を実施することが好ましい。清掃工程において基材の表面を水洗すれば、前述した初期化工程において酸性またはアルカリ性の微細気泡含有液を使用した場合であっても、基材の表面に残存した微細気泡含有液により基材が劣化するのを抑制することができるからである。
【0055】
なお、清掃工程後の基材上には、
図2に示すように下地層12および触媒層13が残存していてもよいし、下地層12および触媒層13は、基材表面の清掃に伴って除去されていてもよい。なお、清掃工程において下地層12および触媒層13が除去されても、後述する下地層形成工程および触媒層形成工程において下地層および触媒層を形成すれば、その後のCNTの生成に悪影響を及ぼすことはない。
【0056】
[再利用基材]
そして、上述した再利用基材製造工程において使用済み基材に対して初期化工程と任意の清掃工程とを実施して得られる再利用基材は、例えば
図2に示すような、使用済み基材から炭素成分等の不純物が除去された構成を有している。具体的には、
図2に示す再利用基材20は、基材10と、基材10の両面に設けられた浸炭防止層11と、基材10の主表面側(
図2では上側)に位置する浸炭防止層11の上に設けられた下地層12と、下地層12の基材10側とは反対側の表面に設けられた触媒層13とを備えている。なお、下地層12や触媒層13が前述した初期化工程および清掃工程において除去された場合には、再利用基材は下地層12や触媒層13を有さない構成となる。
【0057】
ここで、この再利用基材20の表面からは、前述した初期化工程および清掃工程において炭素成分等が除去されている。従って、再利用基材20は、後に詳細に説明する触媒基材製造工程において下地層や触媒層を形成してカーボンナノチューブ生成用触媒基材とした後、CNTの製造に再度使用することができる。即ち、再利用基材20は、後に詳細に説明する触媒基材製造工程においてカーボンナノチューブ生成用触媒基材を製造する際の原料基材として用いることができる。
【0058】
なお、再利用基材20をCNTの製造に再度使用する場合、再利用基材20が炭素成分等の不純物を含んでいると、CNTの成長が不安定になる、或いは、生成されるCNTの品質が低下する可能性がある。しかし、再利用基材20を製造する際には、前述した初期化工程および清掃工程において炭素成分等を十分に除去しているので、再利用基材20を使用すれば、CNTの成長を安定化することができると共に、高品質なCNTを繰り返し生成することができる。
【0059】
ここで、基材に付着した炭素成分などの除去方法としては、高温で加熱して蒸発または灰化させる方法や、酸洗浄する方法等が考えられる。しかし、高温で基材を加熱すると、基材の損傷、基材の反り等の問題が生じ、再利用時にCNTの成長に悪影響を及ぼす場合がある。また、基材を酸洗浄すると、特に基材が金属材料よりなる場合に、基材が腐食され、再利用時にCNTの成長に悪影響を及ぼす可能性がある。
【0060】
これに対して、前述した初期化工程では、微細気泡含有液を利用した洗浄を用いて炭素成分等を除去しているので、洗浄時の基材の劣化(例えば、損傷、反りおよび腐食の発生など)を抑制することができる。従って、再利用基材20を使用すれば、CNTの成長を安定化させ、高品質なCNTを繰り返し生成することができる。
【0061】
[[再利用基材の性状]]
ここで、上述したとおり、再利用基材20からは炭素成分等が十分に除去されていることが好ましく、再利用基材20は炭素成分等が表面に残存していないことが特に好ましい。ここで、再利用基材20から炭素成分が除去されていることは、例えば基材表面のラマンスペクトル測定により評価することが可能である。ラマンスペクトルにおいて、炭素成分は、1593cm
−1付近のグラファイトの振動モード、または、1350cm
−1付近の結晶性の低いアモルファス炭素化合物の振動モードとして検出することが可能である。従って、再利用基材20は、これらのピークが観測されないことが好ましい。
【0062】
<触媒基材製造工程>
再利用基材製造工程で得られた再利用基材を使用し、触媒基材製造工程においてカーボンナノチューブ生成用触媒基材を製造する際に使用する本発明のカーボンナノチューブ生成用触媒基材の製造方法の一例は、再利用基材の表面にCNT合成用触媒を担持させ、再利用基材上に触媒層を形成する触媒層形成工程を少なくとも含む。なお、触媒基材製造工程は、任意に、CNT合成用触媒の下地となる下地層を再利用基材の表面に形成する下地層形成工程を触媒層形成工程の前に含んでいてもよい。
【0063】
ここで、再利用基材をCNTの合成に使用する場合、触媒層13が最表面にある再利用基材20をそのまま用いて2度目のCNTの合成を行なうことも考えられる。しかし、再利用基材20をそのまま用いた場合、CNTの成長が不安定になったり、生成されるCNTの品質が低下したりする場合がある。考えられる原因としては、触媒層13中の触媒微粒子の密度や直径が、1度目のCNT合成時とは異なる状態なっていることや、初期化工程や清掃工程において触媒層13中の触媒微粒子が除去されたこと等が挙げられる。
そのため、触媒基材製造工程では、再利用基材の表面にCNT合成用触媒を再び担持させ、再利用基材上に触媒層を再び形成する。なお、触媒層を再び形成する前に再利用基材上に下地層を形成すれば、使用済みの触媒層と、次のCNTの合成に使用する触媒層とを下地層で分離し、触媒層を良好に形成することができる。従って、触媒基材製造工程では、下地層形成工程を実施することが好ましい。
【0064】
なお、当業者であれば、再利用基材の表面に下地層や触媒層を新たに設けるのであれば、使用済み基材に対して初期化工程や清掃工程を実施することなく、使用済み基材をそのまま用いてもよいと考えるであろう。しかし、本発明者らは、初期化工程を行わずに使用済み基材を再利用した場合、CNTが生成しない場合があることを見出した。このことから、使用済み基材の再利用にあたり、初期化工程は、CNTの成長の安定性を向上させる役割、若しくは、CNTの成長を促進する役割があることを見出し、本発明に至ったのである。
【0065】
[下地層形成工程]
再利用基材20の触媒層13上への下地層の形成には、ウェットプロセスまたはドライプロセス(スパッタリング蒸着法など)のいずれを用いてもよい。成膜装置の簡便さ、スループットの速さ、原材料費の安さなどの観点からは、ウェットプロセスを用いるのが好ましい。
以下、一例として、ウェットプロセスにより下地層を形成する場合について説明する。
【0066】
下地層を形成するウェットプロセスは、下地層となる元素を含んだ金属有機化合物および/または金属塩を有機溶剤に溶解してなる塗工液Aを基材上へ塗布する工程と、その後加熱する工程から成る。塗工液Aには金属有機化合物および金属塩の過度な縮合重合反応を抑制するための安定剤を添加してもよい。
【0067】
ここで、例えば、アルミナ膜を下地層として用いる場合、アルミナ膜を形成するための金属有機化合物および/または金属塩としては、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリ−n−プロポキシド、アルミニウムトリ−i−プロポキシド、アルミニウムトリ−n−ブトキシド、アルミニウムトリ−sec−ブトキシド、アルミニウムトリ−tert−ブトキシド等のアルミニウムアルコキシドを用いることができる。アルミナ膜を形成するための金属有機化合物としては他に、トリス(アセチルアセトナト)アルミニウム(III)などの錯体が挙げられる。金属塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、臭化アルミニウム、よう化アルミニウム、乳酸アルミニウム、塩基性塩化アルミニウム、塩基性硝酸アルミニウム等が挙げられる。これらのなかでも、アルミニウムアルコキシドを用いることが好ましい。これらは、それぞれ単独で、または2種以上の混合物として用いることができる。
【0068】
安定剤としては、β−ジケトン類およびアルカノールアミン類からなる群より選ばれる少なくとも一つを用いることが好ましい。これらの化合物は単独で用いてもよいし、2種類以上を混合して用いてもよい。β−ジケトン類としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、ベンゾイルアセトン、ジベンゾイルメタン、ベンゾイルトリフルオルアセトン、フロイルアセトンおよびトリフルオルアセチルアセトンなどを用いることができるが、特にアセチルアセトン、アセト酢酸エチルを用いることが好ましい。アルカノールアミン類としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N,N−ジメチルアミノエタノール、ジイソプロパノールアミン、トリイソプロパノールアミンなどを用いることができるが、第2級または第3級アルカノールアミンを用いることが好ましい。
【0069】
有機溶剤としては、アルコール、グリコール、ケトン、エーテル、エステル類、炭化水素類等種々の有機溶剤が使用できるが、金属有機化合物および金属塩の溶解性が良いことから、アルコールまたはグリコールを用いることが好ましい。これらの有機溶剤は単独で用いてもよいし、2種類以上を混合して用いてもよい。アルコールとしては、メタノール、エタノール、イソプロピルアルコールなどが、取り扱い性、保存安定性といった点で好ましい。
【0070】
塗工液A中の金属有機化合物および/または金属塩の量は特に限定されないが、有機溶剤100mL当たり、好ましくは0.1g以上、より好ましくは0.5g以上であり、好ましくは30g以下、より好ましくは5g以下である。
また、塗工液A中の安定剤の量は特に限定されないが、有機溶剤100mL当たり、好ましくは0.01g以上、より好ましくは0.1g以上であり、好ましくは20g以下、より好ましくは3g以下である。
【0071】
塗工液Aの塗布方法としては、スプレー、ハケ塗り等により塗布する方法、スピンコーティング、ディップコーティング等のいずれの方法を用いてもよいが、生産性および膜厚制御の観点からは、ディップコーティングが好ましい。
【0072】
塗工液Aを塗布した後の加熱は、下地層の種類に応じ、50℃以上400℃以下の温度範囲で、5分以上3時間以下の時間に亘って行なうことができる。加熱することで塗布された金属有機化合物および/または金属塩の加水分解および縮重合反応が開始され、金属水酸化物および/または金属酸化物を含む硬化皮膜(下地層)が再利用基材の表面に形成される。
【0073】
[触媒層形成工程]
触媒層の形成には、下地層と同様に、ウェットプロセスまたはドライプロセス(スパッタリング蒸着法など)のいずれを用いてもよい。成膜装置の簡便さ、スループットの速さ、原材料費の安さなどの観点からは、ウェットプロセスを用いるのが好ましい。
以下、一例として、ウェットプロセスにより触媒層を形成する場合について説明する。
【0074】
触媒層を形成するウェットプロセスは、CNT合成用触媒となる元素を含んだ金属有機化合物および/または金属塩を有機溶剤に溶解してなる塗工液Bを基材上へ塗布する工程と、その後加熱する工程から成る。塗工液Bには金属有機化合物および金属塩の過度な縮合重合反応を抑制するための安定剤を添加してもよい。
【0075】
ここで、例えば、鉄をCNT合成用触媒として用いる場合、触媒層となる鉄薄膜を形成するための金属有機化合物および/または金属塩としては、鉄ペンタカルボニル、フェロセン、アセチルアセトン鉄(II)、アセチルアセトン鉄(III)、トリフルオロアセチルアセトン鉄(II)、トリフルオロアセチルアセトン鉄(III)等を用いることができる。金属塩としては、例えば、硫酸鉄、硝酸鉄、リン酸鉄、塩化鉄、臭化鉄等の無機酸鉄、酢酸鉄、シュウ酸鉄、クエン酸鉄、乳酸鉄等の有機酸鉄等が挙げられる。これらのなかでも、有機酸鉄を用いることが好ましい。これらは、それぞれ単独で、または2種以上の混合物として用いることができる。
【0076】
なお、塗工液Bの安定剤および有機溶剤としては、上述の塗工液Aと同様のものを用いることができる。また、それらの含有量も、塗工液Aと同様の量とすることができる。
【0077】
更に、塗工液Bの塗布方法としては、塗工液Aと同様の方法を用いることができる。また、塗工液Bを塗布した後の加熱も、塗工液Aと同様にして行なうことができる。
【0078】
この触媒層形成工程により、触媒層が再利用基材の表面に形成されてなるカーボンナノチューブ生成用触媒基材が形成される。
【0079】
[カーボンナノチューブ生成用触媒基材]
そして、上述した触媒基材製造工程において再利用基材20に対して下地層形成工程と触媒層形成工程とを実施して得られるカーボンナノチューブ生成用触媒基材は、例えば
図4に示すような、再利用基材20の触媒層13側に新たな下地層22および触媒層23が順次積層された構成を有している。具体的には、
図4に示すカーボンナノチューブ生成用触媒基材1は、基材10、浸炭防止層11、下地層12および触媒層13を有する再利用基材20と、再利用基材20の触媒層13側の表面に新たに設けられた下地層22と、下地層22の再利用基材20側とは反対側の表面に新たに設けられた触媒層23とを備えている。
【0080】
このカーボンナノチューブ生成用触媒基材1は、再利用基材20の上に下地層22および触媒層23を新たに形成しているので、以下に詳細に説明するCNT成長工程においてCNTを合成する際に好適に用いることができる。
【0081】
<CNT成長工程>
CNT成長工程では、触媒基材製造工程において得られたカーボンナノチューブ生成用触媒基材を使用し、CVD法等の既知の手法を用いてカーボンナノチューブ生成用触媒基材上でCNTを合成する。なお、CNT成長工程では、再利用基材の上に下地層や触媒層を新たに形成してなるカーボンナノチューブ生成用触媒基材を使用しているので、高品質のCNTを安定的に合成することができる。
【0082】
具体的には、CNT成長工程では、特に限定されることなく、カーボンナノチューブ生成用触媒基材上のCNT合成用触媒を還元するフォーメーション工程と、CNTを成長させる成長工程と、CNTが成長した基材を冷却する冷却工程とを順次実施して、カーボンナノチューブ生成用触媒基材上にCNTを成長させることができる。
【0083】
[CNT生産装置]
なお、CNT成長工程は、特に限定されることなく、カーボンナノチューブ生成用触媒基材を受容する合成炉(反応チャンバ)および加熱手段を備える既知のCNT生産装置を用いて実施することができる。具体的には、例えば、熱CVD炉、熱加熱炉、電気炉、乾燥炉、恒温槽、雰囲気炉、ガス置換炉、マッフル炉、オーブン、真空加熱炉、プラズマ反応炉、マイクロプラズマ反応炉、RFプラズマ反応炉、電磁波加熱反応炉、マイクロ波照射反応炉、赤外線照射加熱炉、紫外線加熱反応炉、MBE反応炉、MOCVD反応炉、レーザ加熱装置等の、公知のCNT生産装置をいずれも使用できる。このような生産装置の例として、
図7に示すCVD装置が挙げられる。
【0084】
図7に示すCVD装置は、カーボンナノチューブ生成用触媒基材110を受容する、石英ガラスからなる管状の反応チャンバ120と、反応チャンバ120を囲んで設けられた加熱コイル130と、原料ガス140並びに雰囲気ガス150を供給すべく反応チャンバ120の一端に接続された供給管と、反応チャンバ120の他端に接続された排気管160と、触媒賦活剤170を供給すべく供給管の中間部に接続された触媒賦活剤供給管180とを備えている。
また、このCVD装置は、極めて微量の触媒賦活剤を高精度に制御して供給するために、原料ガス140および雰囲気ガス150の供給管に、原料ガス140および雰囲気ガス150から触媒賦活剤を除去するための純化装置190を備えている。さらに図示していないが、CVD装置には、流量制御弁や圧力制御弁などを含む制御装置が適所に付設されている。
【0085】
そして、CNT成長工程では、カーボンナノチューブ生成用触媒基材上でCNTが合成され、多数のCNTが特定の方向(通常は、基材に垂直な方向)に配向してなるCNT配向集合体がカーボンナノチューブ生成用触媒基材上に形成される。
【0086】
[CNT配向集合体の性状]
なお、形成されるCNT配向集合体は、例えば以下の性状を有していることが好ましい。
【0087】
即ち、CNT配向集合体の好ましいBET比表面積は、CNTが主として未開口のものにあっては、600m
2/g以上であり、より好ましくは、800m
2/g以上である。BET比表面積が高いほど、金属や炭素などの不純物の量をCNTの質量の数十パーセント(40%程度)より低く抑えることができる。
【0088】
また、CNT配向集合体の重量密度は、0.002g/cm
3以上0.2g/cm
3以下であることが好ましい。重量密度が0.2g/cm
3以下であれば、CNT配向集合体を構成するCNT同士の結びつきが弱くなるので、CNT配向集合体を溶媒などに攪拌した際に、均質に分散させることが容易になる。つまり、重量密度を0.2g/cm
3以下とすることで、均質な分散液を得ることが容易となる。また、重量密度が0.002g/cm
3以上であれば、CNT配向集合体の一体性を向上させ、バラけることを抑制できるため取扱いが容易になる。
【0089】
更に、特定方向に配向したCNT配向集合体は、高い配向度を有していることが好ましい。ここで、高い配向度を有するとは、以下の1.から3.の少なくともいずれか1つ以上を満たすことを指す。
1.CNTの長手方向に平行な第1方向と、第1方向に直交する第2方向とからX線を入射してX線回折強度を測定(θ−2θ法)した場合に、第2方向からの反射強度が第1方向からの反射強度より大きくなるθ角と反射方位とが存在し、且つ、第1方向からの反射強度が第2方向からの反射強度より大きくなるθ角と反射方位とが存在する。
2.CNTの長手方向に直交する方向からX線を入射して得られた2次元回折パターン像でX線回折強度を測定(ラウエ法)した場合に、異方性の存在を示す回折ピークパターンが出現する。
3.ヘルマンの配向係数が、θ−2θ法又はラウエ法で得られたX線回折強度を用いると0より大きく1以下、より好ましくは0.25以上、1未満である。
【0090】
なお、CNT配向集合体は、前述のX線回折において、単層CNT間のパッキングに起因する(CP)回折ピーク及び(002)ピークの回折強度と、単層CNTを構成する炭素六員環構造に起因する(100)、(110)ピークの平行(第1方向)と垂直(第2方向)との各入射方向の回折ピーク強度との度合いが互いに異なることも好ましい。
【0091】
更に、CNT配向集合体が高い配向性および高いBET比表面積を示すためには、CNT配向集合体の高さ(長さ)は10μm以上、10cm以下の範囲にあることが好ましい。高さが10μm以上であると、配向性が向上する。また高さが10cm以下であると、生成を短時間で行なえるため炭素系不純物の付着を抑制でき、BET比表面積を向上できる。
【0092】
また、CNTのG/D比は好ましくは3以上、より好ましくは4以上である。G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm
−1付近)とDバンド(1350cm
−1付近)と呼ばれる振動モードが観測される。GバンドはCNTの円筒面であるグラファイトの六方格子構造由来の振動モードであり、Dバンドは非晶箇所に由来する振動モードである。よって、GバンドとDバンドのピーク強度比(G/D比)が高いものほど、結晶性の高いCNTと評価できる。
【0093】
そして、このカーボンナノチューブの製造方法では、
図1に示すように、CNT成長工程においてカーボンナノチューブ生成用触媒基材上に形成したCNTを、次のCNT剥離工程で剥離し、基材を再利用する。
【0094】
ここで、
図4に示すカーボンナノチューブ生成用触媒基材1の上に形成したCNTをCNT剥離工程で剥離した場合、得られる使用済み基材は、
図5に示すような構成となる。この使用済み基材は、CNTを合成する際のフォーメーション工程の実施などにより触媒層23を構成するCNT合成用触媒の微粒子化が進んでいる点、および、触媒層23の表面(即ち、CNTが形成されていた側の表面)にCNTの合成時に付着した炭素成分やCNTの剥離時に残存した炭素成分などの不純物24が残存している点を除き、
図4に示すカーボンナノチューブ生成用触媒基材1と同様の構成を有している。
【0095】
そして、このカーボンナノチューブの製造方法では、前述したようにして使用済み基材の再利用を繰り返し、低コストで高品質のCNTを繰り返し製造する。なお、使用済み基材の再利用を繰り返した場合、カーボンナノチューブ生成用触媒基材は、積層された下地層および触媒層の一部を省略して
図6に示すように、両面に浸炭防止層11が設けられた基材10の上に下地層および触媒層が繰り返し積層された構成となる。
【実施例】
【0096】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例および比較例において、G/D比、BET比表面積および算術平均粗さは、それぞれ以下の方法を使用して評価した。
【0097】
<G/D比>
CNT配向集合体を試料とし、顕微レーザラマンシステム(サーモフィッシャーサイエンティフィック(株)製、NicoletAlmega XR)を用い、基材中心部付近のCNTについて測定した。
<BET比表面積>
BET比表面積測定装置((株)マウンテック製、HM model−1210)を用いて測定した。
<算術平均粗さ>
レーザ顕微鏡(キーエンス製、VK−9700)を用いて、対物倍率50倍で測定した。
【0098】
(実施例1)
<使用済み基材の準備>
アルミニウム化合物としてのアルミニウムトリ−sec−ブトキシド1.9gを、有機溶剤としての2−プロパノール100mLに溶解させた。さらに、安定剤としてのトリイソプロパノールアミン0.9gを加えて溶解させて、塗工液Aを調製した。
また、鉄化合物としての酢酸鉄174mgを有機溶剤としての2−プロパノール100mLに溶解させた。さらに、安定剤としてのトリイソプロパノールアミン190mgを加えて溶解させて、塗工液Bを調製した。
基材としてのFe−Cr合金SUS430基板(JFEスチール株式会社製、40mm×100mm、厚さ0.3mm、Cr18%、算術平均粗さRa≒0.59μm)の表面に、室温25℃、相対湿度50%の環境下でディップコーティングにより、上述の塗工液Aを塗布した。具体的には、基材を塗工液Aに浸漬後、20秒間保持して、10mm/secの引き上げ速度で基材を引き上げた。その後、5分間風乾し、300℃の空気環境下で30分間加熱後、室温まで冷却することにより、基材上に膜厚40nmのアルミナ薄膜(下地層)を形成した。
次いで、室温25℃、相対湿度50%の環境下で、基材に設けられたアルミナ薄膜の上に、ディップコーティングにより上述の塗工液Bを塗布した。具体的には、アルミナ薄膜を備える基材を塗工液Bに浸漬後、20秒間保持して、3mm/秒の引き上げ速度でアルミナ薄膜を備える基材を引き上げた。その後、5分間風乾(乾燥温度45℃)することにより、膜厚3nmの鉄薄膜(触媒層)を形成した。
次に、
図7に示すCVD装置(反応チャンバのサイズ:直径30mm、加熱長360mm)を用いて基材上にCNT配向集合体を形成した。具体的には、作製した基材を、炉内温度:750℃、炉内圧力:1.02×10
5Paに保持されたCVD装置の反応チャンバ内に設置し、この反応チャンバ内に、He:100sccm、H
2:900sccmを6分間導入した。これにより、CNT合成用触媒(鉄)は還元されて微粒子化が促進され、単層CNTの成長に適した状態(下地層上にナノメートルサイズの触媒微粒子が多数形成された状態)となった(フォーメーション工程)。なお、このときの触媒微粒子の密度は、1×10
12〜1×10
14個/cm
2に調整した。その後、炉内温度:750℃、炉内圧力:1.02×10
5Paに保持された状態の反応チャンバ内に、He:850sccm、C
2H
4:59sccm、H
2O:H
2O濃度が300ppmとなる量を5分間供給した。これにより、単層CNTが各触媒微粒子から成長した(CNT成長工程)。
そして、CNT成長工程の終了後、反応チャンバ内にHe:1000sccmのみを供給し、残余の原料ガスや触媒賦活剤を排除した。これにより、カーボンナノチューブ配向集合体が表面に形成された基材が得られた。
その後、得られた基材の表面から、基材上に成長したCNT配向集合体を剥離した。具体的には、鋭利部を備えたプラスチック製のヘラを使用し、CNT配向集合体を剥離した。剥離時には、ヘラの鋭利部をCNT配向集合体と基材との境界に当て、基材からCNT配向集合体をそぎ取るように、基材面に沿って鋭利部を動かした。これにより、CNT配向集合体を基材から剥ぎ取り、使用済み基材を得た。
【0099】
<再利用基材の調製>
次に、微細気泡を含む蒸留水を用いて使用済み基材を洗浄し、再利用基材を得た。
具体的には、まず、ナノバブル・マイクロバブル発生装置(アスプ社製、製品名「ASK3」)を使用し、蒸留水中にマイクロバブル(気体成分:空気、マイクロバブルの平均気泡径:50μm)を発生させた。その後、マイクロバブルを含む蒸留水を2時間程度静置し、マイクロバブルを微細化させてナノバブル(気体成分:空気、ナノバブルの平均気泡径:100nm)を含む蒸留水(微細気泡含有液)を調製した。次に、ナノバブルを含む蒸留水を使用済み基材の表面に塗布し、ナノバブルを含む蒸留水を塗布した表面をスポンジで擦って使用済み基材を洗浄し、再利用基材を得た(初期化工程)。その後、洗浄後の基材の表面を水洗し、乾燥させた(清掃工程)。そして、使用済み基材上の汚れが除去されたことを目視で確認した。
なお、上記の平均気泡径は、パーティクルセンサ(北斗電子工業社製、商品名「PS100」)を用いて測定した。
【0100】
<カーボンナノチューブ生成用触媒基材の調製>
再利用基材の表面に、上記と同様の条件で、ディップコーティングにより厚さ40nmのアルミナ薄膜(下地層)と、厚さ3.0nmの鉄薄膜(触媒層)を製膜してカーボンナノチューブ生成用触媒基材を製造した。
【0101】
<CNTの繰り返し合成>
得られたカーボンナノチューブ生成用触媒基材を使用して、CVD装置によるCNT配向集合体の成長、CNT配向集合体の剥離、再利用基材の調製、および、カーボンナノチューブ生成用触媒基材の調製を、10回繰り返した。
【0102】
その結果、10回生成したCNT配向集合体はいずれも、G/D比が3〜6、BET比表面積が1,000〜1,200m
2/gの範囲内であった。このように、CNTを剥離した後にナノバブルを含む蒸留水を用いた初期化工程を実施して再利用基材を製造することによって、基材を繰り返し使用しても品質に優れるCNTの合成が可能であることが確認できた。
【0103】
(実施例2)
再利用基材の調製時に、マイクロバブルを含む蒸留水を静置せず、ナノバブルを含む蒸留水に替えてマイクロバブル(気体成分:空気、マイクロバブルの平均気泡径:50μm)を含む蒸留水を用いて使用済み基材を洗浄した以外は実施例1と同様にして、使用済み基材の準備、再利用基材の調製、カーボンナノチューブ生成用触媒基材の調製、CNTの繰り返し合成を行なった。
なお、マイクロバブルを含む蒸留水を用いた場合であっても使用済み基材上の汚れが除去されることは目視で確認した。
【0104】
CNTの繰り返し合成の結果、10回生成したCNT配向集合体はいずれも、G/D比が2.5〜6、BET比表面積が950〜1,200m
2/gの範囲内であった。このように、CNTを剥離した後にマイクロバブルを含む蒸留水を用いた初期化工程を実施して再利用基材を製造することによって、基材を繰り返し使用しても品質に優れるCNTの合成が可能であることが確認できた。
【0105】
(実施例3)
再利用基材の調製時に、空気に替えて窒素を気体成分として使用し、窒素のナノバブル(気体成分:窒素、ナノバブルの平均気泡径:100nm)を含む蒸留水を用いて使用済み基材を洗浄した以外は実施例1と同様にして、使用済み基材の準備、再利用基材の調製、カーボンナノチューブ生成用触媒基材の調製、CNTの繰り返し合成を行なった。
なお、窒素のナノバブルを含む蒸留水を用いた場合であっても使用済み基材上の汚れが除去されることは目視で確認した。
【0106】
CNTの繰り返し合成の結果、10回生成したCNT配向集合体はいずれも、G/D比が2〜5、BET比表面積が950〜1,150m
2/gの範囲内であった。このように、CNTを剥離した後に窒素のナノバブルを含む蒸留水を用いた初期化工程を実施して再利用基材を製造することによって、基材を繰り返し使用しても品質に優れるCNTの合成が可能であることが確認できた。
【0107】
(実施例4)
再利用基材の調製時に、蒸留水に替えて塩酸(pH3)を使用し、ナノバブル(気体成分:空気、ナノバブルの平均気泡径:100nm)を含む塩酸を用いて使用済み基材を洗浄した以外は実施例1と同様にして、使用済み基材の準備、再利用基材の調製、カーボンナノチューブ生成用触媒基材の調製、CNTの繰り返し合成を行なった。
なお、ナノバブルを含む塩酸を用いた場合であっても使用済み基材上の汚れが除去されることは目視で確認した。また、pHの測定は、ポータブルpH計(東亜DKK社製、商品名「HM−30P」)を用いて行なった。
【0108】
CNTの繰り返し合成の結果、10回生成したCNT配向集合体はいずれも、G/D比が2.5〜5.5、BET比表面積が950〜1,200m
2/gの範囲内であった。このように、CNTを剥離した後にナノバブルを含む塩酸を用いた初期化工程を実施して再利用基材を製造することによって、基材を繰り返し使用しても品質に優れるCNTの合成が可能であることが確認できた。
【0109】
(実施例5)
再利用基材の調製時に、蒸留水に替えて水酸化ナトリウム水溶液(pH12)を使用し、ナノバブル(気体成分:空気、ナノバブルの平均気泡径:100nm)を含む水酸化ナトリウム水溶液を用いて使用済み基材を洗浄した以外は実施例1と同様にして、使用済み基材の準備、再利用基材の調製、カーボンナノチューブ生成用触媒基材の調製、CNTの繰り返し合成を行なった。
なお、ナノバブルを含む水酸化ナトリウム水溶液を用いた場合であっても使用済み基材上の汚れが除去されることは目視で確認した。また、pHの測定は、ポータブルpH計(東亜DKK社製、商品名「HM−30P」)を用いて行なった。
【0110】
CNTの繰り返し合成の結果、10回生成したCNT配向集合体はいずれも、G/D比が3.5〜6、BET比表面積が1,050〜1,250m
2/gの範囲内であった。このように、CNTを剥離した後にナノバブルを含む水酸化ナトリウム水溶液を用いた初期化工程を実施して再利用基材を製造することによって、基材を繰り返し使用しても品質に優れるCNTの合成が可能であることが確認できた。
【0111】
(比較例1)
再利用基材の調製時に、ナノバブル・マイクロバブル発生装置を使用せず、ナノバブルを含む蒸留水に替えて蒸留水をそのまま用いて使用済み基材を洗浄した以外は実施例1と同様にして、使用済み基材の準備、再利用基材の調製、カーボンナノチューブ生成用触媒基材の調製、CNTの繰り返し合成を行なった。
【0112】
CNTの繰り返し合成の結果、1回目のCNT合成では、G/D比が4、BET比表面積が1,020m
2/gのCNTを得ることができたが、2回目のCNT合成で得られたCNTはG/D比が2.4、BET比表面積が940m
2/gであり、3回目のCNT合成で得られたCNTはG/D比が1.2、BET比表面積が830m
2/gであった。さらにCNTの合成を繰り返したところ、G/D比およびBET比表面積の大幅な低下が見られた。