【実施例】
【0069】
以下、実施例を用いて本発明をさらに説明する。
(例1〜15)
以下に示す例1〜15は、基板1と導電膜4との間に中間膜5を形成しない態様とした参考例であり、基板1の一方の面側に(中間膜5を形成せずに)導電膜4を形成したときの、導電膜4のシート抵抗値、および、波長400〜800nmの光に対する光線透過率を評価するものである。
即ち、本発明に係るEUVマスクブランク、EUVマスクの中間膜5は、前述のように、酸素(O)を含有することで、絶縁性を示すとともに、波長400〜800nmの光に対する消衰係数(k)が1.0以下となるため、例1〜例15のような導電膜4のみ形成した態様における、シート抵抗値および、波長400〜800nmの光線透過率の評価により、中間膜5と導電膜4とを併せた2つの膜のシート抵抗値および、波長400〜800nmの光線透過率の評価として参照できる。
例1
本例では、基板1の一方の面側に(中間膜5を形成せずに)導電膜4を形成する。
成膜用の基板1として、SiO
2−TiO
2系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を使用する。このガラス基板の20℃における熱膨張係数は0.05×10
-7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×10
7m
2/s
2である。このガラス基板を研磨により、表面粗さ(rms)が0.15nm以下の平滑な表面と100nm以下の平坦度に形成する。
【0070】
基板1の一方の面側に、導電膜4として、CrN膜を、マグネトロンスパッタリング法を用いて成膜する。導電膜4(CrN膜)の成膜条件は以下のとおりである。
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(Ar:80vol%、N
2:20vol%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:6.1nm/min
膜厚:13nm
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)を用いて測定した。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 13 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値を、四探針測定器を用いて測定した。シート抵抗値は112Ω/□であった。
また、導電膜4の波長400〜800nmの光線透過率を、分光光度計を用いて測定した結果、いずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は21.5%であった。
【0071】
例2
導電膜4(CrN膜)の成膜条件を下記とした以外は例1と同様である。
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(Ar:73vol%、N
2:27vol%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:5.9nm/min
膜厚:20nm
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定した。導電膜4(CrN膜)の組成比(at%)は、Cr:N=69:31である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×31+1.68(=6.33) ≦ 20 ≦ 0.31×31+11.13(=20.74)
導電膜4のシート抵抗値は73Ω/□であった。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は11.5%であった。
【0072】
例3
導電膜4(CrN膜)の膜厚を8nmとした以外は例2と同様である。
導電膜4(CrN膜)の組成を、例1と同様の手順で測定した。導電膜4(CrN膜)の組成比(at%)は、Cr:N=69:31である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×31+1.68(=6.33) ≦ 8 ≦ 0.31×31+11.13(=20.74)
導電膜4のシート抵抗値は203Ω/□であった。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は29.4%であった。
【0073】
例4
導電膜4(CrN膜)の成膜条件を下記とした以外は例1と同様である。
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(Ar:95vol%、N
2:5vol%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:6.6nm/min
膜厚:12nm
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=95:5である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×5+1.68(=2.43) ≦ 12 ≦ 0.31×5+11.13(=12.68)
導電膜4のシート抵抗値は50Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は11.9%である。
【0074】
例5
導電膜4(CrN膜)の膜厚を4nmとする以外は例4と同様である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)を用いて測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=95:5である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×5+1.68(=2.43) ≦ 4 ≦ 0.31×5+11.13(=12.68)
導電膜4のシート抵抗値は150Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は25.8%である。
【0075】
例6
導電膜4(CrN膜)の成膜条件を下記とする以外は例1と同様である。
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(Ar:64vol%、N
2:36vol%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:5.6nm/min
膜厚:23nm
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=60:40である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×40+1.68(=7.68) ≦ 23 ≦ 0.31×40+11.13(=23.53)
導電膜4のシート抵抗値は87Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は10.5%である。
【0076】
例7
導電膜4(CrN膜)の膜厚を9nmとする以外は例6と同様である。
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=60:40である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×40+1.68(=7.68) ≦ 9 ≦ 0.31×40+11.13(=23.53)
導電膜4のシート抵抗値は222Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は30.7%である。
【0077】
例8
導電膜4(CrN膜)の膜厚を14nmとする以外は例4と同様である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=95:5である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×5+1.68(=2.43) ≦ 14 > 0.31×5+11.13(=12.68)
導電膜4のシート抵抗値は43Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%未満であり、特に波長532nmの光線透過率は8.5%である。
【0078】
例9
導電膜4(CrN膜)の膜厚を2nmとする以外は例4と同様である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=95:5である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×5+1.68(=2.43) > 2 ≦ 0.31×5+11.13(=12.68)
導電膜4のシート抵抗値は300Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は29.2%である。
【0079】
例10
導電膜4(CrN膜)の膜厚を20nmとした以外は例1と同様である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定した。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23であった。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 20 > 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は68Ω/□であった。
波長400〜800nmのいずれの波長域においても光線透過率は10%未満であり、特に波長532nmの光線透過率は7.8%であった。
【0080】
例11
導電膜4(CrN膜)の膜厚を4nmとした以外は例1と同様である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) > 4 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は330Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は32%である。
【0081】
例12
導電膜4(CrN膜)の膜厚を25nmとする以外は例6と同様である。
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=60:40である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×40+1.68(=7.68) ≦ 25 > 0.31×40+11.13(=23.53)
導電膜4のシート抵抗値は80Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%未満であり、特に波長532nmの光線透過率は7.6%である。
【0082】
例13
導電膜4(CrN膜)の膜厚を6nmとする以外は例6と同様である。
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=60:40である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×40+1.68(=7.68) > 6 ≦ 0.31×40+11.13(=23.53)
導電膜4のシート抵抗値は333Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は35%である。
【0083】
例14
導電膜4(CrN膜)の成膜条件を下記とする以外は例1と同様である。
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(Ar:55vol%、N
2:45vol%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:5.0nm/min
膜厚:15nm
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例1と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=57:43である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×43+1.68(=8.13) ≦ 15 ≦ 0.31×43+11.13(=24.46)
導電膜4のシート抵抗値は1312Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は22.7%である。
【0084】
例15
導電膜4の成膜条件を下記とした以外は例1と同様である。
ターゲット:Crターゲット
スパッタリングガス:Arガス(ガス圧:0.3Pa)
投入電力:150W
成膜速度:7.2nm/min
膜厚:5nm
導電膜4(CrN膜)の組成分析
導電膜4の組成を、例1と同様の手順で測定する。導電膜4は、Crが100at%のCr膜である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×0+1.68(=1.68) ≦ 5 ≦ 0.31×0+11.13(=11.13)
導電膜4のシート抵抗値は80Ω/□である。
波長400〜800nmのいずれの波長域においても光線透過率は10%以上であり、特に波長532nmの光線透過率は22.7%である。
また、導電膜4の密着性について、導電膜4上からJIS K5400(クロスカット法)に基づき評価すると、膜剥れが確認され、密着性が不十分である。
一方、例1〜例14については、膜剥れは確認されず、密着性は十分である。
【0085】
図2は、例1〜例15について、導電膜における窒素の含有率(C)と、該裏面導電膜の膜厚と、の関係を示したグラフである。
図2中、また、シート抵抗値が250Ω/□の場合を細線で示した。t=0.15C+1.68に相当する。波長532nmの光線透過率が10%の場合を太線で示した。t=0.31C+11.13に相当する。
実施例(例1〜7)は、いずれも、シート抵抗値が250Ω/□以下であり、波長532nmの光線透過率が10%以上であった。
t>0.31C+11.13の例8、例10、例12は、いずれも波長532nmの光線透過率は10%未満である。
t<0.15C+1.68の例9、例11、例13は、いずれもシート抵抗値が250Ω/□超である。
導電膜におけるN含有率が42at%超の例14は、シート抵抗値が250Ω/□超である。
導電膜におけるN含有率が0at%の例15は、JIS K5400(クロスカット法)に基づき、密着性を評価すると、膜剥れが確認され、密着性が不十分である。
例1〜例14についても、密着性の評価を実施するが、膜剥がれは確認されず、密着性は十分である。
【0086】
(例16、17)
例16、17は実施例である。なお、例16、17は、いずれも、基板1の一方の面側に中間膜5および導電膜4を形成したときの、導電膜4のシート抵抗値、導電膜4および中間膜5の光線透過率、光線反射率について評価することで、反射層2、吸収層3を含むEUVマスクブランクおよびEUVマスク、さらに、反射層2、吸収層3に加え、保護層、低反射層等を含む本発明のEUVマスクブランクおよびEUVマスクの評価として扱うものである。
例16
本実施例では、基板1の一方の面側に中間膜5および導電膜4を形成した。
例1と同様の基板1の一方の面側に、中間膜5として、CrO膜を、マグネトロンスパッタリング法を用いて成膜した。中間膜5(CrO膜)の成膜条件は以下のとおりである。
ターゲット:Crターゲット
スパッタリングガス:ArとO
2の混合ガス(ガス流量(O
2/Ar):20/35(sccm)、ガス圧:0.3Pa)
投入電力:150W
成膜速度:9.0nm/min
膜厚:14nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)を用いて測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
【0087】
次に、中間膜5上に、導電膜4として、CrN膜を、マグネトロンスパッタリング法を用いて成膜した。導電膜4(CrN膜)の成膜条件は以下のとおりである。
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(ガス流量(N
2/Ar):10/45(sccm)、ガス圧:0.3Pa)
投入電力:150W
成膜速度:6.1nm/min
膜厚:14nm
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)を用いて測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 14 ≦ 0.31×23+11.13(=18.26)
導電膜4および中間膜5の合計膜厚は28nmであった。
導電膜4のシート抵抗値を、四探針測定器を用いて測定した。シート抵抗値は113Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率を、分光光度計を用いて測定した。波長400〜800nmいずれの波長域においても光線透過率は10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:15.8%
波長532nm:16.8%
波長800nm:18.3%
また、導電膜4および中間膜5が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率を、分光光度計を用いて測定した。真空紫外領域(190〜400nm)の光に対する反射率は、いずれも20%以下であり、中間膜5を設けることにより、190〜400nmのすべての波長に対して、反射率を20%以下とすることが可能であった。
なお、波長190〜800nmの光線透過率および光線反射率を
図3に示した。
また、中間膜5を形成せずに、上記と同様の手順で導電膜4を形成した場合についても、導電膜4のシート抵抗値と、導電膜4の光線透過率を評価した。
導電膜4のシート抵抗値は112Ω/□であり、中間膜5を形成した場合とほぼ同等であった。
図4は、例16について、波長400〜800nmの光線透過率を、中間膜を形成しなかった場合と比較したグラフである。このグラフから明らかなように、中間膜の有無によって、波長400〜800nmの光線透過率には、有意な差はなかった。
【0088】
例17
中間膜(CrO膜)5および導電膜4(CrN膜)の成膜条件を、それぞれ下記とした以外は例16と同様である。
中間膜5
ターゲット:Crターゲット
スパッタリングガス:ArとO
2の混合ガス(ガス流量(O
2/Ar):20/35(sccm)、ガス圧:0.3Pa)
投入電力:150W
成膜速度:9.0nm/min
膜厚:14nm
導電膜4
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(ガス流量(N
2/Ar):15/40(sccm)、ガス圧:0.3Pa)
投入電力:150W
成膜速度:6.6nm/min
膜厚:15nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=69:31である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×31+1.68(=6.33) ≦ 15 ≦ 0.31×31+11.13(=20.74)
また、導電膜4および中間膜5の合計膜厚は29nmであった。
導電膜4のシート抵抗値は149Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても光線透過率は10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:19.0%
波長532nm:20.8%
波長800nm:22.6%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、いずれも20%以下であり、中間膜5を設けることにより、190〜400nmのすべての波長に対して、反射率を20%以下とすることが可能であった。
なお、波長190〜800nmの光線透過率および光線反射率を
図5に示した。
また、中間膜5を形成せずに、上記と同様の手順で導電膜4を形成した場合についても、導電膜4のシート抵抗値と、導電膜4の光線透過率を評価した。
導電膜4のシート抵抗値は149Ω/□であり、中間膜5を形成した場合と同一であった。
図6は、例17について、波長400〜800nmの光線透過率を、中間膜を形成しなかった場合と比較したグラフである。このグラフから明らかなように、中間膜の有無によって、波長400〜800nmの光線透過率には、有意な差はなかった。
【0089】
(例18〜25)
例18〜21は実施例、例22〜25は比較例である。
例18
中間膜5および導電膜4の膜厚をそれぞれ以下とした以外は例16と同様の手順を実施した。
中間膜5:28nm
導電膜4:12nm
合計膜厚:40nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 12 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は176Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:18.9%
波長532nm:22.5%
波長800nm:25.8%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、いずれも20%以下であり、中間膜5を設けることにより、190〜400nmのすべての波長に対して、反射率を20%以下とすることが可能であった。
なお、波長190〜800nmの光線透過率および光線反射率を
図7に示した。
【0090】
例19
中間膜5および導電膜4の膜厚をそれぞれ以下とした以外は例16と同様の手順を実施した。
中間膜5:29nm
導電膜4:13nm
合計膜厚:42nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 13 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は135Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:15.3%
波長532nm:18.5%
波長800nm:21.1%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、いずれも20%以下であり、中間膜5を設けることにより、190〜400nmのすべての波長に対して、反射率を20%以下とすることが可能であった。
なお、波長190〜800nmの光線透過率および光線反射率を
図8に示した。
【0091】
例20
中間膜(CrO膜)5および導電膜4(CrN膜)の成膜条件を、それぞれ下記とした以外は例16と同様である。
中間膜5
ターゲット:Crターゲット
スパッタリングガス:ArとO
2の混合ガス(ガス流量(O
2/Ar):20/35(sccm)、ガス圧:0.3Pa)
投入電力:150W
成膜速度:9.0nm/min
膜厚:28nm
導電膜4
ターゲット:Crターゲット
スパッタリングガス:ArとN
2の混合ガス(ガス流量(N
2/Ar):15/40(sccm)、ガス圧:0.3Pa)
投入電力:150W
成膜速度:6.6nm/min
膜厚:16nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=69:31である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×31+1.68(=6.33) ≦ 16 ≦ 0.31×31+11.13(=20.74)
また、中間膜5および導電膜4の合計膜厚は44nmであった。
導電膜4のシート抵抗値は194Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:18.1%
波長532nm:22.1%
波長800nm:25.0%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、いずれも20%以下であり、中間膜5を設けることにより、190〜400nmのすべての波長に対して、反射率を20%以下とすることが可能であった。
なお、波長190〜800nmの光線透過率および光線反射率を
図9に示した。
【0092】
例21
中間膜5および導電膜4の膜厚をそれぞれ以下とした以外は例20と同様の手順を実施した。
中間膜5:27nm
導電膜4:17nm
合計膜厚:44nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=69:31である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×31+1.68(=6.33) ≦ 17 ≦ 0.31×31+11.13(=20.74)
導電膜4のシート抵抗値は157Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:15.8%
波長532nm:19.4%
波長800nm:22.0%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、いずれも20%以下であり、中間膜5を設けることにより、190〜400nmのすべての波長に対して、反射率を20%以下とすることが可能であった。
なお、波長190〜800nmの光線透過率および光線反射率を
図10に示した。
例22
中間膜5および導電膜4の膜厚をそれぞれ以下とした以外は例16と同様の手順を実施した。
中間膜5:5nm
導電膜4:11nm
合計膜厚:16nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 11 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は135Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:20.5%
波長532nm:20.5%
波長800nm:21.9%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、20%を超える場合があった。
なお、波長190〜800nmの光線透過率および光線反射率を
図11に示した。
例23
中間膜5および導電膜4の膜厚をそれぞれ以下とした以外は例16と同様の手順を実施した。
中間膜5:5nm
導電膜4:13nm
合計膜厚:18nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 13 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は111Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:16.3%
波長532nm:16.4%
波長800nm:17.5%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、20%を超える場合があった。
なお、波長190〜800nmの光線透過率および光線反射率を
図12に示した。
例24
中間膜5および導電膜4の膜厚をそれぞれ以下とした以外は例16と同様の手順を実施した。
中間膜5:5nm
導電膜4:14nm
合計膜厚:19nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 14 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は134Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:19.8%
波長532nm:20.4%
波長800nm:21.5%
また、中間膜5および導電膜4が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、20%を超える場合があった。
なお、波長190〜800nmの光線透過率および光線反射率を
図13に示した。
例25
導電膜4および中間膜5の膜厚をそれぞれ以下とした以外は例17と同様の手順を実施した。
中間膜5:5nm
導電膜4:16nm
合計膜厚:21nm
中間膜5(CrO膜)の組成分析
中間膜5(CrO膜)の組成を、例16と同様の手順で測定する。中間膜5(CrO膜)の組成比(at%)は、Cr:O=58:42である。
導電膜4(CrN膜)の組成分析
導電膜4(CrN膜)の組成を、例16と同様の手順で測定する。導電膜4(CrN膜)の組成比(at%)は、Cr:N=77:23である。
なお、導電膜4における窒素の含有率Cと、膜厚tとの関係は以下のとおり。
0.15×23+1.68(=5.13) ≦ 16 ≦ 0.31×23+11.13(=18.26)
導電膜4のシート抵抗値は111Ω/□であった。
また、導電膜4の側から光線を入射した際の、波長400〜800nmの光線透過率は、波長400〜800nmいずれの波長域においても10%以上であった。波長400nm、532nm、800nmの光線透過率はそれぞれ以下のとおり。
波長400nm:16.7%
波長532nm:17.4%
波長800nm:18.3%
また、導電膜4および中間膜5が形成されていない側の基板1の面から光線を入射した際の、導電膜4側からの、波長190〜400nmの光線反射率は、20%を超える場合があった。
なお、波長190〜800nmの光線透過率および光線反射率を
図14に示した。