(58)【調査した分野】(Int.Cl.,DB名)
前記少なくとも2つのコンバイナはそれぞれ、2つのエネルギーパルスを合成して1つのエネルギーパルスにし、前記合成されたエネルギーパルスは前記コンバイナのうちの一方のコンバイナの寸法よりも短い距離だけ分離される、請求項3に記載の熱処理システム。
【発明を実施するための形態】
【0009】
理解するのを容易にするために、複数の図面に共通する同一の要素を指示するために、可能であれば同一の参照番号が使用されている。1つの実施形態において開示される要素は、具体的に記載されなくても、他の実施形態において有益に利用することができることが企図されている。
【0010】
図1は、基板をレーザ処理するためのシステム100の平面図である。システム100は、複数のパルス状レーザパルスを生成する複数のパルス式レーザ源を有するエネルギーモジュール102と、個々のパルス状レーザパルスを合成して、合成パルス状レーザパルスにし、かつ合成パルス状レーザパルスの強度、周波数特性および極性特性を制御するパルス制御モジュール104と、合成済みパルス状レーザパルスのパルスの時間プロファイルを調整するパルス整形モジュール106と、パルスの空間エネルギー分布を調整して、合成パルス状レーザパルスを重ね合わせて単一の均一なエネルギー場にするホモジナイザ108と、エネルギー場から残留エッジ不均一性を除去する開孔部材116と、レーザエネルギー場と基板支持体110上に配置される基板とを正確に位置合わせできるようにする位置合わせモジュール118とを備える。コントローラ112が、レーザパルスの生成を制御するためにエネルギーモジュール102に、パルス特性を制御するためにパルス制御モジュール104に、かつエネルギー場に対する基板の移動を制御するために基板支持体110に結合される。筐体114が典型的には、システム100の動作構成要素を封入する。
【0011】
レーザは、高出力レーザ放射の、例えば、約100nsec未満の持続時間の短いパルスを形成することができる任意のタイプのレーザとすることができる。典型的には、500を超える空間モードを有し、M
2が約30より大きい高モダリティ(high modality)レーザが用いられる。Nd:YAG、Nd:ガラス、チタン−サファイアなど固体レーザ、または他の希土類元素をドープされた結晶レーザが頻繁に用いられるが、エキシマレーザ、例えば、XeCl
2、ArFまたはKrFレーザなどガスレーザを用いることもできる。レーザは、例えば、qスイッチング(受動または能動)、利得スイッチングまたはモード同期によって切り替えることができる。レーザの出力に近接してポッケルスセルを用いて、レーザによって放出されたビームを遮断することによってパルスを形成することもできる。一般的に、パルス式レーザ処理のために使用可能なレーザは、約1nsec〜約100μsecの持続時間で約100mJ〜約10Jのエネルギー含量を有し、典型的には約8nsecにおいて約1Jを有するレーザ放射のパルスを生成することができる。レーザは、約400nm〜約1,000nm、例えば、約532nmなど、約200nm〜約2,000nmの波長を有することができる。一実施形態では、レーザは、qスイッチング式周波数逓倍Nd:YAGレーザである。レーザは全て同じ波長において動作することができるか、またはレーザのうちの1つまたは複数が、エネルギーモジュール102内の他のレーザと異なる周波数において動作することができる。レーザを増幅して、所望の出力レベルをもたらすことができる。大抵の場合、増幅媒体は、レージング媒体と同じ、または類似の組成物になる。個々のレーザパルスは通常、単独で増幅されるが、実施形態によっては、合成後に全てのレーザパルスを増幅することができる。
【0012】
基板に送達される典型的なレーザパルスは、複数のレーザパルスの合成である。複数のパルスは、合成されたときに、エネルギー上昇、持続時間および下降が制御されており、かつエネルギーの不均一性の空間分布が制御されている、制御された時間および空間エネルギープロファイルを有する単一のレーザ放射パルスが結果として生じるように、制御された時間で、互いに制御された関係において発生する。コントローラ112はパルス発生器、例えば、各レーザ、例えば、各レーザの各スイッチに結合され、各レーザからのパルスの発生を制御する、電圧源に結合された電子タイマを有することができる。
【0013】
複数のレーザは、各レーザがパルス制御モジュール104の中に現れる複数のパルスを生成するように配列され、パルス制御モジュールは1つまたは複数のパルスコントローラ105を有することができる。
図2Aは、一実施形態によるパルスコントローラ200Aの平面図である。
図1に関連して上述した1つまたは複数のパルスコントローラ105はそれぞれ、
図2Aに示されるパルスコントローラ200Aなどパルスコントローラとすることができる。光の汚染を防ぐために筐体299内に入れられた光学系を用いて、パルスコントローラ200Aは、エネルギーモジュール102から受信された第1の入力パルス224Aと、エネルギーモジュール102から受信された第2の入力パルス224Bとを合成して、1つの出力レーザパルス238にする。2つの入力レーザパルス224A/Bは、筐体299の開口部内に配置される入力レンズ202Aおよび202Bを通ってパルスコントローラ200Aに入る。
図2Aの実施形態では、2つの入力レンズ202A/Bは、筐体299の1つの表面に沿って位置合わせされ、レーザパルス224A/Bは概ね平行な向きで筐体299に入る。
【0014】
2つの入力パルス224A/Bは、2つのパルスを合成して1つのパルス238にする合成光学系208に誘導される。合成光学系は、入射パルス226Aの入口経路に対して垂直に配向される第1の入口面207Aと、入射パルス226Bの入口経路に対して垂直に配向される第2の入口面207Bとを有し、合成光学系208に入る際に入力パルス226A/Bが屈折するのを避ける。
図2Aの合成光学系208は、選択面209を有する結晶であり、選択面209は、第1および第2の入射パルス226A/Bがそれぞれ約45度の角度で選択面209に当たるように配向される。選択面209は、光の特性に応じて選択的に光と相互作用する。合成光学系208の選択面209は、第1の入射パルス226Aを反射し、第2の入射パルスを透過して、合成パルス228を作り出すことができる。パルスの合成を容易にするために、各入射パルス226A/Bは、特定のやり方で選択面209と相互作用するように適応させることができる。
【0015】
一実施形態では、選択面209は偏光面である。偏光面は直線の極性軸を有することができ、偏光面の軸に対して平行な入射パルス226Bを偏光することによって、入射パルス226Bが偏光面を透過できるようにし、偏光面の軸に対して垂直な入射パルス226Aを偏光することによって、入射パルス226Aが偏光面から反射できるようにする。2つの入射パルス226A/Bを偏光面上の同じスポットに位置合わせすることによって、合成光学系208の第1の出口面207Cから、面207Cに対して垂直に現れる合成パルス228を作り出し、合成パルス228の屈折を避ける。代替として、選択面209は円偏光子とすることができ、入射パルス226Aが反射するために円偏光子の向きと反対に円偏光され、入射パルス226Bが透過するために円偏光子と同じ向きで円偏光される。別の実施形態では、入射パルス226A/Bは異なる波長を有することができ、選択面209は、誘電体ミラーの場合のように、一方の波長の光を反射し、別の波長の光を透過するように構成することができる。
【0016】
偏光実施形態では、入射パルス226A/Bの偏光は、偏光フィルタ206A/Bを用いて成し遂げられる。偏光フィルタ206A/Bは、合成光学系208の選択面209によって選択的に反射または透過されるように入力パルス224A/Bを偏光する。偏光フィルタ206A/Bは、選択面209における選択的な反射および透過のために直交する偏光を生成するように互いに直交するように配向される偏光軸を有する波長板、例えば、半波長板または4分の1波長板とすることができる。各偏光フィルタ206A/Bの軸を、例えば、回転アクチュエータ205A/Bを用いて独立して調整し、入射パルス226A/Bの偏光を選択面209の偏光軸と正確に位置合わせすることができるか、または入射パルス226A/Bの偏光軸と選択面209の偏光軸との間に所望の偏角を与えることができる。
【0017】
入射パルス226A/Bの偏光軸を調整することによって、合成パルス228の強度が制御される。なぜなら、偏光フィルタはマリュスの法則に従って入射光を透過し、その法則によれば、偏光フィルタによって透過される光の強度は、入射強度と、フィルタの偏光軸と入射光の偏光軸との間の角度の余弦の二乗とに比例することが成り立つためである。したがって、偏光フィルタ206Aの偏光軸が選択面209の偏光軸に対して垂直な向きから逸れるように偏光フィルタ206Aを回転させると、入射パルス226Aの一部が選択面209を透過する。同様に、偏光フィルタ206Bの偏光軸が選択面209の偏光軸に対して平行な向きから逸れるように偏光フィルタ206Bを回転させると、入射パルス226Bの一部が選択面209から反射される。各入射パルス226A/Bからのこの「非選択」光は合成して排除パルス230になり、そのパルスは第2の出口面207Dを通して合成光学系208から出て、パルス排除部210に入る。このようにして、各偏光フィルタは、偏光フィルタを通り抜けるパルスの強度を減衰させる調光スイッチとしての役割を果たす。
【0018】
合成光学系208によって合成されることになる2つのパルス226A/Bは、選択的に反射および透過させるために選択面209の互いに反対側に向かって誘導されることに留意されたい。したがって、第1の入力パルス202Aは、第1の入力パルス202Aを反射体204によって選択面209の反射側に導く経路に沿って誘導され、一方、第2の入力パルス202Bは、選択面209の透過側に向かって誘導される。当然、反射体の任意の組み合わせを用いて、パルス制御モジュール104内で所望の経路に沿って光を誘導することができる。
【0019】
合成パルス228は、合成パルス228を出力パルス238とサンプリングパルス232とに分離する第1のスプリッタ212と相互作用する。スプリッタ212は部分ミラーまたはパルススプリッタとすることができる。サンプリングパルス232は診断モジュール233に誘導され、診断モジュールは、サンプリングパルス232の特性を解析して出力パルス238の特性を示す。
図2Aの実施形態では、診断モジュール233は、パルスの時間形状およびパルスの全エネルギー含量をそれぞれ検出する2つの検出器216および218を有する。第2のスプリッタ214が、それぞれの検出器に入力するための第1のパルス236および第2のパルス234を形成する。時間形状検出器216は、非常に短い時間スケールにおいてモニタ上に入射する光の強度を信号として出力する強度モニタである。時間形状検出器に入射する光パルスは、1ピコ秒(psec)〜100nsecの全持続時間を有することができるので、フォトダイオードまたはフォトダイオードアレイとすることができる時間形状検出器は、これらの時間スケールを細分した有効な時間スケールにおいて強度信号を与える。エネルギー検出器218は、熱電対など焦電デバイスとすることができ、入射電磁放射をエネルギーサンプルパルス234のエネルギー含量を示すために測定することができる電圧に変換する。第1のスプリッタ212および第2のスプリッタ214は、第1のスプリッタ212および第2のスプリッタ214の透過割合に基づいて入射光の既知の割合をサンプリングするので、出力パルス238のエネルギー含量は、エネルギーサンプルパルス234のエネルギー含量から計算することができる。
【0020】
診断モジュール233からの信号は
図1のコントローラ112に送ることができ、コントローラはレーザ動作またはパルス制御動作を調整して、所望の結果を達成することができる。コントローラ112は、時間形状検出器216からの結果に応答して、各レーザの能動qスイッチに結合される電子タイマを調整して、パルスタイミングを制御することができる。能動qスイッチをより迅速に循環させることによって、パルスが短くなり、その逆も同様である。コントローラ112は、エネルギー検出器218からの結果に基づいて、偏光フィルタ206A/Bを通り抜ける光の偏光角を調整することによって、出力パルス238の強度を調整する回転アクチュエータ205A/Bに結合することができる。このようにして、出力パルス238の持続時間およびエネルギー含量を独立制御することができる。また、コントローラ112は、各レーザに入力される電力を調整するように構成することもできる。
【0021】
出力パルス238は、所望により、シャッタ220によって遮断することができる。シャッタ220(
図2Aおよび
図2Bにおいて概略的に示される)は、パルス制御モジュール104の後続の構成要素に対する調整を行うために、パルス制御モジュール104から現れるレーザエネルギーが遮断されることになる場合に、安全デバイスとして設けることができる。出力パルス238は、出力レンズ222を通って、パルス制御モジュール104から出る。
【0022】
出力パルス238は、2つの入射パルス226A/Bの合成である。したがって、出力パルス238は、2つの入射パルス226A/Bの特性の合成を表す特性を有する。上記の偏光例では、出力パルス238は、選択面209における入射パルス226A/Bのそれぞれの透過度および反射度に従って異なる強度を有する、2つの直交偏光入射パルス226A/Bの合成を表す楕円偏光を有することができる。選択面209において入射する波長を用いて2つのパルスを合成する例では、出力パルス238は、それぞれの強度に従って2つの入射パルス226A/Bの合成された波長を表す波長を有する。
【0023】
例えば、合成光学系208の選択面209に1,064nm反射誘電体ミラーを配置することができる。入射パルス226Aは、選択面209から反射するために、強度Aの約1,064nmの波長を有することができ、入射パルス226Bは、選択面209を通って透過するために、強度Bの532nmの波長を有することができる。合成パルス228は、入射パルス226A/Bの波長および強度を有する2つの光子からなる共伝搬二重パルスになり、全エネルギー含量は2つのパルスエネルギーの和である。
【0024】
図2Bは別の実施形態によるパルス制御モジュール200Bの平面図である。
図1に関連して上述した1つまたは複数のパルスコントローラ105はそれぞれ、パルスコントローラ200Bまたはパルスコントローラ200Aなどパルスコントローラとすることができる。パルスコントローラ200Bは、パルスコントローラ200Aと同じであるが、以下の点が異なる。
図2Bの実施形態において、入力レンズ202Aは筐体299の同じ面上に入力レンズ202Bに隣接して位置しない。
図2Bでは、入力レンズ202Aは、入力レンズ202Bが位置する面に概ね直交する筐体299の面、この実施形態では、長方形の筐体の隣接する壁上に位置する。したがって、第1の入力パルス224Aは第1の入力レンズ202A(
図2Bの紙面に入る方向にある)を通って入り、
図2Bの表示では入力レンズ202aによって隠されている反射体によって
図2Bの平面に方向転換される。反射体240および242は、偏光子206Bへの入口に対して入力パルス224Bを位置決めしており、反射体を用いて任意の所望の経路上にパルスを位置決めすることを例示している。パルス制御モジュール104の周囲でパルスを誘導することによって、レーザエネルギー源を位置させるのに空間が制約される場合に役に立つことがある。
【0025】
図2Cおよび
図2Dは、複数のパルスコントローラ200A/Bを有する実施形態を示す概略図である。
図2Cの実施形態では、
図2Aのパルスコントローラ200Aの構成の2つのパルスコントローラが、4つのレーザ源102A〜Dと位置合わせされ、2つの合成パルス238を形成する。
図2Dの実施形態では、その間に所望の距離「d」を有する2つの合成パルス238が形成される。2つのパルスコントローラ200C/Dが、
図2Dの平面に沿った2つのエネルギー源102Aおよび102Cからの入力パルスと、
図2Dの表示では見ることができない2つのエネルギー源から
図2Dの平面に対して垂直な入力パルスとを受光する。2つのパルスコントローラ200C/Dはパルスコントローラ200Bと同じであるが、以下の点が異なる。パルスコントローラ200Dは、出力反射体254を用いて、出力レンズ246を通って出力パルス244を誘導するように構成される。出力レンズ246は、入力パルス244をパルスコントローラ200Cの入力レンズ248の中に、そしてパルスコントローラ200Cの反射体250および出力レンズ252まで誘導する。このようにして、2つの出力パルス238は、パルス制御モジュール104(
図1)を出る際に、互いから任意の所望の距離「d」に位置決めすることができる。大抵の実施形態の場合に、距離「d」は、50mm未満、例えば、35mmなど、約1mm〜約1,000mmになる。
図2Dに示されるように、距離「d」は、パルスコントローラ200Cの寸法未満とすることができる。
【0026】
図2Eは、
図2Dの装置の概略的な平面図であり、エネルギー源102が直角の関係で構成される実施形態を示す。
図2Eにおいて見ることができるエネルギー源102B/Dは、
図2Dの表示では見ることができなかった。エネルギー源102A/Bは、パルスコントローラ200C内で処理するための入力パルス224A/Bを生成し、一方、エネルギー源102C/Dは、パルスコントローラ200D内で処理するための入力パルス224C/Dを生成する。パルスコントローラ200C/Dの出力パルスは、
図2Dに示されるように配列され、
図2Eの表示では見ることができない所望の距離「d」だけ離間される。幾つかの実施形態では、パルスコントローラ200A〜200Dは、パルスコンバイナとすることができることに留意されたい。
【0027】
1つまたは複数のパルスがパルス制御モジュール104を出て、パルス整形モジュール106に入り、パルス整形モジュールは、
図1に概略的に示されるように、1つまたは複数のパルスシェーパ107を有する。
図3Aはパルスシェーパ306の一実施形態の概略的な例示である。パルス整形モジュール106の1つまたは複数のパルスシェーパ107はそれぞれパルスシェーパ306などパルスシェーパとすることができる。
図3Aのパルスシェーパは、レーザエネルギーパルスの複数の部分を遅延させて、所望の特性(例えば、パルス幅およびプロファイル)を有する複合パルスを与えるために用いられる複数のミラー352(例えば、16個のミラーが示される)および複数のスプリッタ(例えば、参照番号350A〜350E)を備えることができる。一例では、パルス整形モジュールに入るレーザエネルギーパルス302は空間的にコヒーレントとすることができる。レーザエネルギーのパルスは、第1のスプリッタ350Aを通り抜けた後に、2つの成分、すなわち、サブパルス354A、354Bに分離される。種々の光学構成要素における損失を無視すると、第1のスプリッタ350Aにおける透過対反射比に応じて、レーザエネルギーの或るパーセンテージ(すなわち、X%)が第1のサブパルス354Aにおいて第2のスプリッタ350Bに伝達され、第2のサブパルス354Bのエネルギーの或るパーセンテージ(すなわち、1−X%)が、第2のスプリッタ350Bに当たる前に複数のミラー352によって反射されるように、経路A〜E(すなわち、セグメントA〜E)に従う。
【0028】
一例では、パルスのエネルギーの70%が反射され、30%がスプリッタを通して透過されるように、第1のスプリッタ350Aの透過対反射比が選択される。別の例では、パルスのエネルギーの50%が反射され、50%がスプリッタを通して透過されるように、第1のスプリッタ350Aの透過対反射比が選択される。経路A〜Eの長さ、すなわち、セグメントA〜Eの長さの和(すなわち、
図3Aに示されるように、全長=A+B+C+D+E)は、サブパルス354Aとサブパルス354Bとの間の遅延を制御することになる。一般的に、第1のサブパルス354Aと第2のサブパルス354Bとの間の経路長の差を調整することによって、経路長差の1メートル当たり約3.1ナノ秒(ns)の遅延を実現することができる。
【0029】
第1のサブパルス354Aにおいて第2のパルス350Bに送達されるエネルギーは、第3のスプリッタ350Cに直接送信される第2のサブパルス356Aと、第3のスプリッタ350Cに当たる前に経路F〜Jに従う第2のサブパルス356Bとに分離される。第2のサブパルス354Bにおいて送達されるエネルギーも、第3のスプリッタ350Cに直接送信される第3のサブパルス358Aと、第3のスプリッタ350Cに当たる前に経路F〜Jに従う第3のサブパルス358Bとに分離される。各サブパルスを分離し、遅延させるこのプロセスは、熱処理装置100内の次の構成要素に主にエネルギーを送達するように適応した最後のスプリッタ350Eにおいてサブパルスが全て再合成されるまで、各サブパルスが後続のスプリッタ(すなわち、参照番号350D〜350E)およびミラー352に当たるのに応じて継続される。最後のスプリッタ350Eは偏光スプリッタとすることができ、遅延領域から、または先行するスプリッタから受信されたサブパルスのエネルギーの偏光を調整して、エネルギーを所望の方向に誘導できるようにする。
【0030】
一実施形態では、経路360に従うサブパルスに対する最後のスプリッタ350Eの偏光を回転させることができるように、最後のスプリッタ350Eの偏光タイプの前に波長板364が位置決めされる。偏光に対する調整を用いない場合、エネルギーの一部が最後のパルススプリッタによって反射され、他方の分岐路と再合成されなくなる。一例では、パルスシェーパ306内の全てのエネルギーがS偏光され、したがって、無偏光キューブスプリッタが到来するパルスを分割するが、偏光キューブである最後のスプリッタは、受信したエネルギーを合成する。経路360に従うサブパルス内のエネルギーは、Pに回転した偏光を有し、その偏光は、偏光パルススプリッタをまっすぐ通り抜けるのに対して、経路362に従う他のサブパルスはS偏光され、したがって、反射されて合成パルスを形成する。
【0031】
一実施形態では、最後のスプリッタ350Eは、無偏光スプリッタと、遅延領域から、または先行するスプリッタから受信されたエネルギーを合成するように位置決めされるミラーとを備える。この場合、スプリッタはエネルギーの一部を所望の点に向かって投影し、受信されたエネルギーの別の部分を所望の点に向かって透過し、そして、ミラーは、スプリッタを通って透過されたエネルギーの残りの量を同じ所望の点に誘導することになる。所望のパルス持続時間および所望のパルスプロファイルを達成するために、本明細書において示される構成において、パルス分離タイプの構成要素およびミラーを追加することによって、パルスが分離され、遅延する回数を変更できることに留意されたい。
図3Aは、スプリッタおよびミラーを備える4つのパルス遅延領域を利用するパルスシェーパ設計を示すが、この構成は、本発明の範囲に関して制限することは意図していない。
【0032】
図3Bは、2パルス遅延領域パルスシェーパを通り抜けた種々のサブパルスのエネルギー対時間のグラフの一例を示しており、そのパルスシェーパは
図3Aに示されるパルスシェーパの最初の2つのパルス遅延領域に類似である。
図3Bに示されるように、パルスシェーパ(
図3A)の入力に送達されるパルス列パターン307はt
1に等しい個々のパルス持続時間を有する。この場合、パターン307Aは第1のパルス列であり、パターン307Bは第2のパルス列であり、パターン307Cは第3のパルス列であり、パターン370Dは
図3Aのパルスシェーパ306を出る第4のパルス列である。一般的に、各サブパルスの持続時間は約t
1になる。なぜなら、元のパターン307のパルスのこの特性が、
図3Aに示されるパルス整形プロセスに起因して相対的に変わらないからである。
図3Bを参照すると、パターン307Aのパルスは最も短い距離だけ進行し、パターン307Dのパルスがパルスシェーパ306の中を最も長い距離にわたって進行したことになる。一例では、4つのパターンの和は、複数のパルスによる複合エネルギープロファイル312を送達することになり、複数のパルスは初期パルスの持続時間t
1よりも長い持続時間t
2を有する。また、複合エネルギープロファイル312は、元のパルス307よりも単位時間あたり平均エネルギーが低い。
図3Cは、プロファイル312を有するパルスエネルギーに暴露された基板の表面領域の予想温度プロファイルのプロットを時間の関数として示す。システム内の選択された各スプリッタの透過対反射比に応じて、所望のパルスプロファイルを送達するように、サブパルスのエネルギーを調整できることに留意されたい。例えば、反射よりも透過が多くなる、スプリッタの組み合わせを選択することによって、複合エネルギープロファイル312のプロファイルは、より高い開始エネルギーを有することになり、そのエネルギーは、複合エネルギープロファイル312の終わりに向かって低下することになる。
図3Bは、同じ振幅を有する長方形のパルスを示すが、より望ましいプロファイルを有する複合エネルギープロファイル312を送達するために、他のパルス形状を用いることもできるので、これは本発明の範囲に関して制限することは意図していないことに留意されたい。
【0033】
図3Dは、
図1〜
図3Cに関連してそれぞれ先に論じられた、その出力がパルス制御モジュール106を通ってパルスシェーパ306まで送られる、2つ以上の同期したエネルギー源(例えば、レーザ源102A〜D)を利用することによって所望のパルスプロファイルを送達するために用いられる本発明の別の実施形態を概略的に示す。この構成では、パルスシェーパ306から現れる複合パルス312が所望のプロファイルを有するように、コントローラ112はレーザ源102A〜Dの出力を同期させて、パルスシェーパ306への入力として同期したパルス304を形成する。複合パルス312は、各レーザ源102A〜Dから送達された同期したパルスごとにパルスストレッチャアセンブリ306において作り出される各サブパルスの複合物を含むことができる。最適化されたアニールプロセスを提供するために、任意のパルスプロファイルを用いることができるので、サブパルス307A〜Dから形成された
図3Cに示される複合パルス312のプロファイルまたは形状は、本発明の範囲に関して制限することは意図していない。パルスの異なる同期および異なる複合パルス形状312、ならびに温度プロファイル311を示す、
図3Eおよび
図3Fにおいて示されるように、パルスの同期を変更することによって、代替の複合パルス形状を実現することができる。
【0034】
図3Gは、パルス整形のための更なる技法を示すパルスシェーパ320の別の実施形態を概略的に示す。
図3Gのパルスシェーパ320では、反射体のうちの少なくとも幾つかが、基準線322または324から変位しており、パルスシェーパ320を通る光の光路を変更する。ミラーの変位は、所望の距離「x」に設定され、サブパルスのための或る時間変位を達成することができる。典型的には、ミラーは対を成して変位し、所与のミラー対内の各ミラーは基準線から概ね同一の変位を有する。任意の所望のパルス形状を達成するために、当然、ミラー対の変位は異なる場合もある。一実施形態では、第1のミラー対の変位x
1は約10mmであり、第2のミラー対の変位x
2は約7.5mmであり、第3のミラー対の変位x
3は約20mmであり、第4のミラー対の変位x
4は約15mmである。
【0035】
別の実施形態では、複数のレーザから現れる全てのパルスを、最初にコンバイナを通り抜けることなく、パルスシェーパの中に誘導することができる。パルスが全てパルスシェーパの第1のスプリッタ(例えば、
図3Aおよび
図3Dにおける350Aまたは306A)に当たるように、パルスを物理的に極めて近接させるために、光学系を用いることができる。パルスが全て第1のスプリッタを通って進行するように、パルスは、パルスシェーパの第1のスプリッタの断面寸法よりも小さな寸法を有する或る構成、例えば、正方形の構成において配列することができる。
【0036】
パルス整形モジュール106からの整形済みパルスはホモジナイザ108に送られる。
図4Aは、一実施形態による、ホモジナイザ400の概略図である。
図1のホモジナイザ108は、
図4Aのホモジナイザ400とすることができる。ビーム積分器アセンブリ410が、一対のマイクロレンズアレイ404および406と、レンズ408とを含み、この積分器アセンブリを通り抜けるエネルギーを均質化する。用語「マイクロレンズアレイ」、または「蠅の目レンズ」は一般的に、複数の隣接するレンズを含む一体レンズアレイを示すつもりであることに留意されたい。示されるように、ビーム積分器アセンブリ410は一般的に、その空間コヒーレンス長が単一のマイクロレンズアレイの寸法よりもはるかに短い非コヒーレント源または広帯域の部分的コヒーレント源を用いて最も良好に機能する。要するに、ビーム積分器アセンブリ410は、レンズ408の後方焦点面に位置する面においてマイクロレンズアレイの拡大された像を重ね合わせることによって、ビームを均質化する。レンズ408を補正して、場歪みを含む収差を最小化することができる。
【0037】
鏡像力場のサイズは、第1のマイクロレンズアレイの開孔の形状を拡大したものであり、倍率はF/f
1によって与えられる。ただし、f
1は第1のマイクロレンズアレイ404内のマイクロレンズアレイの焦点距離であり、Fはレンズ408の焦点距離である。一例では、約175mmの焦点距離を有するレンズ408と、4.75mm焦点距離を有するマイクロレンズアレイ内のマイクロレンズとを用いて、11mmの正方形の鏡像力場を形成する。
【0038】
これらの構成要素に対する数多くの異なる組み合わせを用いることができるが、一般的に、最も効率的なホモジナイザは、同一の第1のマイクロレンズアレイ404および第2のマイクロレンズアレイ406を有することになる。第1のマイクロレンズアレイ404および第2のマイクロレンズアレイ406は典型的には、第1のマイクロレンズアレイ404に送達されるエネルギー密度(ワット/mm
2)が第2のマイクロレンズアレイ406上で増加する、すなわち、合焦するような距離だけ離れて配置される。しかしながら、これにより、エネルギー密度が光学構成要素および/または光学構成要素上に置かれる光学コーティングの損傷しきい値を超えるときに、第2のマイクロレンズアレイ406を損傷する恐れがある。典型的には、第2のマイクロレンズアレイ406は、第1のマイクロレンズアレイ404から、第1のマイクロレンズアレイ404内のレンズレットの焦点距離に等しい距離d
2だけ間隔を置いて配置される。
【0039】
一例では、各マイクロレンズアレイ404、406は、正方形の形状であり、かつ約300ミクロンのエッジ長を有する7921個のマイクロレンズ(すなわち、89×89アレイ)を含む。レンズ408、すなわち、フーリエレンズは、マイクロレンズアレイ404、406から受信された像を積分するために一般的に用いられ、第2のマイクロレンズアレイ406から距離d
3だけ間隔を置いて配置される。
【0040】
コヒーレントまたは部分コヒーレント源が用いられる応用形態において、ビーム積分器アセンブリ410を用いるときに、種々の干渉または回折アーティファクトが問題となる恐れがある。なぜなら、それらのアーティファクトは、投影されるビームの視野内に高い強度の領域、すなわち、スポットを作り出し、それらのスポットは種々の光学構成要素の損傷しきい値を超える恐れがあるためである。したがって、レンズの構成または干渉アーティファクトに起因して、ビーム積分器アセンブリ410およびシステム内の種々の光学構成要素の使用可能な寿命が、設計および製造の際に考慮すべき重要な要件になっていた。
【0041】
出ていくエネルギーA
5の均一性が到来するエネルギーA
1に対して改善されるように、ビームホモジナイザアセンブリ400の前方または内部にランダムディフューザ402を置くことができる。この構成では、到来するエネルギーA
1は、第1のマイクロレンズアレイ404、第2のマイクロレンズアレイ406およびレンズ408によってそれぞれエネルギーA
2、A
3およびA
4が受信され、均質化される前に、ランダムディフューザ402を置くことによって拡散される。ランダムディフューザ402によって、到来するエネルギー(A
1)のパルスが広範な角度(α
1)にわたって分散し、投影されるビームのコントラストを低減し、それにより、パルスの空間均一性を改善する。ランダムディフューザ402によって、一般的に、第2のマイクロレンズアレイ406によって受信されるエネルギーA
3の放射照度(W/cm
2)がディフューザを用いない場合よりも小さくなるように、その中を通り抜ける光が広がる。ディフューザは、各マイクロレンズアレイに当たるビームの位相をランダム化するためにも用いられる。この更なるランダム位相は、ディフューザを用いない場合に観測された高い強度のスポットを広げることによって空間均一性を改善する。一般的に、ランダムディフューザ402は、前置されたレンズの受光角よりも広い角度では、パルスにおいて受信されたエネルギーを拡散しないように選択された狭角光学ディフューザである。
【0042】
一例では、ランダムディフューザ402は、拡散角α
1が第1のマイクロレンズアレイ404または第2のマイクロレンズアレイ406内のマイクロレンズの受光角未満であるように選択される。一実施形態では、ランダムディフューザ402は、第1のマイクロレンズアレイ404に前置される0.5度〜5度ディフューザなど単一のディフューザを含む。別の実施形態では、ランダムディフューザ402は、パルスの投影されたエネルギーを更に広げ、均質化するために、所望の距離だけ離れて配置される0.5度〜5度ディフューザ板など2つ以上のディフューザ板を含む。一実施形態では、ランダムディフューザ402は、到来するエネルギーA
1において送達される概ね全てのエネルギーを第1のマイクロレンズアレイ404が受信できるように、第1のマイクロレンズアレイ404から距離d
1だけ離れて配置することができる。
【0043】
図4Bは、別の実施形態によるホモジナイザ450の概略図である。
図1のホモジナイザ108は
図4Bのホモジナイザ450とすることができる。ホモジナイザ450はホモジナイザ400と同じであるが、以下の点が異なる。出ていくエネルギーの均一性を改善するためにランダムディフューザ402を用いる代わりに、第3のマイクロレンズアレイ412を用いることができる。
【0044】
図1を再び参照すると、ホモジナイザ108からのエネルギーは典型的には、基板の表面上でアニールされることになるエリアに概ね適合する、正方形または長方形の形状などパターンに配列される。エネルギーに適用される処理および再配列の結果として、エネルギー場は、約12%未満、例えば、約8%未満など約15%以下だけ平均値とは異なる強度を有するようになる。しかしながら、エネルギー場のエッジ付近では、装置全体にわたる種々の境界条件に起因して、より大きな不均一性が存続する場合がある。これらのエッジ不均一性は開孔部材116を用いて除去することができる。開孔部材116は典型的には、開口部を有する不透明な物体であり、エネルギーが開口部と同様の断面形状で開口部を通り抜けることができる。
【0045】
図5は、一実施形態による開孔部材500の側面図である。
図1の開孔部材116は
図5の開孔部材500とすることができる。開孔部材500は、選択された波長を有する光またはレーザ放射など、選択された形のエネルギーに対して概ね透明である第1の部材502を有する。不透明または反射性とすることができるエネルギー阻止部材504が、第1の部材502の表面の一部にわたって形成され、エネルギーが開口部508の形状において通り抜けることになる開口部508を画定する。第2の部材506が第1の部材502およびエネルギー阻止部材504にわたって配置され、開口部508を覆う。第2の部材506も、開孔部材500を通って透過されることになるエネルギーに対して概ね透明であり、第1の部材502と同じ材料とすることができる。開孔部材500のエッジは、微粒子が開口部508に入らないのを確実にする被覆510によって包囲される。
【0046】
開孔部材500は、エネルギー阻止部材504が開孔部材500上に入射するエネルギーの焦点面512にあるように位置決めされ、エネルギー場の正確な打切りを確実にする。開口部508はエネルギーの焦点面に位置決めされるので、開口部内、例えば、第1の部材502の表面上に集まる任意の粒子が、送信されるエネルギー場に影を落とし、その結果、基板の処理が不均一になる。開口部508を第2の部材506によって覆い、開孔部材500のエッジを包囲することによって、開孔部材500に接着する任意の粒子が、最終的なエネルギー場の焦点から外れるほど焦点面から十分に離れるのを確実にし、粒子の影に起因する最終的なエネルギー場の強度変動が低減されるようにする。
【0047】
第1の部材502および第2の部材506は典型的には同じ材料、通常ガラスまたは石英から形成される。エネルギー阻止部材504は、金属、白色塗料または誘電体ミラーなど不透明または反射性の材料とすることができる。エネルギー阻止部材504は形成および整形することができ、形成および整形されたエネルギー阻止部材504は、カナダバルサムなど適切な接着剤を用いて第1の部材502に貼付することができる。代替として、エネルギー阻止部材504は、第1の部材502上に堆積することができ、その後、開口部508を設けるためにエッチングすることができる。第2の部材506は典型的には、接着剤を用いてエネルギー阻止部材504に貼付される。
【0048】
被覆510は気体に対して浸透性または不浸透性である材料とすることができる。被覆は接着剤、または接着剤を用いて貼付される硬質材料とすることができる。代替として、被覆は第1の部材502および第2の部材506のエッジとエネルギー阻止部材504のエッジとを融着することによって形成することができる。
【0049】
開孔部材500の屈折効果を回避するために、エネルギー阻止部材504の内側エッジ514によって画定される開口部508の側壁は、ホモジナイザ108から現れる光子の伝搬方向と一致するように次第に細くするか、角度を付けるか、または傾斜させることができる。
【0050】
図5Bは、別の実施形態による開孔部材520の側面図である。
図1の開孔部材116は
図5Bの開孔部材520とすることができる。開孔部材520は
図5Aの開孔部材500と同じであるが、開孔部材520が中央開口部508を有しないことが異なる。開孔部材520は、その中に埋め込まれたエネルギー阻止部材504を有する透過性部材522を含む。開孔部材520内の異なる媒体間の界面の数を少なくすることによって、屈折効果を低減することができる。
図5Aに関連して上述したように、
図5Bの実施形態では、次第に細くされるエネルギー阻止部材504の内側エッジ514が示される。
【0051】
図5Bの開孔部材520は、第1の透過性部材の中央台状体の周囲に環状の棚状部をエッチングまたは研削し、環状の棚状部に環状のエネルギー阻止部材を接着し、その後、カナダバルサムなど光学的に作用しない接着剤を用いて、第2の透過性部材をエネルギー阻止部材および第1の透過性部材の台状体に接着することによって形成することができる。代替として、エネルギー阻止部材は中央台状体を有しない第1の透過性部材に接着することができ、第2の透過性部材は、エネルギー阻止部材および第1の透過性部材の露出した部分にわたって材料を堆積し、中央開口部を透過性材料で満たすことによって形成される。透過性材料の堆積は当該技術分野において周知であり、任意の既知の堆積またはコーティングプロセスを用いて実施することができる。
【0052】
開孔部材は様々なサイズにすることができる。小さな開孔を有する開孔部材を大きな開孔を有する開孔部材に近接して位置決めして、透過するエネルギー場のサイズを小さくすることができる。より大きな開孔を利用するために、小さな開孔部材を再び除去することができる。種々のサイズを有するエリアをアニールするためにエネルギー場のサイズを変更できるように、種々のサイズを有する複数の開孔部材を設けることもできる。代替として、単一の開孔部材が可変開孔サイズを有することができる。透明なハウジング内に2つの長方形のチャネルを形成することができ、透明なハウジングの中央部分において一対の半板が接触するように、長方形のチャネル内に二対の不透明または反射性作動半板を配置することができる。長方形チャネル内で各対の半板を近接または離反するように移動させることによって可変サイズの長方形開孔を形成できるように、半板対を直交する軸に沿って移動するように向けることができる。
【0053】
開孔部材500および520は、任意の所望のやり方で開孔を通り抜ける光の像を拡大または縮小することができる。開孔部材は、基本的に拡大ではない1:1の倍率を有することができるか、または約1.1:1〜約5:1、例えば、約2:1または約4:1の倍率によって像のサイズを縮小することができる。サイズ縮小によって結像されるエネルギー場のエッジを鮮明にすることができるので、実施形態によってはサイズの縮小が有用な場合がある。結像されるエネルギー場の対象エリアを拡大することによって効率およびスループットを改善するために、実施形態によっては、約1:1.1〜約1:5、例えば、約1:2の倍率によって拡大することが有用な場合もある。
【0054】
図1を再び参照すると、結像光学系118が、開孔部材116から、整形され、平滑化され、打ち切られたエネルギー場を受信し、そのエネルギー場を、基板支持体110の工作面上に配置される基板上に投影する。
図6は、一実施形態による結像システム600の概略図である。
図1の結像システム118は、
図6の結像システム600とすることができる。結像システム118は、透過モジュール602と、検出モジュール616とを有する。透過モジュール602は、第1の透過光学系610と、第2の透過光学系614とを有し、第1の透過光学系610と第2の透過光学系614との間にサンプリング光学系612が介在する。
【0055】
サンプリング光学系612は基板支持体に、かつ検出モジュール616に光学的に結合される反射面618を有する。開孔部材116からのエネルギーが透過光学系602に入り、第1の透過光学系610、サンプリング光学系612および第2の透過光学系614を通り抜け、基板支持体110の工作面120上に配置される基板を照明する。基板から反射されたエネルギーは、第2の透過光学系614を通って戻るように進行し、サンプリング光学系612の反射面620から反射する。反射されたエネルギーは検出光学系616に誘導される。
【0056】
検出光学系616は、第1の誘導光学系604と、第2の誘導光学系606と、検出器608とを有する。第1の誘導光学系604および第2の誘導光学系606は基板から反射されたエネルギー場を検出器608上の所望の位置に位置決めするように動作可能である。これにより、エネルギー場の種々の部分を検出器608において高い精度で結像できるようになる。検出器608は、基板と相互作用するエネルギー場を視覚化できるようにするフォトダイオードアレイまたはCCDマトリックスとすることができる。基板がエネルギー場によって照明されるときに、結像システム600を用いて基板上のマーカを視認し、エネルギー場と基板上の所望の構造との位置合わせを容易にすることができる。代替として、一定の低強度の周囲光源を設けて、基板がエネルギー場によって照明されないときに、結像システム600を通して基板を視認するのを容易にすることができる。x、y、zおよびθに対してバーニア調整を行うことができ、観測結果に基づいて結像システム600を用いて基板を位置決めし、基板の第1のアニール領域を処理するためにエネルギーおよび基板の正確な位置合わせおよび合焦を達成することができる。その後、後続の位置決めは、コントローラ112の管理下で基板支持体110によって自動的に実行される。
【0057】
アニーリング中の基板の特性を指示するために、診断機器を設けることができる。結像モジュール118または600は、基板によって放出される放射強度を温度の関数として指示する1つまたは複数の温度センサ618を有することができる。そのような目的で高温計を用いることもできる。結像モジュール118または600は、基板の吸収率の変化を指示する1つまたは複数の表面吸収モニタ622も有することができる。基板をアニールするために用いられる波長における反射光の強度を測定することによって、表面吸収モニタ622は、反射性の高い状態から吸収性の高い状態、またはその逆への状態変化を信号として出力する。そのような目的で反射率計を用いることができる。幾つかの実施形態では、2つ以上の温度センサおよび2つ以上の表面吸収モニタを設けることによって、精度を改善するために2つ以上の読み値を比較できるようにする場合もある。
【0058】
図6の結像モジュール600内に2つの診断機器618および622が示されるが、基板の条件を監視する位置に、任意の数の診断機器を配置することができる。幾つかの実施形態では、音響検出器または光音響検出器またはその両方を配置して、基板上のアニーリングエネルギーの音響効果を検出することができる。基板からの音響応答を用いて、相変化など基板材料の状態変化を指示することができる。一実施形態では、聴取デバイスが、基板の一部の溶融を検出することができる。
【0059】
本明細書において開示された方法を用いて、基板支持体の工作面上に配置された基板に熱エネルギーが結合される。その熱エネルギーは、約5nsec〜約50nsec、例えば、約10nsecなど、約1nsec〜約100nsecの持続時間の短いパルスにおいて、基板表面の一連の部分に約0.2J/cm
2〜約1.0J/cm
2の平均強度の電磁エネルギーを加えることによってもたらされる。パルス間の持続時間を約1μsec〜約500μsec、例えば、約100μsecなど、約500nsec〜約1msecにして、複数のそのようなパルスを基板の各部分に加え、次のパルスが到着する前に、基板を通して熱エネルギーを完全に散逸できるようにする。エネルギー場は典型的には約0.1cm
2〜約10.0cm
2、例えば、約6cm
2の面積を覆い、結果として、各パルスによって約0.2MW〜約10GWの電力が送達される。大抵の応用形態では、各パルスによって送達される電力は、約10MW〜約500MWになる。送達される電力密度は典型的には、約5MW/cm
2〜約100MW/cm
2、例えば、約10MW/cm
2など、約2MW/cm
2〜約1GW/cm
2である。各パルスにおいて加えられるエネルギー場は、平均強度の約3.5%未満、例えば、約3.0%未満など約4%以下である、強度の空間標準偏差を有する。
【0060】
基板のアニーリングにとって大抵の場合に望まれる高い電力および均一なエネルギー場の送達は、アニールされることになる基板によって容易に吸収される放射を放出する複数のレーザを備えるエネルギー源102を用いて成し遂げることができる。一態様では、複数の周波数逓倍Nd:YAGレーザに基づいて、約532nmの波長を有するレーザ放射が用いられる。シリコン基板の適切なアニーリングのために、約50MWの個々の電力出力を有する4つのそのようなレーザを併用することができる。
【0061】
エネルギーのパルスは、エネルギービームの発生または伝搬を遮断することによって形成することができる。ビームの光路を横切って高速のシャッタを配置することによってエネルギービームを遮断することができる。シャッタは、電圧を印加すると10nsec以下で透明から反射性に変化することができるLCDセルとすることができる。また、シャッタは、回転する孔板とすることができ、穿孔のサイズおよび間隔は、選択された持続時間を有するエネルギーパルスを開口部から透過させるために選択される回転速度に結び付けられる。そのようなデバイスは、エネルギー源自体に取り付けることができるか、またはエネルギー源から離れて配置することができる。能動または受動qスイッチまたは利得スイッチを用いることができる。レーザによって放出されるレーザ光のビームを遮断することによってパルスを形成するために、レーザに近接してポッケルスセルも位置決めすることができる。所望により、複数のパルス発生器をエネルギー源に結合して、異なる持続時間を有するパルスからなる周期的なシーケンスを形成することができる。例えば、レーザ源にqスイッチを適用することができ、qスイッチに類似の周期を有する回転シャッタを、qスイッチ式レーザによって発生したパルスの光路を横切って位置決めして、種々の持続時間を有するパルスからなる周期的なパターンを形成することができる。
【0062】
パルスの空間および時間モードの数を増やすことによって、パルスの自己相関を小さくする。相関は、空間、時間のいずれにしても、種々の光子が同相に関連付けられる範囲である。同じ波長の2つの光子が同じ方向において空間を通って伝搬しており、かつそれらの電界ベクトルが同時に同じ方向を指している場合には、それらの光子は、その空間的な関係にかかわらず、時間的に相関している。2つの光子(またはその電界ベクトル)が伝搬方向に対して垂直な平面内で同じ点に位置する場合には、それらの2つの光子は、いかなる時間的な位相関係にかかわらず、空間的に相関している。
【0063】
相関はコヒーレンスに関連付けられ、それらの用語は大抵の場合に交換可能に用いられる。光子の相関は干渉パターンを引き起こし、エネルギー場の均一性を低下させる。コヒーレンス長は、それを超えると空間的、または時間的なコヒーレンスまたは相関が或るしきい値未満に落ちる距離と定義される。
【0064】
パルス内の光子は、一連のスプリッタを用いてパルスを幾つかのサブパルスに分離し、任意の2つの光路長間の差が元のパルスのコヒーレンス長よりも長くなるように、異なる光路長を有する異なる光路に沿って各サブパルスを送ることによって時間的に相関除去することができる。これは、進行した距離とともにコヒーレンスが自然に低下することに起因して、最初に相関していた光子が、異なる光路後に異なる位相を有する可能性が高くなるのを概ね確実にする。例えば、Nd:YAGレーザおよびTi:サファイアレーザは典型的には、数ミリメートル程度のコヒーレンス長を有するパルスを発生させる。そのようなパルスを分割し、数ミリメートルよりも長い差を有する経路に沿って各パルス部分を送信する結果として、時間的に相関除去される。異なる長さを有する多重反射経路に沿ってサブパルスを送信することが、用いることができる1つの技法である。異なる屈折率によって定義される異なる実効長を有する多重屈折経路に沿ってサブパルスを送信することが別の技法である。パルスを時間的に相関除去するために、
図3A、
図3Dおよび
図3Gに関連して説明されたパルス整形モジュールを用いることができる。
【0065】
或るパルスからエネルギー場を作り出し、そのエネルギー場の複数の部分を重ね合わせることによって空間的な相関除去を達成することができる。例えば、1つのエネルギー場の複数の部分を同じエリア上に別々に結像して、空間的に相関除去された像を形成することができる。これは、最初に相関していた任意の光子を空間的に分離するのを概ね確実にする。一例では、正方形のエネルギー場を、正方形の部分からなるチェッカー盤様式の8×8サンプリングに分割することができ、各正方形部分を、全ての像が重なり合うように、元のエネルギー場と同じサイズの場に結像させる。重なり合う像の数が多いほど、エネルギーの相関が除去され、結果として、より均一な像になる。パルスを空間的に相関除去する際に、
図4Aおよび
図4Bのホモジナイザ400および450が有用である場合がある。
【0066】
上記の相関除去動作後に結像するレーザパルスは一般的に、エネルギー強度が均一な断面を有する。厳密な実施形態によれば、上記のプロセスに従って処置されたパルス状エネルギー場の断面エネルギー強度は、約2.7%以下、例えば、2.5%など、約3.0%以下の標準偏差を有することができる。エネルギー場のエッジ領域は、エネルギー場の寸法の約5%未満、例えば、エネルギー場の約1%未満など、エネルギー場の寸法の約10%未満である寸法に沿って1/eだけ減衰する場合がある減衰するエネルギー強度を示すことになる。エッジ領域は、
図5Aおよび
図5Bの開孔部材500および520など開孔を用いて打ち切ることができるか、または処置ゾーンの外側、例えば、基板上のデバイスエリア間のカーフ(kurf)空間において基板を照明できるようにすることができる。
【0067】
エネルギー場が打ち切られる場合には、不均一なエッジ領域を切り取るように、開孔部材を典型的にはパルスの光路を横切って位置決めする。像をきれいに打ち切るために、開孔はエネルギー場の焦点面付近に位置する。パルス内の光子の伝搬方向と一致するように開孔内部エッジを次第に細くすることによって、開孔内部エッジの屈折効果を最小限に抑えることができる。種々の開孔サイズおよび形状を有する複数の取外し可能な開孔部材を用いて、所望のサイズおよび/または形状を有する開孔部材を挿入するか、または取り出すことによって、開孔のサイズおよび/または形状を変更することができる。代替として、可変開孔部材を用いることができる。
【0068】
基板をアニールするために、エネルギー場を基板の一部に向かって誘導することができる。所望により、エネルギー場の光路に沿って基板表面を視認することによって、エネルギー場を、基板表面上の位置合わせマークなど構造と位置合わせすることができる。基板からの反射光は捕捉し、カメラまたはCCDマトリックスなど視認デバイスに向かって誘導することができる。
図6の結像システム600の場合のように、マジックミラーなど反射面を、エネルギー場の光路に沿って配置し、反射光を捕捉することができる。
【0069】
基板の熱状態は、処理中に基板によって放出、反射または透過された放射を視認することによって監視することができる。基板によって放出される放射は、基板の温度を指示する。基板によって反射または透過された放射は、基板の吸収率を指示し、それにより、反射状態から吸収状態、またはその逆への基板の物理的構造の変化が示される。そのようなデバイスからの信号の精度は、複数のデバイスを用いて結果を比較することによって改善することができる。
【0070】
熱処理装置が、電磁エネルギーのパルスを生成するように動作可能な電磁エネルギー源と、電磁エネルギー源から電磁エネルギーのパルスを受信するように位置決めされるパルスコンバイナ、パルスシェーパ、ホモジナイザおよび開孔部材を備える光学システムと、光学システムに対して基板を移動させるように動作可能な基板支持体と、光学システムの光路に沿って基板を視認するように動作可能な結像システムとを有することができる。
【0071】
電磁エネルギーのパルスを合成する装置が、第1のエネルギー入力と、第2のエネルギー入力と、第1のエネルギーに第1の特性を与える第1の光学系と、第2のエネルギーに第2の特性を与える第2の光学系と、第1の特性および第2の特性に基づいてエネルギーを反射または透過する選択面と、第1のエネルギーを選択面の第1の側にある第1の場所に誘導し、第2のエネルギーを選択面の第1の側の反対に位置する選択面の第2の側にある第2の場所に誘導する誘導光学系であって、第1の場所と第2の場所が位置合わせされる、誘導光学部品と、選択面に光学的に結合される診断モジュールとを有することができる。
【0072】
熱処理システムが、複数のレーザエネルギー源であって、それぞれ電子タイマに結合される能動qスイッチを有する、複数のレーザエネルギー源と、レーザエネルギー源に光学的に結合される少なくとも2つのコンバイナであって、各コンバイナは選択光学系を有し、選択光学系は選択面を有する、少なくとも2つのコンバイナと、レーザエネルギー源から選択面の互いに反対側に光を誘導する光学システムと、少なくとも3つのマイクロレンズアレイを備えるホモジナイザとを有することができる。
【0073】
基板処理システムが、電磁エネルギー源と、電磁エネルギーを合焦する光学システムと、その中に埋め込まれた反射部分を有する開孔部材であって、反射部分は電磁エネルギーがそこを通って投影する開口部を有し、反射部分の表面は電磁エネルギーの焦点面に位置決めされる、開孔部材とを有することができる。
【0074】
電磁エネルギー場を基板の一部に向かって誘導することによって基板を処理することができ、電磁エネルギー場は複数のレーザからの光を含み、複数のレーザは、合成光学系の選択面の2つの側を通り抜けることによって合成され、時間的に相関除去され、空間的に相関除去され、基板に光学的に結合される反射体を通り抜けている。
【0075】
また、電磁エネルギー場を基板の一部に向かって誘導することであって、電磁エネルギー場は2つ以上のレーザからのパルス状の光を含む、誘導することと、フォトダイオードを用いて電磁エネルギー場の時間形状を検出することと、焦電検出器を用いて電磁エネルギー場のエネルギー含量を検出することと、フォトダイオードによって検出された時間形状に基づいてレーザのうちの1つまたは複数のレーザのパルスタイミングを調整することと、焦電検出器によって検出された電磁エネルギー場のエネルギー含量に基づいて、レーザの1つまたは複数を減衰させることとによって、基板を処理することもできる。
【0076】
2つ以上のレーザからの偏光を合成し、時間的および空間的に光の相関を除去することによって、約3%以下の強度不均一性の空間標準偏差と少なくとも約0.2J/cm
2のエネルギー含量とを有するエネルギー場を形成することと、エネルギー場をパルスとして基板表面の第1の部分に向かって誘導することと、基板を移動することと、エネルギー場を基板表面の第2の部分に向かって誘導することとによって、基板を処理することもできる。
【0077】
整形された電磁エネルギー場を基板に光学的に結合される反射体を通して基板に向かって誘導することと、反射体を用いて基板から反射された光を視認することによって、基板とエネルギー場との間の位置合わせを検出することと、基板とエネルギー場との位置合わせを調整することとによって、基板を処理することもできる。
【0078】
これまでの説明は本発明の実施形態を対象にしているが、その基本的範囲から逸脱することなく、本発明の他の実施形態および更なる実施形態を考案することができ、本発明の範囲は添付の特許請求の範囲によって決定される。