(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
以下、本発明を、1)樹脂組成物、及び、2)成形体、に項分けして詳細に説明する。
1)樹脂組成物
本発明の樹脂組成物は、樹脂成分として、結晶性環状オレフィン開環重合体水素添加物0〜99重量%、好ましくは0〜95重量%と、変性結晶性環状オレフィン開環重合体水素添加物1〜100重量%、好ましくは5〜100重量%とを含有する。機械強度の最大値は、変性結晶性環状オレフィン開環重合体水素添加物の割合が、3〜20重量部の間にあり、変性結晶性環状オレフィン開環重合体水素添加物の割合が多すぎると、緩やかに機械特性が低下する傾向にあるが、変性結晶性環状オレフィン開環重合体水素添加物が100重量%であっても、変性結晶性環状オレフィン開環重合体水素添加物を配合しない場合(即ち結晶性環状オレフィン開環重合体水素添加物が100重量%)より、2割程度以上高い機械特性が得られる。
【0015】
本発明の樹脂組成物は、上述した樹脂成分100重量部に対して、ガラス繊維(以下、「ガラスフィラー」ということもある)を5〜150重量部、好ましくは10〜100重量部、より好ましくは30〜90重量部含有する。
【0016】
<結晶性環状オレフィン開環重合体水素添加物>
本発明に用いる結晶性環状オレフィン開環重合体水素添加物は、3環以上の環を有する多環式ノルボルネン系単量体(以下、単に「多環式ノルボルネン系単量体」ということがある)を少なくとも含有する単量体を開環重合し、得られた開環重合体の主鎖二重結合を水素化することにより得られるものであって、かつ、結晶性を有するものである。
【0017】
前記結晶性環状オレフィン開環重合体水素添加物を得る方法は、特に限定されるものではないが、例えば特開2006−52333号公報に記載される方法が挙げられる。すなわち、この方法は、周期表第6族遷移金属化合物を重合触媒として用いて、3環以上の環を有するノルボルネン系単量体を溶液重合して開環重合体を得る工程により、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を得て、該開環重合体の主鎖二重結合を水素化することで、目的とする結晶性環状オレフィン開環重合体水素添加物を効率よく得ることができるというものである。
【0018】
本発明に用いる結晶性環状オレフィン開環重合体は、3環以上の環を有する多環式ノルボルネン系単量体を少なくとも単量体の一部として用いて得ることができる。
【0019】
3環以上の環を有する多環式ノルボルネン系単量体は、分子内に、ノルボルネン骨格と、そのノルボルネン骨格に縮合した1つ以上の環構造を有するノルボルネン系化合物であればよい。すなわち、3環以上の環を有する多環式ノルボルネン系単量体とは、分子内にノルボルネン環と、該ノルボルネン環に縮合している1つ以上の環とを有するノルボルネン系単量体である。樹脂組成物からなる成形体の耐熱性を特に良好なものとする観点からは、多環式ノルボルネン系単量体として、下記式(1)又は(2)で表される化合物が特に好ましい。
【0022】
式(1)、(2)中、R
1、R
2、R
4〜R
7はそれぞれ独立に、水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表す。また、R
1とR
2、R
4とR
6はそれぞれ結合して環を形成していてもよい。R
3は置換基を有していてもよい炭素数1〜20の二価の炭化水素基である。mは1又は2である。
【0023】
R
1、R
2、R
4〜R
7のハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
【0024】
置換基を有していてもよい炭素数1〜20の炭化水素基の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基等のアルケニル基;エチニル基、1−プロピニル基、2−プロピニル(プロパルギル)基、3−ブチニル基、ペンチニル基、ヘキシニル基等のアルキニル基;フェニル基、トリル基、キシリル基、ビフェニリル基、1−ナフチル基、2−ナフチル基、アントリル基、フェナントリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;等が挙げられる。
【0025】
これらの置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
【0026】
R
3の置換基を有していてもよい炭素数1〜20の二価の炭化水素基の、二価の炭化水素基としては、メチレン基、エチレン基等のアルキレン基;ビニレン基等のアルケニレン基;エチニレン基等のアルキニレン基;フェニレン基等のアリーレン基;これらの組み合わせ;等が挙げられる。その置換基としては、R
1、R
2、R
4〜R
7の炭化水素基の置換基として例示したのと同様のものが挙げられる。
【0027】
式(1)で表される多環式ノルボルネン系単量体の具体例としては、ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.0
2,6]デカ−8−エン、テトラシクロ[9.2.1.0
2,10.0
3,8]テトラデカ−3,5,7,12−テトラエン(1,4−メタノ−1,4,4a,9a−テトラヒドロ−9H−フルオレンともいう)、テトラシクロ[10.2.1.0
2,11.0
4,9]ペンタデカ−4,6,8,13−テトラエン(1,4−メタノ−1,4,4a,9,9a,10−ヘキサヒドロアントラセンともいう)が挙げられる。
【0028】
また、式(2)で表される多環式ノルボルネン系単量体としては、式(2)のmが1である場合のテトラシクロドデセン類と、式(2)のmが2である場合のヘキサシクロヘプタデセン類が挙げられる。
【0029】
テトラシクロドデセン類の具体例としては、テトラシクロドデセン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、8−シクロヘキシルテトラシクロドデセン、8−シクロペンチルテトラシクロドデセン等の無置換又はアルキル基を有するテトラシクロドデセン類;8−メチリデンテトラシクロドデセン、8−エチリデンテトラシクロドデセン、8−ビニルテトラシクロドデセン、8−プロペニルテトラシクロドデセン、8−シクロヘキセニルテトラシクロドデセン、8−シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;8−フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−メトキシカルボニルテトラシクロドデセン、8−ヒドロキシメチルテトラシクロドデセン、8−カルボキシテトラシクロドデセン、テトラシクロドデセン−8,9−ジカルボン酸、テトラシクロドデセン−8,9−ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;8−シアノテトラシクロドデセン、テトラシクロドデセン−8,9−ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;8−クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;8−トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;が挙げられる。
【0030】
ヘキサシクロヘプタデセン類の具体例としては、ヘキサシクロヘプタデセン、12−メチルヘキサシクロヘプタデセン、12−エチルヘキサシクロヘプタデセン、12−シクロヘキシルヘキサシクロヘプタデセン、12−シクロペンチルヘキサシクロヘプタデセン等の無置換又はアルキル基を有するヘキサシクロヘプタデセン類;12−メチリデンヘキサシクロヘプタデセン、12−エチリデンヘキサシクロヘプタデセン、12−ビニルヘキサシクロヘプタデセン、12−プロペニルヘキサシクロヘプタデセン、12−シクロヘキセニルヘキサシクロヘプタデセン、12−シクロペンテニルヘキサシクロヘプタデセン等の環外に二重結合を有するヘキサシクロヘプタデセン類;12−フェニルヘキサシクロヘプタデセン等の芳香環を有するヘキサシクロヘプタデセン類;12−メトキシカルボニルヘキサシクロヘプタデセン、12−メチル−12−メトキシカルボニルヘキサシクロヘプタデセン、12−ヒドロキシメチルヘキサシクロヘプタデセン、12−カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13−ジカルボン酸、ヘキサシクロヘプタデセン12,13−ジカルボン酸無水物等の酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;12−シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13−ジカルボン酸イミド等の窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;12−クロロヘキサシクロヘプタデセン等のハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;12−トリメトキシシリルヘキサシクロヘプタデセン等のケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類;が挙げられる。
【0031】
これらの多環式ノルボルネン系単量体は、1種単独で、或いは2種以上を組み合わせて用いることができる。
【0032】
なかでも、環状オレフィン開環重合体水素添加物の結晶性を高め、得られる成形体の耐熱性を特に良好なものとする観点からは、多環式ノルボルネン系単量体全体に対して50重量%以上のジシクロペンタジエンを含むものを用いることが好ましく、ジシクロペンタジエンを単独で用いることが特に好ましい。
【0033】
また、多環式ノルボルネン系単量体には、エンド体及びエキソ体の立体異性体が存在するが、そのどちらも単量体として用いることが可能であり、一方の異性体を単独で用いてもよいし、エンド体及びエキソ体が任意の割合で存在する異性体混合物を用いることもできる。但し、環状オレフィン開環重合体水素添加物の結晶性を高め、得られる樹脂組成物の耐熱性を特に良好なものとする観点からは、一方の立体異性体の割合を高くすることが好ましく、例えば、エンド体又はエキソ体の割合が、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが特に好ましい。なお、割合を高くする立体異性体は、合成容易性の観点から、エンド体であることが好ましい。
【0034】
環状オレフィン開環重合体を得るにあたっては、結晶性を有する重合体を与える範囲において、多環式ノルボルネン系単量体に、多環式ノルボルネン系単量体以外の単量体を共重合させてもよい。多環式ノルボルネン系単量体と共重合できる単量体としては、ノルボルネン骨格に縮合した環構造を有しない2環のノルボルネン系化合物、モノ環状オレフィン、及び環状ジエン、並びにこれらの誘導体が挙げられる。
【0035】
ノルボルネン骨格に縮合した環構造を有しない2環のノルボルネン系化合物の具体例としては、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−ブチルノルボルネン、5−ヘキシルノルボルネン、5−デシルノルボルネン、5−シクロヘキシルノルボルネン、5−シクロペンチルノルボルネン等の無置換又はアルキル基を有するノルボルネン類;5−エチリデンノルボルネン、5−ビニルノルボルネン、5−プロペニルノルボルネン、5−シクロヘキセニルノルボルネン、5−シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;5−フェニルノルボルネン等の芳香環を有するノルボルネン類;5−メトキシカルボニルノルボルネン、5−エトキシカルボニルノルボルネン、5−メチル−5−メトキシカルボニルノルボルネン、5−メチル−5−エトキシカルボニルノルボルネン、ノルボルネニル−2−メチルプロピオネイト、ノルボルネニル−2−メチルオクタネイト、5−ヒドロキシメチルノルボルネン、5,6−ジ(ヒドロキシメチル)ノルボルネン、5,5−ジ(ヒドロキシメチル)ノルボルネン、5−ヒドロキシ−i−プロピルノルボルネン、5,6−ジカルボキシノルボルネン、5−メトキシカルボニル−6−カルボキシノルボルネン、等の酸素原子を含む極性基を有するノルボルネン類;5−シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;が挙げられる。
【0036】
モノ環状オレフィンの具体例としては、シクロヘキセン、シクロヘプテン、シクロオクテンが挙げられる。
【0037】
また、環状ジエンの具体例としては、シクロヘキサジエン、シクロヘプタジエンが挙げられる。
【0038】
なかでも、環状オレフィン開環重合体水素添加物の結晶性を高め、得られる成形体の耐熱性を特に良好なものとする観点からは、水素化反応に供する環状オレフィン開環重合体を得るための単量体として、用いる単量体全体に対して80重量%以上の多環式ノルボルネン系単量体を含むことが好ましく、用いる単量体が実質的に多環式ノルボルネン系単量体のみで構成されることが特に好ましい。
【0039】
シンジオタクチック立体規則性を有する環状オレフィン開環重合体水素添加物を得るためには、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を水素化反応に供する必要がある。
【0040】
したがって、多環式ノルボルネン系単量体を開環重合するにあたっては、環状オレフィン開環重合体にシンジオタクチック立体規則性を与えることができる開環重合触媒を用いる必要がある。このような開環重合触媒としては、環状オレフィン開環重合体にシンジオタクチック立体規則性を与えることができるものであれば特に限定されないが、下記式(3)で表される金属化合物(以下、「金属化合物(3)」ということがある。)を含んでなる開環重合触媒が好適である。
【0042】
式中、Mは周期律表第6族の遷移金属原子から選択される金属原子であり、R
8は3,4,5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又はCH
2R
10で表される基であり、R
9は置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基であり、Xはハロゲン原子、アルキル基、アリール基及びアルキルシリル基から選択される基であり、Lは電子供与性の中性配位子であり、aは0又は1であり、bは0〜2の整数である。R
10は水素原子、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基である。
【0043】
金属化合物(3)を構成する金属原子(M)は、周期律表第6族の遷移金属原子(クロム、モリブデン、タングステン)から選択される。なかでも、モリブデン又はタングステンが好適に用いられ、タングステンが特に好適に用いられる。
金属化合物(3)は、金属イミド結合を含んでなるものである。R
8は、金属イミド結合を構成する窒素原子上の置換基である。
【0044】
3,4,5位の少なくとも1つの位置に置換基を有していてもよいフェニル基が有しうる置換基としては、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;等が挙げられ、さらに、3,4,5位の少なくとも2つの位置に存在する置換基が互いに結合したものであってもよい。
【0045】
3,4,5位の少なくとも1つの位置に置換基を有していてもよいフェニル基の具体例としては、フェニル基;4−メチルフェニル基、4−クロロフェニル基、3−メトキシフェニル基、4−シクロヘキシルフェニル基、4−メトキシフェニル基等の一置換フェニル基;3,5−ジメチルフェニル基、3,5−ジクロロフェニル基、3,4−ジメチルフェニル基、3,5−ジメトキシフェニル基等の二置換フェニル基;3,4,5−トリメチルフェニル基、3,4,5−トリクロロフェニル基等の三置換フェニル基;2−ナフチル基、3−メチル−2−ナフチル基、4−メチル−2−ナフチル基等の置換基を有していてもよい2−ナフチル基;が挙げられる。
【0046】
金属化合物(3)において、窒素原子上の置換基(式(3)中のR
8)として用いられ得る、−CH
2R
10で表される基におけるR
10の、置換基を有していてもよいアルキル基の炭素数は、特に限定されないが、通常1〜20、好ましくは1〜10である。また、このアルキル基は直鎖状であっても分岐状であってもよい。このアルキル基が有し得る置換基は、特に限定されないが、例えば、フェニル基、4−メチルフェニル基等の置換基を有していてもよいフェニル基;メトキシ基、エトキシ基等のアルコキシル基;が挙げられる。
【0047】
R
10の、置換基を有していてもよいアリール基としては、フェニル基、1−ナフチル基、2−ナフチル基等が挙げられる。このアリール基の置換基としては、特に限定されないが、例えば、フェニル基、4−メチルフェニル基等の置換基を有していてもよいフェニル基;メトキシ基、エトキシ基等のアルコキシル基;等が挙げられる。
【0048】
R
10としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等の炭素数が1〜20のアルキル基が好ましい。
【0049】
金属化合物(3)は、ハロゲン原子、アルキル基、アリール基及びアルキルシリル基から選択される基を3個又は4個有してなる。すなわち、式(3)において、Xは、ハロゲン原子、アルキル基、アリール基及びアルキルシリル基から選択される基を表す。なお、金属化合物(3)においてXで表される基が2以上あるとき、それらの基は互いに結合していてもよい。
【0050】
Xで表される基となり得るハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ネオペンチル基、ベンジル基、ネオフィル基等が挙げられる。アリール基としては、フェニル基、4−メチルフェニル基、2,6−ジメチルフェニル基、1−ナフチル基、2−ナフチル基等が挙げられる。アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基等が挙げられる。
【0051】
金属化合物(3)は、1個の金属アルコキシド結合又は1個の金属アリールオキシド結合を有するものであってもよい。この金属アルコキシド結合又は金属アリールオキシド結合を構成する酸素原子上の置換基(式(3)中のR
9)は、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基である。このR
9で表される基となり得る、置換基を有していてもよいアルキル基や置換基を有していてもよいアリール基としては、前述のR
10で表される基におけるものと同様のものを用いることができる。
【0052】
金属化合物(3)は、1個又は2個の電子供与性の中性配位子を有するものであってもよい。この電子供与性の中性配位子(式(3)中のL)としては、例えば、周期律表第14族又は第15族の原子を含有する電子供与性化合物が挙げられる。その具体例としては、トリメチルホスフィン、トリイソプロピルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン等のホスフィン類;ジエチルエーテル、ジブチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;トリメチルアミン、トリエチルアミン、ピリジン、ルチジン等のアミン類;が挙げられる。これらの中でも、エーテル類が特に好適に用いられる。
【0053】
シンジオタクチック立体規則性を有する環状オレフィン開環重合体を得るための開環重合触媒として、特に好適に用いられる金属化合物(3)としては、フェニルイミド基を有するタングステン化合物(式(3)中、Mがタングステン原子で、かつ、R
8がフェニル基である化合物)を挙げることができ、その中でも、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)が特に好適である。
【0054】
金属化合物(3)は、第6族遷移金属のオキシハロゲン化物と、3,4,5位の少なくとも1つの位置に置換基を有していてもよいフェニルイソシアナート類、又は一置換メチルイソシアナート類と、電子供与性の中性配位子(L)、及び必要に応じてアルコール類、金属アルコキシド、金属アリールオキシドを混合すること等(例えば、特開平5−345817号公報に記載された方法)により合成することができる。合成された金属化合物(3)は、結晶化等により精製・単離したものを用いてもよいし、精製することなく、触媒合成溶液をそのまま開環重合触媒として使用することもできる。
【0055】
開環重合触媒として用いる金属化合物(3)の使用量は、(金属化合物(3):用いる単量体全体)のモル比で、通常1:100〜1:2,000,000、好ましくは1:500〜1:1,000,000、より好ましくは1:1,000〜1:500,000となる量である。触媒量が多すぎると触媒除去が困難となるおそれがあり、少なすぎると十分な重合活性が得られない場合がある。
【0056】
金属化合物(3)を開環重合触媒として用いるにあたっては、金属化合物(3)を単独で使用することもできるが、重合活性を高くする観点から、金属化合物(3)に有機金属還元剤を併用することが好ましい。
【0057】
用いる有機金属還元剤としては、炭素数1〜20の炭化水素基を有する周期律表第1、2、12、13、14族が挙げられる。なかでも、有機リチウム、有機マグネシウム、有機亜鉛、有機アルミニウム、又は有機スズが好ましく用いられ、有機アルミニウム又は有機スズが特に好ましく用いられる。
【0058】
有機リチウムとしては、n−ブチルリチウム、メチルリチウム、フェニルリチウム等が挙げられる。有機マグネシウムとしては、ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n−ブチルマグネシウムクロリド、アリルマグネシウムブロミド等が挙げられる。有機亜鉛としては、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛等が挙げられる。有機アルミニウムとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムイソブトキシド、エチルアルミニウムジエトキシド、イソブチルアルミニウムジイソブトキシド等が挙げられる。有機スズとしては、テトラメチルスズ、テトラ(n−ブチル)スズ、テトラフェニルスズ等が挙げられる。
【0059】
有機金属還元剤の使用量は、金属化合物(3)に対して、0.1〜100モル倍が好ましく、0.2〜50モル倍がより好ましく、0.5〜20モル倍が特に好ましい。使用量が少なすぎると重合活性が向上しない場合があり、多すぎると副反応が起こりやすくなるおそれがある。
【0060】
結晶性環状オレフィン開環重合体を得るための重合反応は、通常、有機溶媒中で行う。
用いる有機溶媒は、目的とする開環重合体やその水素添加物が所定の条件で溶解もしくは分散させることが可能であり、重合反応や水素化反応を阻害しないものであれば、特に限定されない。
【0061】
有機溶媒の具体例としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素系溶媒;ジエチルエ−テル、テトラヒドロフラン等のエ−テル類;又はこれらの混合溶媒が挙げられる。これらの溶媒の中でも、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、エーテル類が好ましく用いられる。
【0062】
開環重合反応は、単量体と、金属化合物(3)と、必要に応じて有機金属還元剤とを混合することにより開始させることができる。これらの成分を添加する順序は、特に限定されない。例えば、単量体に金属化合物(3)と有機金属還元剤との混合物を添加して混合してもよいし、有機金属還元剤に単量体と金属化合物(3)との混合物を添加して混合してもよく、また、単量体と有機金属還元剤との混合物に金属化合物(3)を添加して混合してもよい。
【0063】
各成分を混合するにあたっては、それぞれの成分の全量を一度に添加してもよいし、複数回に分けて添加してもよく、比較的に長い時間(例えば1分間以上)にわたって連続的に添加することもできる。なかでも、重合温度や得られる開環重合体の分子量を制御して、特に成形性に優れた樹脂組成物を得る観点からは、単量体又は金属化合物(3)を、複数回に分けて、又は連続的に、添加することが好ましく、単量体を、複数回に分けて、又は連続的に、添加することが特に好ましい。
【0064】
有機溶媒中の重合反応時における単量体の濃度は、特に限定されないが、1〜50重量%であることが好ましく、2〜45重量%であることがより好ましく、3〜40重量%が特に好ましい。単量体の濃度が低すぎると重合体の生産性が悪くなるおそれがあり、高すぎる場合は重合後の溶液粘度が高すぎて、その後の水素化反応が困難となる場合がある。
【0065】
重合反応系には、活性調整剤を添加してもよい。活性調整剤は、開環重合触媒の安定化、重合反応の速度及び重合体の分子量分布を調整する目的で使用することができる。活性調整剤は、官能基を有する有機化合物であれば特に制限されないが、含酸素、含窒素、含りん有機化合物が好ましい。具体的には、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、フラン、テトラヒドロフラン等のエーテル類;アセトン、ベンゾフェノン、シクロヘキサノン等のケトン類;エチルアセテート等のエステル類;アセトニトリルベンゾニトリル等のニトリル類;トリエチルアミン、トリイソプロピルアミン、キヌクリジン、N,N−ジエチルアニリン等のアミン類;ピリジン、2,4−ルチジン、2,6−ルチジン、2−t−ブチルピリジン等のピリジン類;トリフェニルホスフィン、トリシクロヘキシルホスフィン等のホスフィン類;トリメチルホスフェ−ト、トリフェニルホスフェ−ト等のホスフェート類;トリフェニルホスフィンオキシド等のホスフィンオキシド類;等が挙げられる。これらの活性調整剤は、1種を単独で、又は2種以上を混合して用いることができる。添加する活性調整剤の量は、特に限定されないが、通常、開環重合触媒として用いる金属化合物に対して0.01〜100モル%の間で選択すればよい。
【0066】
また、重合反応系には、開環重合体の分子量を調整するために分子量調整剤を添加してもよい。分子量調整剤としては、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィン類;スチレン、ビニルトルエン等の芳香族ビニル化合物;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル、酢酸アリル、アリルアルコール、グリシジルメタクリレート等の酸素含有ビニル化合物;アリルクロライド等のハロゲン含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4−ペンタジエン、1,4−ヘキサジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、2−メチル−1,4−ペンタジエン、2,5−ジメチル−1,5−ヘキサジエン等の非共役ジエン;1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等の共役ジエン;が挙げられる。
【0067】
添加する分子量調整剤の量は目的とする分子量に応じて決定すればよいが、通常、用いる単量体に対して、0.1〜50モル%の範囲で選択すればよい。
【0068】
重合温度は特に制限はないが、通常−78℃〜+200℃の範囲であり、好ましくは−30℃〜+180℃の範囲である。重合時間は、特に制限はなく、反応規模にも依存するが、通常1分間から1000時間の範囲である。
【0069】
上述したような金属化合物(3)を含む開環重合触媒を用いて、上述したような条件で多環式ノルボルネン系単量体を含む単量体の開環重合反応を行うことにより、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を得ることができる。
【0070】
水素化反応に供する環状オレフィン開環重合体におけるラセモ・ダイアッドの割合は、特に限定されないが、通常60%以上、好ましくは65%以上、より好ましくは70〜99%である。結晶性環状オレフィン開環重合体のラセモ・ダイアッドの割合(シンジオタクチック立体規則性の度合い)は、開環重合触媒の種類を選択すること等により、調節することが可能である。
【0071】
水素化反応に供する結晶性環状オレフィン開環重合体のゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量(Mw)は、特に限定されないが、ポリイソプレン換算で10,000〜100,000であることが好ましく、15,000〜80,000であることがより好ましい。このような重量平均分子量を有する結晶性環状オレフィン開環重合体から得られる結晶性環状オレフィン開環重合体水素添加物を用いると、成形性に優れ、得られた成形体の耐熱性に優れる点で好ましい。結晶性環状オレフィン開環重合体の重量平均分子量は、重合時に用いる分子量調整剤の添加量等を調節することにより、調節することができる。
【0072】
水素化反応に供する結晶性環状オレフィン開環重合体の分子量分布〔ゲルパーミエーションクロマトグラフィーにより測定したポリイソプレン換算の数平均分子量と重量平均分子量との比(Mw/Mn)〕は、特に限定されないが、通常1.5〜4.0であり、好ましくは1.6〜3.5である。このような分子量分布を有する結晶性環状オレフィン開環重合体から得られる結晶性環状オレフィン開環重合体水素添加物を用いると、成形性に優れる点で好ましい。
【0073】
結晶性環状オレフィン開環重合体水素添加物の分子量分布は、開環重合反応時における単量体の添加方法や単量体の濃度により、調節することができる。
【0074】
結晶性環状オレフィン開環重合体の水素化反応(主鎖二重結合の水素化)は、水素化触媒の存在下で、反応系内に水素を供給することにより行うことができる。水素化触媒としては、オレフィン化合物の水素化に際して一般に使用されているものであれば使用可能であり、特に制限されないが、例えば、次のようなものが挙げられる。
【0075】
均一系触媒としては、遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒系、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n−ブチルリチウム、ジルコノセンジクロリド/sec−ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウム等の組み合わせが挙げられる。さらに、ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド、クロロトリス(トリフェニルホスフィン)ロジウム等の貴金属錯体触媒が挙げられる。
【0076】
不均一触媒としては、ニッケル、パラジウム、白金、ロジウム、ルテニウム、又はこれらの金属をカーボン、シリカ、ケイソウ土、アルミナ、酸化チタン等の担体に担持させた固体触媒、例えば、ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等の触媒系が挙げられる。
【0077】
水素化反応は、通常、不活性有機溶媒中で行う。このような不活性有機溶媒としては、ベンゼン、トルエン等の芳香族炭化水素;ペンタン、ヘキサン等の脂肪族炭化水素;シクロヘキサン、デカヒドロナフタレン等の脂環族炭化水素;テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル類;等が挙げられる。不活性有機溶媒は、通常は、重合反応に用いる溶媒と同じでよく、重合反応液にそのまま水素化触媒を添加して反応させればよい。
【0078】
水素化反応は、使用する水素化触媒系によっても適する条件範囲が異なるが、反応温度は通常−20℃〜+250℃、好ましくは−10℃〜+220℃、より好ましくは0℃〜200℃である。水素化温度が低すぎると反応速度が遅くなりすぎる場合があり、高すぎると副反応が起こる場合がある。水素圧力は、通常0.01〜20MPa、好ましくは0.05〜15MPa、より好ましくは0.1〜10MPaである。水素圧力が低すぎると水素化速度が遅くなりすぎる場合があり、高すぎると高耐圧反応装置が必要となる点において装置上の制約が生じる。反応時間は所望の水素化率とできれば特に限定されないが、通常0.1〜10時間である。
【0079】
結晶性環状オレフィン開環重合体の水素化反応における水素化率(水素化された主鎖二重結合の割合)は、特に限定されないが、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上、最も好ましくは99%以上である。水素化率が高くなるほど、結晶性環状オレフィン開環重合体水素添加物の耐熱性が良好なものとなる。
【0080】
以上のようにして得られる、結晶性環状オレフィン開環重合体水素添加物は、下記の式(4)又は式(5)で表されるような3環以上の環を有する多環式ノルボルネン系単量体由来の繰返し単位を有するものである。
【0082】
(式中、R
1、R
2はそれぞれ独立に、水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表す。R
1、R
2は結合して環を形成していてもよい。R
3は置換基を有していてもよい炭素数1〜20の二価の炭化水素基である。)
【0084】
(式(4)、(5)中、R
1〜R
7及びmは、前記と同じ意味を表す。)
また、以上のようにして得られる結晶性環状オレフィン開環重合体水素添加物では、水素化反応に供した開環重合体が有するシンジオタクチック立体規則性が維持される。したがって、得られる結晶性環状オレフィン開環重合体水素添加物は、シンジオタクチック立体規則性を有する。本発明に用いる結晶性環状オレフィン開環重合体水素添加物におけるラセモ・ダイアッドの割合は、その水素添加物が結晶性を有する限りにおいて特に限定されないが、通常55%以上、好ましくは60%以上、より好ましくは65〜99%である。
【0085】
水素化反応で重合体のタクチシチーが変化することはないので、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を水素化反応に供することにより、シンジオタクチック立体規則性を有することに基づいて結晶性を有する、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性環状オレフィン開環重合体水素添加物を得ることができる。
【0086】
このようなシンジオタクチック立体規則性を有する結晶性環状オレフィン開環重合体水素添加物を用いることにより、得られる樹脂組成物が、熱の影響により変形が特に起こり難い成形体を与えることができるものとなる。なお、結晶性環状オレフィン開環重合体水素添加物のラセモ・ダイアッドの割合は、水素化反応に供する結晶性環状オレフィン開環重合体のラセモ・ダイアッドの割合に依存する。
【0087】
結晶性環状オレフィン開環重合体水素添加物のラセモ・ダイアッドの割合は、
13C−NMRスペクトルを測定し、該スペクトルデータに基づいて定量することができる。定量の方法は、重合体によっても異なるが、例えばジシクロペンタジエンの開環重合体水素添加物の場合、オルトジクロロベンゼン−d4を溶媒として、150℃で
13C−NMR測定を行い、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比からラセモ・ダイアッドの割合を決定できる。
【0088】
本発明の樹脂組成物を構成するために用いられる結晶性環状オレフィン開環重合体水素添加物は、結晶性を有するものである限りにおいて、その融点は特に限定されないが、200℃以上の融点を有することが好ましく、230〜290℃の融点を有することがより好ましい。このような融点を有する結晶性環状オレフィン開環重合体水素添加物を用いることによって、特に成形性と耐熱性とのバランスに優れた樹脂組成物を得ることができる。結晶性環状オレフィン開環重合体水素添加物の融点は、そのシンジオタクチック立体規則性の度合い(ラセモ・ダイアッドの割合)を調節したり、用いる単量体の種類を選択したりすること等により、調節することができる。
【0089】
<変性結晶性環状オレフィン開環重合体水素添加物>
本発明に用いる変性結晶性環状オレフィン開環重合体水素添加物は、上述の結晶性環状オレフィン開環重合体水素添加物を不飽和カルボン酸又はシリコーン誘導体でグラフト変性して得られるものである。
【0090】
このグラフト変性により、変性結晶性環状オレフィン開環重合体水素添加物は、極性基を有するようになる。極性基とは、極性を有する官能基のことである。変性結晶性環状オレフィン開環重合体水素添加物中の極性基の存在の確認は、FT−IRにより透過法で行うことができる。例えば無水マレイン酸を導入した場合は、FT−IRスペクトルで1790cm
−1にC=O基に基づく吸収帯が観察され、ビニルトリメトキシシランを導入した場合は、FT−IRスペクトルで825及び739cm
−1にSi−OCH
3基に基づく吸収帯が観察される。
【0091】
グラフト変性に用いる不飽和カルボン酸としては、不飽和カルボン酸又はその誘導体を使用することができ、後述するように有機過酸化物のようなラジカル開始剤存在下、前記結晶性環状オレフィン開環重合体水素添加物とグラフト重合し、結晶性環状オレフィン開環重合体水素添加物に極性基を導入できるものであれば特に限定されない。このような不飽和カルボン酸の例としては、アクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸(エンドシス−ビシクロ[2,2,1]ヘプト−5−エン−2,3−ジカルボン酸)を挙げることができる。さらに、上記の不飽和カルボン酸の誘導体としては、不飽和カルボン酸無水物、不飽和カルボン酸ハライド、不飽和カルボン酸アミド、不飽和カルボン酸イミド及び不飽和カルボン酸のエステル化合物などを挙げることができる。このような誘導体の具体的な例としては、塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエートなどを挙げることができる。これらの中でも、本発明の効果がより得られやすいことから、不飽和ジカルボン酸又はその酸無水物が好ましく、マレイン酸無水物が特に好ましい。これらの不飽和カルボン酸は、1種単独で、又は2種以上を組み合わせて使用してもよい。
【0092】
不飽和カルボン酸の使用量は、結晶性環状オレフィン開環重合体水素添加物100重量部に対して、通常0.01〜100重量部、好ましくは0.1〜80重量部、より好ましくは0.5〜50重量部である。不飽和カルボン酸の使用量が少なすぎると、結晶性環状オレフィン開環重合体水素添加物への導入量が少なく、機械特性の向上が期待できず、逆に不飽和カルボン酸の使用量が多すぎると、電気特性が悪化し、いずれも好ましくない。
【0093】
グラフト変性に用いるシリコーン誘導体としては、エチレン性不飽和シラン化合物を使用することができ、後述するように有機過酸化物存在下、前記結晶性環状オレフィン開環重合体水素添加物とグラフト重合し、結晶性環状オレフィン開環重合体水素添加物に極性基を導入できるものであれば特に限定されない。このようなエチレン性不飽和シラン化合物の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等のビニル基を有するアルコキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン等のアリル基を有するアルコキシシラン、p−スチリルトリメトキシシラン、p−スチリルトリエトキシシラン等のp−スチリル基を有するアルコキシシラン、1,3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン等の3−メタクリロキシプロピル基を有するアルコキシシラン、1,3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン等の3−アクリロキシプロピル基を有するアルコキシシラン、1,2−ノルボルネン−5−イルトリメトキシシラン等の2−ノルボルネン−5−イル基を有するアルコキシシラン等が挙げられる。これらの中でも、本発明の効果がより得られやすいことから、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p−スチリルトリメトキシシランが好ましい。これらのエチレン性不飽和シラン化合物は、1種単独で、又は2種以上を組み合わせて使用してもよい。
【0094】
シリコーン誘導体の使用量は、結晶性環状オレフィン開環重合体水素添加物100重量部に対して、通常0.01〜100重量部、好ましくは0.1〜80重量部、より好ましくは0.5〜50重量部である。シリコーン誘導体の使用量が少なすぎると、結晶性環状オレフィン開環重合体水素添加物への導入量が少なく、機械特性の向上が期待できず、逆に不飽和カルボン酸の使用量が多すぎると、電気特性が悪化し、いずれも好ましくない。
【0095】
グラフト変性の方法に格別な制限は無く、特開平9−118811号公報や特開平8−020692号公報などに知られた一般的な方法を採用することができる。生産性の観点からグラフト変性は、ラジカル開始剤存在下に行うのが好ましい。本発明に用いるラジカル開始剤としては、ラジカル反応開始剤として機能するものであれば特に限定されず、例えば、ジベンゾイルパーオキシド、t−ブチルパーオキシアセテート、2,2−ジ−(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、t−ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシヘキサン)、ジ−t−ブチルパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン−3、t−ブチルヒドロパーオキシド、t−ブチルパーオキシイソブチレート、ラウロイルパーオキシド、ジプロピオニルパーオキシド、p−メンタンハイドロパーオキサイド等の有機か酸化物が挙げられる。これらの中でも、1分間半減期温度が170〜190℃のものが好ましい。具体的には、t−ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシヘキサン)、ジ−t−ブチルパーオキシド等が好適に用いられる。これらは、1種単独で、又は2種以上を組み合わせて使用してもよい。
【0096】
ラジカル開始剤の使用量は、結晶性環状オレフィン開環重合体水素添加物100重量部に対して、通常0.01〜5重量部、好ましくは0.05〜3重量部、より好ましくは0.1〜2重量部である。ラジカル開始剤の使用量が少なすぎると、結晶性環状オレフィン開環重合体水素添加物へのグラフト変性の導入が少なく、機械特性の向上が期待できず、逆にラジカル開始剤の使用量が多すぎると、作業性が悪化し、いずれも好ましくない。
【0097】
本発明の樹脂組成物全体における、結晶性環状オレフィン開環重合体水素添加物にグラフト変性により導入された不飽和カルボン酸、不飽和カルボン酸無水物、又はシリコーン誘導体が存在する割合(グラフト変性率)は、機械特性の向上、生産性及び電気特性の観点から、結晶性環状オレフィン開環重合体水素添加物100重量部に対して、これらの合計量で0.00001〜50重量部であるのが好ましく、0.00005〜10重量部であるのがより好ましく、0.0001〜1重量部であるのが特に好ましい。グラフト変性率が低すぎると、機械特性の向上が期待できず、逆にグラフト変性率が高すぎると、変性に必要なコストが高くなるとともに生産効率が低下し、電気特性が低下する傾向にある。
尚、ここでグラフト変性率は、FT−IRスペクトルから算出されるものである。
【0098】
<ガラス繊維>
本発明の樹脂組成物に配合するガラス繊維の形態としては、例えば、チョップドストランド、カットファイバー、ミルドファイバー、フィラメント、クロス、ステープルヤーンなどと称されるものが適用できる。
【0099】
本発明の樹脂組成物に配合するガラス繊維の繊維径は、樹脂との混合作業上、また、分散性、繊維強化効果の点で、その平均繊維径が1〜30μmであることが好ましく、5〜15μmであることがより好ましい。また本発明の樹脂組成物に配合するガラス繊維の長さは、同様の理由から、平均繊維長が1〜10mmであることが好ましく、2〜5mmであることがより好ましい。平均繊維径が1μm未満では、凝集し易く分散性が良好でなく、30μmを超える場合はアスペクト比(L/D)が小さくなり、繊維強化材としての補強効果が低下する。また、平均繊維長が1mm未満では繊維強化材としての補強効果が小さく好ましくない。平均繊維長さが10mmを超える場合は、樹脂組成物を溶融成形する射出成形法などでは好ましくないが、例えば、圧縮成形法では、ガラス長繊維やガラスクロスなどの繊維状無機充填材をあらかじめ変性ブロック共重合体水素化物[3]に配合した樹脂組成物などでも成形できるため、繊維の長さが10mmを超えるものも使用できる。
【0100】
ガラス繊維の量は、上述した樹脂成分100重量部に対して、5〜150重量部、好ましくは7〜130重量部、より好ましくは10〜100重量部である。ガラス繊維の量が少なすぎると、機械特性の向上が期待できず、逆にガラス繊維の量が多すぎると、電気特性が悪化し、いずれも好ましくない。
【0101】
本発明の樹脂組成物は、常法に従い、結晶性環状オレフィン開環重合体水素添加物、変性結晶性環状オレフィン開環重合体水素添加物、ガラス繊維、及び後述する所望によりその他の成分を配合して混合することによって調製することができる。混合方法は特に限定されず、例えば一軸混練機や二軸混練機等を用いて溶融混練することにより行ってもよいし、ミキサー等を用いてドライブレンドして行ってもよい。
【0102】
このようにして得られる本発明の樹脂組成物は、耐リフロー性を有し、高周波帯における誘電正接が低く、曲げ強度に代表される機械強度に優れる特徴を有する。本発明の樹脂組成物の曲げ強度は170MPa以上であることが好ましく、180MPa以上であることがより好ましい。また、本発明の1GHzにおける誘電正接は0.002以下であることが好ましく、0.001以下であることがより好ましい。
【0103】
<その他の成分>
本発明の樹脂組成物に配合可能なその他の成分としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などの酸化防止剤;ヒンダードアミン系光安定剤などの光安定剤;石油系ワックスやフィッシャートロプシュワックスやポリアルキレンワックスなどのワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルクなどの核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体などの蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤などの紫外線吸収剤;タルク、シリカ、炭酸カルシウムなどの無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤、及び、軟質重合体などの結晶性環状オレフィン開環重合体水素添加物以外の高分子材料;等を例示することができる。
【0104】
これらのその他の成分は、上述した本発明の樹脂組成物の特性を損なわない限りにおいて配合できる。
【0105】
2)成形体
本発明の樹脂成形体を得る方法に格別な制限は無く、公知の成形法を用いることができる。例えば、射出成形、押出成形、プレス成形、インフレーション成形、ブロー成形、カレンダー成形、注型成形、圧縮成形、延伸成形等の方法が挙げられる。成形法は目的とする形状等に応じて選択すればよいが、本発明の樹脂組成物は優れた成形性(溶融成形性)を有することから、量産性に優れる射出成形法を適用することが好ましい。
【0106】
成形体としては、例えば、コネクタ、リレー、コンデンサ、センサー、アンテナ、ICトレイ、シャーシ、コイル封止、モーターケース、電源ボックス等の電子部品;LED光反射体;車両用灯具のリフレクタ;自動車用モーターケース、センサケース、モジュール部品ケース等の自動車部品;光学レンズ鏡筒;フレキシブルプリント基板;プリント配線板積層用離型フィルム;太陽電池用基板;電子レンジ、炊飯器、電動ジャーポット、乾燥洗濯機、食器洗い機、エアコン等の家電部品;包装用、梱包用フィルム;食品用シート、トレイ;LEDモールド材;ポンプケーシング、インペラ、配管継ぎ手、浴室パネル等の住設部品等が挙げられ、特に電子部品が好適である。
【実施例】
【0107】
以下に、実施例及び比較例を挙げて、本発明をより詳細に説明する。なお、各例中の部及び%は、特に断りのない限り、重量基準である。
また、各例における測定や評価は、以下の方法により行った。
【0108】
(1)結晶性環状オレフィン開環重合体の分子量(重量平均分子量及び数平均分子量)
ゲル・パーミエーション・クロマトグラフィー(GPC)システム HLC−8220(東ソー社製)で、Hタイプカラム(東ソー社製)を用い、テトラヒドロフランを溶媒として40℃で測定し、ポリスチレン換算値として求めた。
【0109】
(2)結晶性環状オレフィン開環重合体水素添加物における水素化率
1H−NMR測定により求めた。
(3)結晶性環状オレフィン開環重合体水素添加物の融点
示差走査熱量計を用いて、昇温温度:10℃/分で測定した。
【0110】
(4)結晶性環状オレフィン開環重合体水素添加物のラセモ・ダイアッドの割合
オルトジクロロベンゼン−d
4を溶媒として、150℃で
13C−NMR測定を行い、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比に基づいて決定した。
【0111】
(5)結晶性環状オレフィン開環重合体水素添加物への極性基(グラフト変性)の導入量
変性結晶性環状オレフィン開環重合体水素添加物中の極性基の存在の確認は、FT−IRにより透過法で行うことができる。例えば無水マレイン酸を導入した場合は、FT−IRスペクトルで1790cm
−1にC=O基に基づく吸収帯が観察され、ビニルトリメトキシシランを導入した場合は、FT−IRスペクトルで825及び739cm
−1にSi−OCH
3基に基づく吸収帯が観察される。また、結晶性環状オレフィン開環重合体水素添加物に対する極性基の導入量もFT−IRにより定量可能である。導入量は、それぞれの極性基に基づく吸収帯のピーク高さと、結晶性環状オレフィン開環重合体水素添加物に基づく920cm
−1の吸収帯のピーク高さの比を算出し、あらかじめ作成した検量線を用いて算出した。
【0112】
試験片としては、変性結晶性環状オレフィン開環重合体水素添加物のペレット0.2gを真空加熱プレス(製品名「11FA」、井元製作所製)を用いて、温度290℃、圧力50MPa、プレス時間5分の条件でプレスし、厚み約30μmの薄膜としたものを用いた。変性結晶性環状オレフィン開環重合体水素添加物中の極性基の存在の確認及び結晶性環状オレフィン開環重合体水素添加物に対する極性基の導入量の定量には、FT−IR(製品名「AVATAR360」、サーモサイエンティフィック社製)を用いた。測定時の積算回数は16回とした。
【0113】
(6)樹脂組成物の耐リフロー性
オーブンを用いた260℃×10秒間の熱処理を3回行った後、試験片を目視観察することにより耐リフロー性を評価した。ここで、試験片が熱処理の前後で変形、溶融することなく形状を保持していたものを○、変形、溶融が見られたものを×とした。
【0114】
(7)樹脂組成物の誘電正接
ネットワークアナライザ(製品名「N5230A」、アジレント社製)を用いて、円筒空洞共振器法によりASTM D2520に準じて、誘電率及び誘電正接を測定した。測定時の周波数は、1GHzとした。
【0115】
(8)樹脂組成物の曲げ強度
オートグラフ(製品名「AGS−5kNJ・TCR2」、島津製作所社製)を用いてJIS K 7171に準じて試験速度2mm/minで曲げ試験を行い、曲げ強度を測定した。
【0116】
〔合成例〕
〔結晶性環状オレフィン開環重合体水素添加物の合成〕
充分に乾燥した後、窒素置換したガラス製耐圧反応容器に、ジシクロペンタジエン(エンド体含有率99%以上)の75%シクロヘキサン溶液40部(ジシクロペンタジエンの量として30部)を仕込み、さらに、シクロヘキサン738部及び1−ヘキセン2.0部を加え、50℃に加温した。一方、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体1.1部を56部のトルエンに溶解した溶液に、19重量%のジエチルアルミニウムエトキシド/n−ヘキサン溶液4.6部を加えて10分間攪拌し、触媒溶液を調製した。この触媒溶液を反応器に加えて開環重合反応を開始させた。その後、50℃を保ちながら、5分毎に75%ジシクロペンタジエン/シクロヘキサン溶液40部を9回添加した後、2時間反応を継続した。ついで、少量のイソプロパノールを加えて、重合反応を停止させた後、重合反応溶液を多量のイソプロパノール中に注ぎ、開環重合体を凝固させた。
【0117】
凝固した重合体をろ過により回収した。得られた開環重合体を、減圧下40℃で20時間乾燥した。重合体の収量は296部(収率=99%)であった。また、この重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、14,200及び27,000であり、これらから求められる分子量分布(Mw/Mn)は1.90であった。
【0118】
続いて、得られた開環重合体60部とシクロヘキサン261部を耐圧反応容器に加えて攪拌し、重合体をシクロヘキサンに溶解後、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.039部をトルエン40部に溶解した水素化触媒溶液を添加し、水素圧4MPa、160℃で5時間水素化反応を行った。得られた水素化反応液を多量のイソプロピルアルコールに注いでポリマ−を完全に析出させ、濾別洗浄後、60℃で24時間減圧乾燥して、結晶性環状オレフィン開環重合体水素添加物を得た。
【0119】
結晶性環状オレフィン開環重合体水素添加物の水素化率は99%以上、ラセモ・ダイアッドの割合は80%であり、融点は265℃であった。
【0120】
〔変性結晶性環状オレフィン開環重合体水素添加物Aの合成〕
上記で得られた結晶性環状オレフィン開環重合体水素添加物のペレット100部に対して無水マレイン酸(製品名「CRYSTAL MAN(登録商標)」、日油社製)2.0部及び2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標) 25B」、日油社製)0.2部を添加した。この混合物を、二軸押出機(製品名「TEM35B」、東芝機械社製)を用いて、樹脂温度270℃、スクリュー回転数100rpm、滞留時間60〜70秒で混練し、ストランド状に押出し、水冷した後、ペレタイザーによりカッティングし、無水マレイン酸が導入された変性結晶性環状オレフィン開環重合体水素添加物A(表1では、「変性重合体A」という)のペレット97部を得た。
【0121】
得られた無水マレイン酸が導入された結晶性環状オレフィン開環重合体水素添加物AのFT−IRスペクトルにおいて、C=O基に由来する吸収帯が観察された。また、結晶性環状オレフィン開環重合体水素添加物に対する無水マレイン酸の導入量は、1.1部であった。
【0122】
〔変性結晶性環状オレフィン開環重合体水素添加物Bの合成〕
上記で得られた結晶性環状オレフィン開環重合体水素添加物のペレット100部に対してビニルトリメトキシシラン2.0部及び2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標) 25B」、日油社製)0.2部を添加した。この混合物を、二軸押出機(製品名「TEM35B」、東芝機械社製)を用いて、樹脂温度270℃、スクリュー回転数100rpm、滞留時間60〜70秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基が導入された変性結晶性環状オレフィン開環重合体水素添加物B(表1では、「変性重合体B」という)のペレット97部を得た。
【0123】
得られたアルコキシシリル基を有する結晶性環状オレフィン開環重合体水素添加物BのFT−IRスペクトルにおいて、Si−OCH
3基及びSi−CH
2基に由来する吸収帯が観察された。また、結晶性環状オレフィン開環重合体水素添加物100部に対するビニルトリメトキシシランの導入量は、1.5部であった。
【0124】
〔実施例1〕
結晶性環状オレフィン開環重合体水素添加物97部、変性結晶性環状オレフィン開環重合体水素添加物A3部、ガラス繊維(商品名「CS 3PE−960」、繊維長3mm、繊維径13μm、日東紡社製)100部、酸化防止剤(テトラキス〔メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン、商品名「イルガノックス(登録商標)1010」、BASFジャパン社製)0.8部を混合後、二軸押出機(製品名「TEM35B」、東芝機械社製)を用い、樹脂温度270℃、滞留時間30秒の条件で混練し、ストランド上に押出し、水冷した後、ペレタイザーによりカッティングし、得られた混練物をペレット化した。その後、竪型射出成形機(製品名「SAV−30−30−P」、三城精機社製)で成形温度290℃、金型温度150℃の条件で各々の試験に用いる試験片を成形した。耐リフロー試験には、縦70mm、横30mm、厚さ1.0mmの平板を用いた。誘電正接の測定には、耐リフロー試験片を縦方向に幅1.0mmに切削したものを用いた。また、曲げ試験には、JIS K 7171に規定する曲げ試験片を用いた。組成物の組成とそれぞれの評価結果を、表1にまとめて示す。
【0125】
〔実施例2〜8及び比較例1〜5〕
実施例1において、組成物の配合量(重量部)を表1に示す通りに変更したこと以外は、実施例1と同様にして、成形体を得て、その評価を行った。それぞれの評価結果は、表1にまとめて示した。なお、表1において、ガラスビーズは粒径約45μmのホウ珪酸ガラス(製品名「ユニビーズ(登録商標)UB−02E」、ユニチカ社製)である。
【0126】
【表1】
【0127】
この結果から、本発明の樹脂組成物(実施例1〜8)は、耐リフロー性を有し、誘電正接が低く、かつ曲げ強度が高い樹脂組成物であることがわかった。
【0128】
一方、ガラス繊維の重量が少ないと、曲げ強度の低下が顕著となり、ガラス繊維の重量が多いと誘電正接の悪化が顕著となることがわかる(比較例1、2)。
【0129】
また、変性結晶性環状オレフィン開環重合体水素添加物を含まない/又は重量が少ないと、曲げ強度の低下が顕著となることがわかる(比較例3、4)。
【0130】
本発明の樹脂組成物におけるガラス繊維の替わりにガラスビーズを用いると、耐リフロー性を有した樹脂組成物とはならず、曲げ強度も著しく低下した(実施例2と比較例5)。