特許第6306861号(P6306861)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

特許6306861プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー
<>
  • 特許6306861-プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー 図000002
  • 特許6306861-プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー 図000003
  • 特許6306861-プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー 図000004
  • 特許6306861-プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー 図000005
  • 特許6306861-プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6306861
(24)【登録日】2018年3月16日
(45)【発行日】2018年4月4日
(54)【発明の名称】プラズマチャンバーにおいて半導体ワークピースを取り巻く導電性カラー
(51)【国際特許分類】
   H01L 21/3065 20060101AFI20180326BHJP
   C23C 16/44 20060101ALI20180326BHJP
   C23C 16/509 20060101ALI20180326BHJP
   H05H 1/46 20060101ALI20180326BHJP
【FI】
   H01L21/302 101G
   H01L21/302 101B
   C23C16/44 B
   C23C16/509
   H05H1/46 M
【請求項の数】5
【全頁数】13
(21)【出願番号】特願2013-237074(P2013-237074)
(22)【出願日】2013年11月15日
(62)【分割の表示】特願2010-18786(P2010-18786)の分割
【原出願日】2002年2月8日
(65)【公開番号】特開2014-90177(P2014-90177A)
(43)【公開日】2014年5月15日
【審査請求日】2013年12月16日
【審判番号】不服2016-17968(P2016-17968/J1)
【審判請求日】2016年12月1日
(31)【優先権主張番号】09/827,297
(32)【優先日】2001年4月3日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100141553
【弁理士】
【氏名又は名称】鈴木 信彦
(72)【発明者】
【氏名】マ, シャウミン
(72)【発明者】
【氏名】ストラブ, ラルフ, エイチ., エム.
【合議体】
【審判長】 鈴木 匡明
【審判官】 加藤 浩一
【審判官】 大嶋 洋一
(56)【参考文献】
【文献】 国際公開第99/14788(WO,A1)
【文献】 特表2001−516948(JP,A)
【文献】 特開平10−64882(JP,A)
【文献】 特開平10−150021(JP,A)
【文献】 国際公開第01/01445(WO,A1)
【文献】 特表2003−503841(JP,A)
【文献】 国際公開第99/14796(WO,A1)
【文献】 特表2001−516967(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/3065
(57)【特許請求の範囲】
【請求項1】
半導体製造プロセスプラズマチャンバー内でワークピースの付近に取り付けられるプロセスキットであって、
誘電体材料で構成され、中央開口部を有すると共に、その外縁が上記ワークピースの外縁よりも外側にある誘電体シールドと、
抵抗率が0.1Ωcm以下の半導体材料で構成され、中央開口部を有すると共に、その外縁が上記ワークピースの外縁よりも少なくとも4mm外側にある導電性カラーとを備え、
上記導電性カラーが、上記誘電体シールドの少なくとも一部分の上に横たわり、上記誘電体シールドが上記導電性カラーの下側面の全体を覆うようになっており、
上記導電性カラーが、上記ワークピースの領域の外縁の内側にある又は上記ワークピースの領域の外縁に一致する半径方向内側の境界を有している、プロセスキット。
【請求項2】
半導体製造プロセスプラズマチャンバー内でワークピースの付近に取り付けられ、上記ワークピースからの電気的アークを低減するためのプロセスキットであって、
誘電体材料で構成され、中央開口部を有すると共に、その外縁が上記ワークピースの外縁よりも外側にある誘電体シールドと、
抵抗率が0.012Ωcm以下の半導体材料で構成され、中央開口部を有すると共に、その外縁が上記ワークピースの外縁よりも少なくとも4mm外側にある導電性カラーとを備え、
上記導電性カラーが、上記誘電体シールドの少なくとも一部分の上に横たわり、上記誘電体シールドが上記導電性カラーの下側面の全体を覆うようになっており、
上記導電性カラーが、上記ワークピースの領域の外縁の内側にある又は上記ワークピースの領域の外縁に一致する半径方向内側の境界を有している、プロセスキット。
【請求項3】
半導体製造プロセスプラズマチャンバー内でワークピースの付近に取り付けられ、上記ワークピースからの電気的アークを低減するためのプロセスキットであって、
誘電体材料で構成され、中央開口部を有すると共に、その外縁が上記ワークピースの外縁よりも外側にある誘電体シールドと、
抵抗率が0.008〜0.012Ωcmの範囲の半導体材料で構成され、中央開口部を有すると共に、その外縁が上記ワークピースの外縁よりも少なくとも4mm外側にある導電性カラーとを備え、
上記導電性カラーが、上記誘電体シールドの少なくとも一部分の上に横たわり、上記誘電体シールドが上記導電性カラーの下側面の全体を覆うようになっており、
上記導電性カラーが、上記ワークピースの領域の外縁の内側にある又は上記ワークピースの領域の外縁に一致する半径方向内側の境界を有している、プロセスキット。
【請求項4】
前記導電性カラーは、
内側リングと、
前記内側リンクの外側に放射状に配置され、前記内側リングとは別個の外側リングとを備えた請求項1から3のいずれか一項に記載のプロセスキット。
【請求項5】
上記導電性カラーは、その厚みが少なくとも1.8mmである、請求項1からのいずれか一項に記載のプロセスキット。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体製造に使用されるプラズマチャンバーにおいてワークピースを取り巻く導電性カラー又はリングに係る。
【背景技術】
【0002】
プラズマ補助エッチングや化学蒸着のような種々の半導体製造プロセスがプラズマプロセスチャンバーにおいて実行される。ワークピース支持部材即ちペデスタルが半導体ワークピース即ち基板をチャンバー内の処理位置に支持する。1つ以上の試薬を含むプラズマがチャンバー内でワークピース位置付近に維持され、所望の半導体製造プロセスを実行する。
【0003】
プロセスチャンバーは、ワークピース付近にカソード電極を備え、この電極は、高周波(RF)電源に容量性結合され、プラズマ本体に対して負のDCバイアス電圧を電極に発生する。このバイアス電圧は、イオンを引き付けてワークピースに衝撃を与え、所望の製造プロセスを促進させる。RF電源は、プラズマを維持するに必要な励起を供給する上で役立つ。
【0004】
ワークピースをワークピース支持部材に保持するためのチャックは、クランプリングのような機械的なクランプである。より一般的には、このチャックは、チャック電圧が印加されるチャック電極を有する静電チャックである。誘電体がチャック電極を取り巻いて、ワークピース及びペデスタルの金属部分から電気的に絶縁する。
【0005】
RF電源は、チャック電極、ペデスタルの金属本体部分、又はその両方に接続することができる。これら要素のどちらがRF電源に接続されても、プロセスチャンバーのカソード電極として機能する。
【0006】
ワークピースがその周囲付近に露出金属を有し、この露出金属の位置に大きな電界が存在する場合には、露出金属と、チャック電極又は金属ペデスタル本体との間に電気的アークが時々発生し得る。アークは、それにより生じる電流及び熱がワークピース上の電気的コンポーネントにダメージを及ぼすので、極めて望ましからぬものである。アーク発生の確率を高める要因は、カソードにかかる高いDCバイアス電圧、高いチャック電圧、及びチャンバー内のプラズマ密度を向上させるための磁界の使用を含む。
【発明の概要】
【0007】
本発明は、プラズマチャンバー装置と、ワークピースの周囲の露出金属からの電気的アークを減少又は排除することのできる方法とに関する。プラズマチャンバーは、ワークピース付近にカソード電極を備えている。誘電体シールドがワークピースの周囲を取り巻く。導電性カラーも、ワークピースの周囲を取り巻き、誘電体の上に横たわる。
【0008】
別の態様において、本発明は、上述した誘電体シールド及び導電性カラーを備えたプロセスキットに関する。
【0009】
導電性カラーは、その抵抗率が充分に低い場合にはアークを実質的に減少又は排除するように機能することが分かった。抵抗率は、0.1Ωcm以下でなければならず、好ましくは、0.03Ωcm以下でなければならない。
【0010】
本発明の導電性カラーは、ワークピースの周囲の露出金属からアークが発生するおそれを効果的に減少又は排除する。
【0011】
誘電体シールドをもたないプロセスキットと比較して、本発明の誘電体シールドは、ワークピースの周囲の外側でRF電力を減衰することにより、ワークピースにより多くのRF電力を効果的に集中させる。更に、焦点リングとして機能する持ち上げられたカラーを有するプロセスキット設計では、誘電体シールドは、プロセスキットを通してRF電力を減衰することによりプロセスキットの浸食を減少することができる。
【図面の簡単な説明】
【0012】
図1】本発明によるプラズマチャンバーの長手方向概略断面図である。
図2図1の誘電体シールド及び導電性カラーの詳細な断面図である。
図3】ウェハ平面の上に持ち上げられていない平らな導電性カラーを有する別の実施形態の詳細な断面図である。
図4】誘電体シールドの持ち上げられた部分をカバーしない導電性カラーを有する別の実施形態の詳細な断面図である。
図5】1部片の導電性カラーを有する別の実施形態の詳細な断面図である。
【発明を実施するための形態】
【0013】
1.プロセスチャンバーの従来の要素
図2は、本発明を使用できる典型的な半導体製造プロセスチャンバーを示す。図示されたチャンバーは、エッチング又は化学蒸着(CVD)に適した磁気増強型プラズマチャンバーである。本発明の導電性カラーを説明する前に、このチャンバーの従来の要素について説明する。
【0014】
このプロセスチャンバーは、円筒状側壁12、円形下壁14及び円形上壁即ち蓋16により包囲された真空チャンバーである。蓋16の下部にアノード電極18が取り付けられ、これは、通常、電気的に接地される。このアノード電極は、ガス導入口として働くように孔が設けられて、これを通してプロセスガスがチャンバーに入るようにしてもよい。チャンバー壁12−16の各々は、通常、金属であるが、壁の幾つか又は全部を半導体や誘電体にすることもできる。誘電体でない壁は、通常、電気的に接地されて、アノードの一部分として機能する。
【0015】
半導体ウェアのようなワークピース即ち基板10は、ワークピース支持部材即ちペデスタル20の実質的に平らな前面(「前」面とは、アノードに面するペデスタルの面をいう)に取り付けられる。ペデスタルは、通常、チャンバーの下壁に取り付けられ支持される。(ペデスタルを支持する構造部は、示されていない。)ペデスタルは、通常、以下に述べるようにカソード電極として機能する金属本体22を有するが、このペデスタル本体は、静電チャック誘電体に埋設された電極のような別の電極がカソード電極として接続される場合には、金属でなくてもよい。
【0016】
ワークピースは、従来のクランプリングのような機械的クランプによりペデスタルに位置保持することができるが、より一般的には、ペデスタルの前部に従来の静電チャック24、26を備え、これがペデスタルの前面にワークピースをしっかり保持するように働く。ワークピースが円形の半導体ウェハである場合には、ペデスタルの前面も円形であり、ペデスタル及び静電チャックは、円筒状である。
【0017】
静電チャックは、少なくとも1つのチャック電極24と、このチャック電極を取り巻く誘電体26とを含む。チャックの誘電体部分は、チャック電極をワークピースから電気的に絶縁すると共に、チャックの後方の金属ペデスタル本体22からも電気的に絶縁する。
【0018】
静電チャックを動作する電圧は、「チャック」電源28により供給される。このチャック電源の一方の出力端子は、チャック電極に接続される。他方の出力端子は、通常、電気的に接地されるが、ペデスタルの金属本体部分に接続されてもよい。通常、チャック電源は、DC電圧を出力するが、これは、いずれの極性でもよい。
【0019】
チャック誘電体の周囲は、ワークピースの周囲より若干小さいのが好ましく、即ちワークピースは、チャック誘電体の周囲から若干オーバーハングし、従って、チャック誘電体は、ワークピースがチャック上に配置されたときに若干中心を外れて整列ずれした場合でも、ワークピースによって完全にカバーされた状態に保たれる。ワークピースがチャック誘電体を完全にカバーすると仮定すれば、ワークピースは、ワークピース製造プロセスの環境において潜在的な浸食性物質又はダメージを及ぼす物質にチャックが露出されないよう確実にシールドする。例えば、好ましい実施形態では、ワークピースは、200mmのシリコンウェハであり、チャック誘電体は、直径が197mmであり、従って、ウェハは、1.5mmまで整列ずれしても、チャック誘電体を露出することはない。
【0020】
静電チャックの下のペデスタルの部分は、通常、陽極酸化されたアルミニウムのような金属で構成された円筒状本体22を備えている。ペデスタル本体は、通常、チャンバーの下壁又はチャンバー構造体の他の部分にこのペデスタル本体を容易に固定するためのフランジを形成するように、単純に静電チャンクより大きな半径を有している。ここに示す実施形態では、陽極酸化されたアルミニウムのペデスタルは、その半径がチャンクより25mm大きい。
【0021】
図示されていない真空ポンプが、プロセスチャンバーから排気マニホルド30を経てガスを排気すると共に、チャンバー内の全ガス圧力を、プラズマの生成を容易にする充分低いレベル、通常、10ミリtorrから20torrの範囲に維持し、この範囲の下限及び上限の圧力は、各々、エッチング及びCVDプロセスのための典型的な圧力である。
【0022】
ワークピースの処理中に、ワークピース位置10とアノード電極18との間のプロセスチャンバーの領域にプラズマが維持される。プラズマは、1つ以上の試薬ガスで構成されるプロセス混合ガスをプラズマ状態に励起することにより生成される。プラズマをプロセスチャンバー内で励起する(現場のプラズマソース)か、又はさもなければ、プラズマを別のチャンバーで励起して(遠隔プラズマソース)それをプロセスチャンバーへポンピングすることは、いずれも従来技術である。
【0023】
高周波(RF)電源32が、1つ以上の直列結合キャパシタ34を経て、1つ以上の次のチャンバー要素、即ちペデスタル本体22、チャック電極24、又はチャック誘電体26に埋設された付加的な電極(ワイヤメッシュのような)に接続される。これら要素のどれがRF電源に接続されても、プロセスチャンバーのカソード電極を集合的に構成する。多くの従来の実施例や、ここに示す好ましい実施形態では、金属のペデスタル本体がRF電源に接続され、カソード電極として機能する。
【0024】
RF電源は、カソード電極と、接地されたアノード電極18との間にRF電圧を印加し、これは、プラズマを維持するに必要な励起電力を供給するのに役立つ。又、カソードに印加されるRF電圧は、アノード電極及びプラズマ本体の両方に対してカソード電極に時間平均化の負のDCバイアス電圧を発生し、これは、イオン化されたプロセスガス成分をカソード電極に向けて加速して、ワークピースに衝撃を生じさせる。
【0025】
2.プロセスキット:誘電体シールド及び保護シールド
ワークピース即ち基板10の表面において反応種及び荷電粒子の密度を最大にし、ひいては、ワークピースにおいて実行されるプラズマ増強型プロセスの反応率を最大にするために、プラズマとカソード電極との間のRF電流は、ペデスタル22の前面においてワークピースにより占有されたエリアに集中されねばならない。ワークピースによりカバーされないペデスタルの前面及び側面に流れるRF電流は、ワークピース製造プロセスに直接貢献しないので、浪費されるRF電力を表わす。それ故、ペデスタルのこのような表面を誘電体でカバーして、これら表面に流れるRF電流を減少することは、従来技術である。図2は、カソードの側面をカバーする誘電体円筒36と、ウェハ10の周囲の外側にあるペデスタルの上面に載せられてそれをカバーする環状誘電体シールド即ちカラー40とを示す。
【0026】
この誘電体シールド40の軸方向即ち長手方向厚みは、RF電源32の周波数において実質的な電気的インピーダンスを与えるに充分な大きさであるのが好ましい。より詳細には、このインピーダンスは、シールドが存在しない場合にシールドにより占有される領域に生じるであろう電流又は電力密度に比して、シールドによりRF電流密度又はRF電力密度を実質的に減衰するに充分な大きさでなければならない。従って、誘電体シールドは、少なくともワークピースと同程度の厚みであり、例えば、ワークピースが従来のシリコンウェハである場合には、少なくとも0.7mm厚みであるのが好ましい。誘電体シールド40の軸方向輪郭については、以下で説明する。
【0027】
多くの半導体ワークピース製造プロセスでは、環状誘電体シールド即ちカラー40の前面(即ちアノード電極を向いている面)をプラズマに露出させることが受け入れられる。しかしながら、このような露出は、チャンバーがワークピース上の誘電体材料をエッチングするプロセスを実行するよう意図されたときには、望ましくないものである。誘電体エッチングプロセスは、通常、ワークピース上の誘電体と共に誘電体シールドをエッチングし、従って、シールドを浸食して、その物理的な寸法を変化させ、ひいては、ワークピース製造プロセスの条件を不所望に変更する。シールドから浸食された化学種の解放も、ワークピース製造プロセスの化学的特性を不所望に変更し得る。
【0028】
この問題に対する1つの従来の解決策は、誘電体シールドの上に横たわる環状の耐浸食性保護シールド即ちカラー50、52を設けることである。この保護シールドは、プロセスチャンバーで実行されるワークピース製造プロセスの環境による(例えば、化学的エッチング又はスパッターエッチングによる)侵食に対して誘電体シールド以上に耐える非誘電体材料で構成されねばならない。ワークピース製造プロセス中に保護シールドのある程度の浸食は不可避であるので、保護シールドの材料は、好ましくは、このような浸食によりワークピースを汚染することのない材料でなければならない。シリコン基板上の誘電体層をエッチングするためのプロセスを実行するチャンバーでは、保護シールドに対する好ましい材料はシリコンである。というのは、シリコンの保護シールドは、浸食しても、シリコン基板を汚染しないからである。ワークピースがシリコンであるときには、金属の保護リングは、一般に、望ましくない。というのは、僅かな量の金属でも、シリコン基板を汚染するからである。
【0029】
図1及び図2に示す好ましい実施形態では、保護シールドは、2つの個別の要素、即ちシリコンの上部リング又は外側リング50と、シリコンの内側リング52とで構成される。内側リングは、カソード電極及びプラズマシースに接近するので、一般に、外側リンクよりも非常に急速に浸食する。保護シールドを個別の内側及び外側リングとして実施すると、大きな、ひいては、より高価な外側リングを交換せずに、内側リングを交換できるようになる。
【0030】
誘電体シールド40及び保護シールド50、52は、プロセスチャンバーの運転中に周期的に交換されるので、それらを組み合わせて「プロセスキット」と称する。誘電体シールド、その上に横たわるシリコンの保護リング、及び上述した他の全てのプロセスチャンバー要素は、参考として全ての内容をここに援用するケー氏等の2000年9月20日に出願された共通所有の米国特許出願第09/665,484号に詳細に開示されている。
【0031】
ここに示す好ましい実施形態を含むほとんどのプロセスチャンバーでは、プロセスキットの前面は、その軸方向輪郭が、ワークピースの周囲付近ではワークピースとほぼ同一平面であり、更に半径方向に外方の位置ではワークピースの平面より上に(即ちその前方に)軸方向に持ち上げられている。持ち上げられた部分がワークピースの周囲を取り巻いているプロセスキットは、「焦点リング」と称される。図1及び図2に示す実施形態では、シリコンの外側リング50がワークピースの平面より上に持ち上げられ、焦点リングとして機能する。
【0032】
持ち上げられた焦点リングの主たる機能は、ワークピース製造プロセスの空間的な均一性を改善することである。より詳細には、持ち上げられた焦点リングは、プラズマの方位方向の均一性及びワークピースの周囲付近の試薬の分布を改善する。更に、焦点リングは、ワークピース製造プロセスの半径方向の均一性を改善し、即ちワークピースの周囲付近のプロセス性能とワークピースの中心付近のプロセス性能との間の差を最小にするように最適化することができる。一般に、プロセスの均一性を最適化する焦点リングの寸法は、実験に基づいて決定されねばならない。
【0033】
ほとんどのプロセスでは、持ち上げられた焦点リングの主たる作用は、反応種がワークピースの周囲に向って進行するのを焦点リングが妨げるような「陰影」作用又は「空乏」作用である。焦点リングがないときには、処理率が、ワークピースの周囲に近いほど高い傾向となる。空乏作用によりウェハ周囲付近の反応種の空乏状態を高めて、ウェハ中心付近の空乏状態に更に厳密に一致させるように、焦点リングの高さを最適化することができる。一般に、ウェハ周囲付近の活性種の空乏状態が高くなると、周囲付近の処理率が低下する。第2に、持ち上げられた焦点リングは、ウェハの周囲付近の反応種の駐留時間を増加する「拘束」又は「駐留時間」作用を発生し、これは、実行されている特定プロセスの化学特性に基づいてウェハ周囲付近の処理率を上昇又は低下させる。処理率に影響するのに加えて、「空乏」作用及び「駐留時間」作用は、エッチングプロセスにおける選択性や付着プロセスにおける膜の品質のような他のプロセス性能パラメータにも影響する。
【0034】
第3に、持ち上げられた焦点リングは、ウェハの周囲付近でイオン束を増大する「イオン収束」作用を発生する。というのは、プラズマシースから下方に加速されたイオン34が、持ち上げられた部分の内方に面する面32に衝突して、ウェハに向って跳飛36するからである(図3を参照)。このイオン収束作用は、ウェハの面と、ウェハに面する持ち上げられた部分の面32との間の角度に大きく依存し、ここで、135°の角度(垂直から45°)であれば、ウェハの中心に向ってイオンの最大の偏向を生じさせると予想される。持ち上げられた焦点リングの第4の作用は、ワークピースの周囲の外側でプラズマシースを軸方向上方に変位させて、プラズマシースをワークピースの周囲から更に移動させ、その結果、ワークピースの周囲付近での反応種の集中を減少することである。
【0035】
空乏作用、駐留時間作用、収束作用及びプラズマ変位作用は、全て、高さHが増加されるにつれて、更に顕著になる傾向がある。又、これらの作用は、全て、持ち上げられた部分の内面32とウェハの周囲との間の半径方向ギャップにより影響される。収束作用は、あるギャップ(実験で決定されねばならない)において最大になると予想され、一方、他の3つの作用は、ギャップが増大するにつれて徐々に減少する。
【0036】
焦点リング設計について考慮すべき事項は、前記米国特許出願第09/665,484号に詳細に述べられている。
【0037】
3.誘電体シールドの上に横たわる導電性カラー
ワークピース即ち基板10がその周囲付近に露出金属を有し、この露出金属の位置に大きな電界が存在する場合には、露出金属と、プロセスキット又はチャック電極との間に電気的アークが時々発生し得る。
【0038】
半導体デバイスの製造において、ワークピースの縁からある距離以上接近してワークピースに材料を付着してはならないと従来から言われており、この距離は、「縁除外分」と称される。200mm直径のシリコンウェハの場合には、縁除外分は、3mmから5mmである。縁除外分を必要とする主たる目的は、ロボットがワークピースの縁を掴んだときに粒子が放出するのを回避するためである。
【0039】
通常、ワークピースの縁に金属を露出させてはならないが、このような露出は、ワークピースに次々の層を付着しエッチングするときに整列エラーによっても生じ得る。金属特徴部が整列エラーのために縁除外ゾーンへ若干延びる場合には、それに続く誘電体又はレジスト層の整列ずれや、縁レジスト除去プロセスの不充分な制御の結果として、これら後続層によりそれが完全にカバーされないことがある。
【0040】
アークは、それにより生じる電流や熱がワークピース上の電気的コンポーネントにダメージを及ぼすと共に、アークにより発生する多数の小さな粒子でワークピースが汚染され得るので、極めて望ましくない。アーク発生の確率を高める要因は、カソード電極にかかる高いDCバイアス電圧、高いチャック電圧、及びチャンバー内のプラズマ密度を向上させるための磁界の使用を含む。
【0041】
アーク発生の主たる原因は、ワークピースの周囲付近に強い半径方向成分を有する電界であると考えられる。この半径方向電界は、カソードと接地点との間のRF電圧と、カソードDCバイアス電圧と、チャック電圧との組合せにより発生されると考えられる。
【0042】
本発明においては、従来の誘電体シールド40の上に横たわり且つワークピースの周囲を厳密に取り巻く高導電性カラーにより、アーク発生のおそれが劇的に減少され又は排除される。この導電性カラーとワークピースの周囲との間のギャップは、できるだけ僅かであるか又はゼロであるのが好ましい。これは、導電性カラーの内半径(即ち半径方向内側の境界)がワークピースの外半径(即ち周囲)以下であって、ワークピースの周囲が導電性カラーの半径方向内側部分に接触するか又は重畳する場合に達成される。
【0043】
好ましい実施形態では、この導電性カラーは、前述した耐浸食性保護カラー50、52に単に取って代わるものである。より詳細には、図1及び2に示す好ましい導電性カラー50、52は、従来の保護カラー50、52と同一であるが、導電性カラーの材料は、その抵抗率が0.1Ωcm以下であり、好ましくは、0.03Ωcm以下である。
【0044】
この導電性カラーは、所要の低い抵抗率を有するものであれば、いずれの材料で製造することもできる。例えば、導電性カラーは、金属、ドープされた半導体、ドープされたセラミック、又は導電性セラミック、例えば、ある金属酸化物で構成することができる。又、導電性カラーに対して選択される材料は、保護シールドにおいて望まれる上述した他の特性も有していなければならず、即ち(1)ワークピース製造プロセスの環境による浸食に耐える特性、及び(2)導電性カラーが浸食されたときにワークピースを汚染する物質を放出しない特性も有していなければならない。
【0045】
シリコンウェハ上の誘電体膜をエッチングするためにプラズマチャンバー内で保護シールドとして使用するためのこれら2つの基準をシリコンが満足することは、上記で説明した。同じ理由で、本発明の導電性カラー50、52として使用するのにもシリコンが好ましい。しかしながら、本発明では、従来の耐浸食性保護シールドのシリコンよりも相当に低い抵抗率を有するシリコンの使用が要求される。これは、シリコンの導電率を高めるために従来使用されているN型又はP型ドーパントをシリコンにドープすることにより達成できる。シリコンにおけるドーパントの濃度は、ドープされたシリコンが0.1Ωcm以下の抵抗率を有するに充分なほど大きくなければならない。
【0046】
炭化シリコンも、0.1Ωcm以下の所要レベルに抵抗率を下げるに充分なほどドープされた場合には、導電性カラーの材料として使用するための上記基準を満足すると予想される。
【0047】
本発明は、このような理論に限定されないが、導電性カラーがアーク発生を防止するメカニズムは、次の通りであると考えられる。導電性カラーは、導電率が高いので、その全面にわたってほぼ等しい電位を課する。これは、ワークピースの縁付近で半径方向電界を減少するときに少なくとも2つの利点を有する。第1に、カラーがワークピースの周囲から半径方向外方に延びる距離にわたり、電界は、カラーの表面においてゼロに近づく。第2に、カラーは、ワークピースを取り巻き、ワークピースの周囲にわたりほぼ等しい電位を課するので、ワークピースの平面に沿った電界が減少される。
【0048】
誘電体シールドを欠いた従来の設計と比較して、本発明は、ワークピースの周囲の外側でRF電力を減衰することにより、ワークピースにより多くのRF電力を集中するという効果を有する。更に、焦点リングとして機能する、持ち上げられたカラーを有するプロセスキット設計において、誘電体シールドは、プロセスキットによりRF電力を減衰することによりプロセスキットの浸食を減少することができる。
【0049】
4.比較テスト
図1及び図2に示した本発明の実施形態を、外側カラー即ちリング50及び内側カラー即ちリング52に対して他の材料を使用するプロセスキットで比較した。より詳細には、200mm直径のシリコンウェハにパッド用の開口を形成するために酸化シリコン及び窒化シリコンの誘電体層をエッチングする従来の磁気増強型プラズマ補助プロセスを実行しながらアーク発生についてテストした。テストに使用したウェハは、誘電体層の下にパターン化された金属特徴部を有するものであった。ウェハは、2つの異なる製造ロットから得られ、第2ロットからのウェハは、第1ロットからのウェハよりもアークを発生する傾向が高いものであった。
【0050】
処理後にウェハを目視検査したり、チャンバー内の閃光を目視監視したり、カソードDCバイアス電圧、チャック電圧、及びRF電源とカソードとの間の反射電力を連続的に監視したりする多数の方法によりアークを検出した。監視されたいずれの値のスパイクもアークの徴候と解釈した。
【0051】
例1:導電性の外側カラー50及び内側カラー52は、ドープされたシリコンの抵抗率が0.008から0.012Ωcmの範囲となるような硼素濃度でドープされたシリコンで構成した。アークは全く観察されなかった。その結果は、ドープされたシリコンが単結晶シリコンであるか多結晶シリコンであるかに無関係であった。
【0052】
対照1:比較のために、前節で述べた導電性リングと同じ寸法を有するが、抵抗率が約2Ωcmの軽くドープされたシリコンで構成された従来の外側カラー50及び内側カラー52に置き換えた。本発明をテストするのに使用したものと同じエッチングプロセス及びテストウェアを使用して、アーク発生の多数の実例を検出すると共に、両ロットからのテストウェアへのダメージを観察した。
【0053】
対照2:又、105Ωcmの非常に高い抵抗率を有する炭化シリコンで構成される以外は同じ外側カラー50及び内側カラー52についても比較した。アーク発生の多数の実例を検出すると共に、両ロットからのテストウェアへのダメージを観察した。
【0054】
例2:例1でテストした導電性内側カラー52は、軸方向厚みが3.6mmであった。例2として、例1の内側カラーの厚みの半分である1.8mmの厚みを有する導電性内側カラー52に置き換えた。内側カラーの下の誘電体シールドの部分の厚みを1.8mm増加し、そのプロセスキットが例1の場合と同じスペースを占有するようにした。例2の薄いカラー52は、例1の厚いカラーと同程度に良好に機能し、即ちアーク発生の実例は検出されなかった。それ故、テストされたものより大きい軸方向厚みを有するカラーを使用したときに、何らかの性能上の利益が得られるとは考えられない。厚いカラーの主たる効果は、交換を必要とするまでにより多くの浸食に耐えることができ、且つ割れ難くて、個人が手で取り扱う間に偶発的なダメージを受け難いことである。
【0055】
例3:図3は、導電性カラー54が単に平らな環状のもので、その外径が誘電体シールド44の外径に等しい本発明の別の実施形態を示す。この導電性カラーの上面は、ウェハ10の下面と同一平面であり、従って、ワークピースの平面の上に(前方に)延びる焦点リングは存在しない。誘電体シールド44は、その平らな上面が導電性カラー54の平らな下面に一致している。同じテスト条件の下で、例3の実施形態は、例1及び2の実施形態と同程度に良好に機能し、即ちアーク発生は全く検出されなかった。これは、持ち上がった焦点リングを持つことが、本発明のアーク減少の利益を得るために重要でないことを実証している。
【0056】
例4:図4は、導電性の内側カラー52を含むが、導電性の外側カラー50を含まない本発明の別の実施形態を示す。テストにおいて、この実施形態の誘電体シールド46のサイズは、図2の実施形態の誘電体シールド40及び外側カラー52の合成サイズと同じであった。導電性の内側カラー52は、図2の実施形態をテストするのに使用されたものと同じであった。同じテスト条件のもとで、若干のアークを検出したが、対照1及び対照2の場合より遥かに少ないものであった。より詳細には、第1ロットからのウェハは、アークのダメージを全く示さなかったが、監視されている電圧においてアークの潜在性を示すスパイクが検出された。第2ロットからのウェハは、アークのダメージを示した。
【0057】
例1、2及び3が例4より良好に機能したという事実は、全半径方向巾が非常に小さい導電性カラー50、52、54が最良のアーク抑制を達成しないことを示している。例1、2及び4では、内側の導電性カラー52は、その半径方向巾が5.7mmであり(104mm外半径から98.2mm内半径を引いたもの)、そのうちの4mmは、ウェハの周囲を越えて半径方向に(即ち外側に)延びており、1.7mmは、ウェハの背後に(即ち下に)あり、即ち100mm半径のウェハが静電チャックの周囲を1.7mmだけオーバーハングしている。例1の外側導電性カラー50及び例3の平らな導電性カラー54は、外半径が134mmであり、従って、例1及び2の導電性カラーは、100mm半径ウェハの周囲を越えて34mm延びる全半径方向巾を有する。
【0058】
ウェハの周囲を越える半径方向巾は、導電性カラーの最も重要な寸法であると考えられる。これらのテストは、カラーが、図3の実施形態のようにウェハの周囲を越えて少なくとも4mm、好ましくは、少なくとも8mm延びる場合に、導電性カラーのアーク抑制性能が良好になることを指示している。図2の実施形態のようにカラーがウェハの周囲を越えて少なくとも34mm延びるときにはアーク抑制が完全であった。
【0059】
上記テストに使用された要素の他の特性は、次の通りであった。導電性外側カラー50は、ウェハの平面より上の(前方の)持ち上がりが6mmであった。静電チャックの誘電体26は、10mm厚みの窒化アルミニウムであった。誘電体シールドは、石英で、内側カラー52の下の厚みが6.3mmであり、外側カラー50の下の厚みが11.4mmであった。
【0060】
上記テストに使用されたエッチングプロセスの条件は、次の通りであった。電源32により供給されるRF電力は、13.56MHzの周波数において1500ワットであり、これは、接地されたチャンバー壁に対して−1500ボルトのDCバイアスをペデスタル本体22に発生した。チャック電源28は、接地点に対して−800ボルトをチャック電極24に供給した。
【0061】
チャンバーの圧力は、150ミリtorrであり、エッチングプロセスガスの流量は、50sccmCF4、30sccmCHF3、10sccmSF6、10sccmN2、及び100sccmArであった。
【0062】
5.付加的な実施形態
図5は、個別の外側及び内側カラー50及び52に変わって一体的な導電性カラー56を使用した本発明の別の実施形態を示す。誘電体48は、図2の誘電体40と同様であるが、その上部の内径は、一体的な導電性カラーを受け入れるために更に大きくされている。この実施形態は、図1及び2の実施形態と同様に機能すると予想される。
【0063】
シリコンの導電率を高めるために従来使用されているドーパントを、上記テストに使用された硼素ドーパントに置き換えられることが予想される。上述したように、導電性カラー50、52、54、56は、必要な抵抗率が0.1Ωcm以下で、好ましくは、0.03Ωcm以下である半導体及び金属を含むいかなる材料でも構成できることが予想される。
【0064】
本発明は、「上」及び「下」のような方向を表わす語を用いて説明したが、これらの語は、要素の相対的な位置を表わすものに過ぎず、地球重力場に対するそれらの方向を表わすものではない。本発明は、下向き又は横向きの方向でワークピースを処理するのに使用されるような要素の他の向きでも等しく有用である。
【符号の説明】
【0065】
10・・・ワークピース(基板)、12・・・円筒状側壁、14・・・円形下壁、16・・・円形上壁、18・・・アノード電極、20・・・ワークピース支持部材(ペデスタル)、22・・・金属本体(カソード電極)、24・・・チャック電極、26・・・誘電体、28・・・チャック電源、32・・・高周波電源、34・・・キャパシタ、30・・・排気マニホルド、40、44・・・誘電体シールド、50・・・外側カラー、52・・・内側カラー、54・・・導電性カラー
図1
図2
図3
図4
図5