【実施例】
【0057】
以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。
【0058】
[重合体の構造の解析方法]
実施例で得た(共)重合体の構造は、日本電子(株)製JNM−ECS400を用いた各種NMR解析により決定した。一般式(2)で示される極性基を有するオレフィンに由来するモノマーユニットの含有率と共重合体末端構造は、溶媒として1,2,4−トリクロロベンゼン(0.55mL)及び緩和試薬としてCr(acac)
3(10mg)を用い、120℃において、逆ゲート付きデカップリング法を用いた
13C−NMR(9.0マイクロ秒の90°パルス、スペクトル幅:31kHz、緩和時間:10秒、取り込み時間:10秒、FIDの積算回数5,000〜10,000回)、または溶媒として1,1,2,2−テトラクロロエタン−d2を使用した120℃における
1H−NMRによって決定した。
【0059】
数平均分子量及び重量平均分子量は、東ソー(株)製,TSKgel GMHHR−H(S)HTカラム(7.8mmI.D.×30cmを2本直列)を備えた東ソー(株)製高温GPC装置、HLC−8121GPC/HTを用い、ポリスチレンを分子量の標準物質とするサイズ排除クロマトグラフィー(溶媒:1,2−ジクロロベンゼン、温度:145℃)により算出した。
【0060】
[金属錯体触媒1の合成]
下記の反応スキームに従って金属錯体触媒1を合成した。
【化29】
【0061】
(a)塩化メンチル(化合物1a)の合成
文献(J. Org. Chem., 17, 1116. (1952))記載の手法で、塩化メンチル(化合物1a)の合成を行った。すなわち、塩化亜鉛(77g、0.56mol)の37%塩酸(52mL、0.63mol)溶液に、(−)−メントール(27g、0.17mol)を加え、35℃に加熱しながら、5時間撹拌した。室温まで冷却した後、反応液にヘキサン(50mL)を加え、分液漏斗を使用して、有機層と水層を分離した。有機層は水(30mL×1)で洗浄後、さらに濃硫酸(10mL×5)及び水(30mL×5)で洗浄した。有機層を硫酸マグネシウムで乾燥後、減圧濃縮を行い、塩化メンチル(化合物1a)を無色の油状物質として得た。収量は27g(収率91%)であった。
【0062】
(b)塩化ジメンチルホスフィン(化合物1c)の合成
文献(Journal fur Praktische Chemie, 322, 485. (1980))記載の手法で、塩化ジメンチルホスフィン(化合物1c)の合成を行った。すなわち、アルゴン雰囲気下、塩化メンチル(化合物1a;2.6g、15mmol)とマグネシウム(0.63g、26mmol)をテトラヒドロフラン(THF)(30mL)中で、70℃に加熱しながら反応させて得られた塩化メンチルマグネシウム(化合物1b)の溶液を、三塩化リン(0.63mL、7.2mmol)のTHF(30mL)溶液に−78℃で加えた。室温まで昇温後、70℃に加熱しながら2時間撹拌した。溶媒を減圧留去した後、蒸留精製を行い、塩化ジメンチルホスフィンを得た。収量は、0.62g(収率25%)であった。
31P−NMR(162MHz,THF):δ 123.9;
【0063】
(c)2−(ジメンチルホスフィノ)ベンゼンスルホン酸(化合物1d)の合成
ベンゼンスルホン酸(0.18g,1.2mmol)のTHF溶液(10mL)に、n−ブチルリチウム(1.6Mヘキサン溶液,1.4mL,2.3mmol)を0℃で加え、室温で1時間撹拌した。反応容器を−78℃に冷却した後に、塩化ジメンチルホスフィン(化合物1c;0.36g,1.1mmol)を−78℃で加え、室温で15時間撹拌した。反応をトリフルオロ酢酸(0.97mL,1.3mmol)で停止した後に、溶媒を減圧留去した。残渣をジクロロメタンに溶解させ、飽和塩化アンモニウム水溶液で洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、2−(ジメンチルホスフィノ)ベンゼンスルホン酸(化合物1d)を白色粉末として得た。収量は0.31g(収率63%)であった。
1H−NMR(500MHz,CDCl
3):δ8.27 (br s, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.59-7.52 (m, 2H), 3.54 (br s, 1H), 2.76 (br s, 1H), 2.16 (br s, 1H), 1.86-1.38 (m, 12H), 1.22-0.84 (m, 22H), 0.27 (br s, 1H);
31P{
1H}−NMR(162MHz,CDCl
3):δ 45.1(br.),−4.2(br.);
【0064】
(d)金属錯体触媒1の合成
アルゴン雰囲気下、2−(ジメンチルホスフィノ)ベンゼンスルホン酸(化合物1d;0.14g,0.30mmol)とN,N−ジイソプロピルエチルアミン(0.26mL,1.5mmol)の塩化メチレン溶液(10mL)に、(cod)PdMeCl(文献;Inorg. Chem., 1993, 32, 5769-5778に従って合成。cod=1,5−シクロオクタジエン、0.079g,0.30mmol)を加え、室温で1時間撹拌した。溶液を濃縮した後に、残渣を塩化メチレン(10mL)に溶解させ、この溶液を、炭酸カリウム(0.42g,3.0mmol)と2,6−ルチジン(0.35mL,3.0mmol)の塩化メチレン懸濁液(2mL)に加え、室温で1時間撹拌した。この反応液をセライト(乾燥珪藻土)及びフロリジル(ケイ酸マグネシウム)でろ過した後に、溶媒を濃縮し、減圧下乾燥を行い、金属錯体触媒1を得た。収量は、0.17g(収率80%)であった。
1H−NMR(400MHz,CDCl
3):δ 8.26 (ddd, J = 7.8, 3.9, 1.4 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 3.75 (s, 1H), 3.24 (s, 3H), 3.17 (s, 3H), 2.59 (s, 1H), 2.49-2.39 (m, 2H), 2.29-2.27 (m, 1H), 2.05-1.96 (m, 1H), 1.89-1.37 (m, 12H), 1.21-1.11 (m, 2H), 0.98 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.2 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H), 0.58 (d, J = 6.6 Hz, 3H), 0.41 (d, J = 2.3 Hz, 3H), 0.08 (d, J = 6.6 Hz, 3H);
31P−NMR(162MHz,CDCl
3):δ 16.6;
【0065】
[重合体の合成]
上記の方法で合成した金属錯体触媒1を使用して、一般式(C1)で示されるオレフィンの単独重合、及び一般式(C2)で表される極性基を有するオレフィンとの共重合を行った。重合条件及び重合結果をそれぞれ表1及び表2に示す。
なお、触媒濃度及び触媒活性は次の式により計算した。
【数1】
【数2】
【0066】
実施例1:酢酸アリルとエチレンの共重合(重合体1の調製)
アルゴン雰囲気下、金属錯体触媒1(34.6mg,0.050mmol)を含む50mLオートクレーブ中に、トルエン(12mL)、酢酸アリル(3mL,28mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、15時間撹拌した。室温に冷却後、オートクレーブ中にメタノール(約20mL)を加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体1を得た。収量は2.0gであった。触媒活性は、2.7g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量95,000、重量平均分子量142,000と算出し、Mw/Mnは1.5であった。共重合体中の酢酸アリル含有率は、
1H−NMR測定により、エチレン:酢酸アリルのモル比は100:1.8(酢酸アリルモル分率=1.7%)と決定した。
【0067】
実施例2:酢酸アリルとエチレンの共重合(重合体2の調製)
実施例1のトルエンと酢酸アリルの容積比を変えて、同様に酢酸アリルとエチレンの共重合を行った。すなわち、アルゴン雰囲気下、金属錯体触媒1(34.6mg,0.050mmol)を含む50mLオートクレーブ中に、トルエン(9mL)、酢酸アリル(6mL,56mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、15時間撹拌した。室温に冷却後、オートクレーブ中にメタノール(約20mL)を加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体2を得た。収量は1.9gであった。触媒活性は、2.5g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量79,000、重量平均分子量125,000と算出し、Mw/Mnは1.5であった。共重合体中の酢酸アリル含有率は、
1H−NMR測定により、エチレン:酢酸アリルのモル比は100:2.9(酢酸アリルモル分率=2.8%)と決定した。
【0068】
実施例3:酢酸アリルとエチレンの共重合(重合体3の調製)
実施例1及び実施例2のトルエンと酢酸アリルの容積比、反応スケール及び触媒濃度を変えて、同様に酢酸アリルとエチレンの共重合を行った。すなわち、窒素雰囲気下、金属錯体触媒1(6.9mg,0.010mmol)を含む120mLオートクレーブ中に、トルエン(37.5mL)、酢酸アリル(37.5mL,350mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、5時間撹拌した。室温に冷却後、オートクレーブ内の反応液をメタノール(300mL)に加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体3を得た。収量は0.63gであった。触媒活性は、13g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量170,000、重量平均分子量470,000と算出し、Mw/Mnは2.9であった。共重合体中の酢酸アリル含有率は、
1H−NMR測定により、エチレン:酢酸アリルのモル比は100:2.9(酢酸アリルモル分率=2.8%)と決定した。
【0069】
実施例4:酢酸アリルとエチレンの共重合(重合体4の調製)
実施例3のトルエンと酢酸アリルの容積比、反応スケール及び反応時間を変えて、同様に酢酸アリルとエチレンの共重合を行った。すなわち、窒素雰囲気下、金属錯体触媒1(13.9mg,0.020mmol)を含む500mLオートクレーブ中に、酢酸アリル(300mL,2800mmol)を加えた。エチレン(4.0MPa)を充填した後、オートクレーブを80℃で、43時間撹拌した。室温に冷却後、オートクレーブ内の反応液をメタノール(1L)中に加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体4を得た。収量は6.8gであった。触媒活性は、7.9g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量290,000、重量平均分子量790,000と算出し、Mw/Mnは2.7であった。共重合体中の酢酸アリル含有率は、
1H−NMR測定により、エチレン:酢酸アリルのモル比は100:2.7(酢酸アリルモル分率=2.6%)と決定した。
【0070】
比較例1:金属錯体触媒2を使用した酢酸アリルとエチレンの共重合(比較重合体1の調製)
金属錯体触媒1の代わりに、下記式
【化30】
で示される金属錯体触媒2(文献;J. Am. Chem. Soc., 2009, 131, 14606-14607に従って合成)を使用して、実施例1と同様の手法で、酢酸アリルとエチレンの共重合を行った。すなわち、アルゴン雰囲気下、金属錯体触媒2(58.2mg,0.10mmol)を含む50mLオートクレーブ中に、トルエン(12mL)、酢酸アリル(3mL,28mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、3時間撹拌した。室温に冷却後、オートクレーブ中にメタノール(約20mL)を加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、共重合体(比較重合体1)を得た。収量は1.7gであった。触媒活性は、5.7g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量15,000、重量平均分子量35,000と算出し、Mw/Mnは2.3であった。共重合体中の酢酸アリル含有率は、
13C−NMR測定により、エチレン:酢酸アリルのモル比は100:1.3(酢酸アリルモル分率=1.2%)と決定した。
【0071】
比較例2:金属錯体触媒3を使用した酢酸アリルとエチレンの共重合(比較重合体2の調製)
金属錯体触媒1の代わりに、下記式
【化31】
で示される金属錯体触媒3(文献;J. Am. Chem. Soc., 2007, 129, 8948-8949.に従って合成)を使用して、実施例1と同様の手法で、酢酸アリルとエチレンの共重合を行った。すなわち、アルゴン雰囲気下、金属錯体触媒3(63.0mg,0.10mmol)を含む50mLオートクレーブ中に、塩化メチレン(3.75mL)、トルエン(3.75mL)、酢酸アリル(7.5mL,70mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、3時間撹拌した。室温に冷却後、オートクレーブ内の反応液にメタノール(約20mL)を加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、共重合体(比較重合体2)を得た。収量は0.29gであった。触媒活性は、0.97g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量4,000、重量平均分子量7,000と算出し、Mw/Mnは1.7であった。共重合体中の酢酸アリル含有率は、
13C−NMR測定により、エチレン:酢酸アリルのモル比は100:3.8(酢酸アリルモル分率=3.7%)と決定した。
【0072】
比較例3:金属錯体触媒4を使用した酢酸アリルとエチレンの共重合(比較重合体3の調製)
金属錯体触媒1の代わりに、下記式
【化32】
で示される金属錯体触媒4(特許文献1;特開2011−68881号公報に従って合成)を使用して、実施例3と同様の手法で、酢酸アリルとエチレンの共重合を行った。すなわち、窒素雰囲気下、金属錯体触媒4(50.2mg,0.10mmol)を含む120mLオートクレーブ中に、トルエン(37.5mL)、酢酸アリル(37.5mL,350mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、5時間撹拌した。室温に冷却後、オートクレーブ内の反応液をメタノール(約100mL)中に加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、共重合体(比較重合体3)を得た。収量は3.0gであった。触媒活性は、6.0g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量11,000、重量平均分子量26,000と算出し、Mw/Mnは2.4であった。共重合体中の酢酸アリル含有率は、
13C−NMR測定により、エチレン:酢酸アリルのモル比は100:4.1(酢酸アリルモル分率=4.0%)と決定した。
【0073】
比較例4:金属錯体触媒5を使用した酢酸アリルとエチレンの共重合(比較重合体4の調製)
金属錯体触媒1の代わりに、下記式
【化33】
で示される金属錯体触媒5(特許文献1;特開2011−68881号公報に従って合成)を使用して、実施例3と同様の手法で、酢酸アリルとエチレンの共重合を行った。すなわち、窒素雰囲気下、金属錯体触媒5(84.2mg,0.10mmol)を含む120mLオートクレーブ中に、トルエン(37.5mL)、酢酸アリル(37.5mL,350mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、5時間撹拌した。室温に冷却後、オートクレーブ内の反応液をメタノール(約100mL)中に加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、共重合体(比較重合体4)を得た。収量は0.21gであった。触媒活性は、0.42g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量37,000、重量平均分子量85,000と算出し、Mw/Mnは2.3であった。共重合体中の酢酸アリル含有率は、
13C−NMR測定により、エチレン:酢酸アリルのモル比は100:1.3(酢酸アリルモル分率=1.2%)と決定した。
【0074】
【表1】
【0075】
【表2】
【0076】
表1及び2に示すように、本発明の金属錯体触媒1を使用した実施例1〜4では、これまでの触媒(比較例1〜4)では製造が困難であった高分子量のアリルモノマー共重合体を合成することができるようになった。また、金属錯体触媒の触媒濃度を低くした実施例3は、実施例1及び2に比べてより高い触媒活性を示した。
【0077】
さらに、金属錯体触媒1を使用して、一般式(C1)で示されるオレフィンとしてエチレンの単独重合、及び酢酸アリル以外の一般式(C2)で表される極性基を有するオレフィン(アクリル酸メチル、ブチルビニルエーテル、アクリロニトリル、酢酸ビニル)との共重合を行った。重合条件及び重合結果をそれぞれ表3及び表4に示す。
【0078】
実施例5:エチレンの単独重合(重合体5の調製)
アルゴン雰囲気下、金属錯体触媒1(6.9mg,0.010mmol)を含む300mLオートクレーブ中に、トルエン(100mL)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、1時間撹拌した。室温に冷却後、オートクレーブ中にメタノール(約150mL)を加えた。生じた重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体5を得た。収量は2.1gであった。触媒活性は、205g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量405,000、重量平均分子量618,000と算出し、Mw/Mnは1.5であった。
【0079】
実施例6:アクリル酸メチルとエチレンの共重合(重合体6の調製)
アルゴン雰囲気下、金属錯体触媒1(6.9mg,0.010mmol)を含む50mLオートクレーブ中に、トルエン(7.5mL)、アクリル酸メチル(7.5mL,84mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、3時間撹拌した。室温に冷却後、オートクレーブ中にメタノール(約20mL)を加えた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体6を得た。収量は2.0gであった。触媒活性は、67g/(mmol・h)と算出された。サイズ排除クロマトグラフィーにより、数平均分子量55,000、重量平均分子量171,000と算出し、Mw/Mnは3.1であった。共重合体中のアクリル酸メチル含有率は、
1H−NMR測定により、エチレン:アクリル酸メチルのモル比は100:1.3(アクリル酸メチルモル分率=1.3%)と決定した。
【0080】
実施例7:ブチルビニルエーテルとエチレンの共重合(重合体7の調製)
トルエン、アクリル酸メチルをトルエン(10mL)、ブチルビニルエーテル(5mL,39mmol)に代え、反応時間を15時間とした以外は実施例6と同様にしてブチルビニルエーテルとエチレンの共重合体(重合体7)を製造した。結果を表3および表4に示す。
【0081】
実施例8:アクリロニトリルとエチレンの共重合(重合体8の調製)
トルエン、アクリル酸メチルをトルエン(2.5mL)、アクリロニトリル(2.5mL,38mmol)に代え、反応温度、時間を100℃、96時間とした以外は実施例6と同様にしてアクリロニトリルとエチレンの共重合体(重合体8)を製造した。結果を表3および表4に示す。
【0082】
実施例9:酢酸ビニルとエチレンの共重合(重合体9の調製)
トルエン、アクリル酸メチルをトルエン(3mL)、酢酸ビニル(12mL,130mmol)に代え、反応温度、時間を80℃、15時間とした以外は実施例6と同様にして酢酸ビニルとエチレンの共重合体(重合体9)を製造した。結果を表3および表4に示す。
【0083】
比較例5:金属錯体触媒2を使用したエチレン単独重合(比較重合体5の調製)
金属錯体触媒1の代わりに金属錯体触媒2を使用して、実施例5と同様の手法で、エチレンの単独重合を行った。すなわち、窒素雰囲気下、金属錯体触媒2(29mg,0.050mmol)を含む120mLオートクレーブ中に、トルエン(75mL)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、1時間撹拌した。室温に冷却後、反応液をメタノール(300mL)に加えた。生じた重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、比較重合体5を得た。結果を表3および表4に示す。
【0084】
比較例6:金属錯体触媒4を使用したアクリル酸メチルとエチレンの共重合(比較重合体6の調製)
金属錯体触媒1の代わりに金属錯体触媒4を使用して、実施例6と同様の手法で、アクリル酸メチルとエチレンの共重合を行った。すなわち、窒素雰囲気下、金属錯体触媒4(50mg,0.10mmol)を含む120mLオートクレーブ中に、トルエン(37.5mL)及びアクリル酸メチル(37.5mL,420mmol)を加えた。エチレン(3.0MPa)を充填した後、オートクレーブを80℃で、3時間撹拌した。室温に冷却後、反応液をメタノール(300mL)に加えた。生じた重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、比較重合体6を得た。結果を表3および表4に示す。
【0085】
比較例7:金属錯体触媒3を使用したアクリロニトリルとエチレンの共重合(比較重合体7の調製)
文献(J. Am. Chem. Soc., 2007, 129, 8948-8949.)に、金属錯体触媒3を使用したアクリロニトリルとエチレンの共重合が記載されている。すなわち、金属錯体触媒3(0.010mmol)を使用して、エチレン(3.0MPa)を充填したトルエン(2.5mL)及びアクリロニトリル(2.5mL)を含むオートクレーブ中、100℃、120時間の重合を行い、比較重合体7が0.23g得られている。結果を表3および表4に示す。
【0086】
比較例8:金属錯体触媒2を使用した酢酸ビニルとエチレンの共重合(比較重合体8の調製)
文献(J. Am. Chem. Soc., 2009, 131, 14606-14607.)に、金属錯体触媒2を使用した酢酸ビニルとエチレンの共重合が記載されている。すなわち、金属錯体触媒2(0.10mmol)を使用して、エチレン(3.0MPa)を充填したトルエン(3mL)及び酢酸ビニル(12mL)を含むオートクレーブ中、80℃、15時間の重合を行い、比較重合体8が1.0g得られている。結果を表3および表4に示す。
【0087】
【表3】
【0088】
【表4】
【0089】
表3及び4に示すように、本発明の金属錯体触媒1を使用することで、これまでの周期律表第10族金属錯体触媒(比較例5〜8)では製造が困難であった、高分子量のポリエチレン及び極性基含有モノマー共重合体を合成することができるようになった。