(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6315151
(24)【登録日】2018年4月6日
(45)【発行日】2018年4月25日
(54)【発明の名称】サスペンションプラズマ溶射用スラリー、及び希土類酸フッ化物溶射膜の形成方法
(51)【国際特許分類】
C23C 4/10 20160101AFI20180416BHJP
【FI】
C23C4/10
【請求項の数】10
【全頁数】14
(21)【出願番号】特願2017-551340(P2017-551340)
(86)(22)【出願日】2017年7月10日
(86)【国際出願番号】JP2017025117
【審査請求日】2017年10月23日
(31)【優先権主張番号】特願2016-139090(P2016-139090)
(32)【優先日】2016年7月14日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】110002240
【氏名又は名称】特許業務法人英明国際特許事務所
(72)【発明者】
【氏名】高井 康
(72)【発明者】
【氏名】浜谷 典明
【審査官】
坂本 薫昭
(56)【参考文献】
【文献】
特開2016−089241(JP,A)
【文献】
国際公開第2015/019673(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C01F 17/00
C23C 4/10,4/134
(57)【特許請求の範囲】
【請求項1】
酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射に用いられる溶射材料であって、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とすることを特徴とするサスペンションプラズマ溶射用スラリー。
【請求項2】
更に、有機化合物からなる凝集防止剤を3質量%以下含有することを特徴とする請求項1記載のサスペンションプラズマ溶射用スラリー。
【請求項3】
更に、希土類酸化物、希土類水酸化物及び希土類炭酸塩から選ばれる1種又は2種以上の微粒子添加剤を5質量%以下含有することを特徴とする請求項1又は2記載のサスペンションプラズマ溶射用スラリー。
【請求項4】
希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする請求項1乃至3のいずれか1項記載のサスペンションプラズマ溶射用スラリー。
【請求項5】
上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする請求項1乃至4のいずれか1項記載のサスペンションプラズマ溶射用スラリー。
【請求項6】
基材上に、請求項1乃至4のいずれか1項記載のスラリーを溶射材料とし、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により溶射膜を形成する工程を含むことを特徴とする希土類酸フッ化物溶射膜の形成方法。
【請求項7】
上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする請求項6記載の形成方法。
【請求項8】
上記溶射膜が、希土類酸フッ化物を主相として含むことを特徴とする請求項6又は7記載の形成方法。
【請求項9】
上記希土類酸フッ化物が、ReOF、Re5O4F7、Re6O5F8及びRe7O6F9(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする請求項6乃至8のいずれか1項記載の形成方法。
【請求項10】
上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする請求項6乃至9のいずれか1項記載の形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体製造におけるエッチング工程などにおいてハロゲン系ガスプラズマ雰囲気に曝される部材などとして好適な溶射部
材の製造に用いられるサスペンションプラズマ溶射用スラリー、及び該スラリーを用いた希土類酸フッ化物溶射膜の形成方法に関する。
【背景技術】
【0002】
半導体製造においては、エッチング工程(エッチャー工程)において、腐食性が高いハロゲン系ガスプラズマ雰囲気で処理される。金属アルミニウム又は酸化アルミニウムなどのセラミックスの表面に、酸化イットリウム(特許文献1:特開2002−080954号公報、特許文献2:特開2007−308794号公報)や、フッ化イットリウム(特許文献3:特開2002−115040号公報、特許文献4:特開2004−197181号公報)を大気圧プラズマ溶射することで、これらの膜を成膜した部材が、耐腐食性に優れたものとなることが知られており、エッチング装置(エッチャー)のハロゲン系ガスプラズマに触れる部分には、そのような溶射部材が採用されている。半導体製品の製造工程で用いられるハロゲン系腐食ガスには、フッ素系ガスとしては、SF
6、CF
4、CHF
3、ClF
3、HFなどが、また、塩素系ガスとしては、Cl
2、BCl
3、HClなどが用いられる。
【0003】
酸化イットリウムをプラズマ溶射して製造する酸化イットリウム成膜部材は、技術的な問題が少なく、早くから半導体用溶射部材として実用化されている。しかし、酸化イットリウムの成膜部材には、エッチング工程のプロセス初期に、最表面の酸化イットリウムがフッ化物に反応し、エッチング装置内のフッ素ガス濃度が変化して、エッチング工程が安定しないという問題がある。この問題は、プロセスシフトと呼ばれる。
【0004】
この問題に対応するため、フッ化イットリウムの成膜部材を採用することが検討されている。しかし、フッ化イットリウムは、酸化イットリウムと比べて、僅かながらハロゲン系ガスプラズマ雰囲気での耐食性が低い傾向にある。また、フッ化イットリウム溶射膜は酸化イットリウム溶射膜と比べて、表面のヒビが多く、パーティクルの発生が多いという問題もある。
【0005】
そこで、溶射材料として、酸化イットリウムとフッ化イットリウムの両方の性質をもつオキシフッ化イットリウムが着目され、近年では、オキシフッ化イットリウムを用いる検討がなされ始めている(特許文献5:特開2014−009361号公報)。しかし、オキシフッ化イットリウム成膜部材は、オキシフッ化イットリウムを溶射材料として大気プラズマ溶射する際、酸化によってフッ素が減少し酸素が増加し、組成がずれて、酸化イットリウムを生成してしまうため、溶射膜をオキシフッ化イットリウムとして安定して成膜することが難しい。
【0006】
一方、溶射材料を固体のまま供給するプラズマ溶射(以下、単に、プラズマ溶射と呼ぶ)に代わる成膜技術として、サスペンションプラズマ溶射(SPS)が開発された。サスペンションプラズマ溶射は、溶射材料をスラリーで供給する方法であり、プラズマ溶射と比べて、表面のヒビが少ない溶射膜を成膜できるという特徴がある。サスペンションプラズマ溶射による溶射部材は、半導体製造用エッチング装置やCVD装置のハロゲン系ガスプラズマに接触する部材への適用が検討されている。例えば、酸化イットリウムのスラリー材料(特許文献6:特開2010−150617号公報)やオキシフッ化イットリウムのスラリー材料(特許文献7:国際公開第2015/019673号)を用いたサスペンションプラズマ溶射が提案されている。しかし、オキシフッ化イットリウムのスラリー材料を用いた場合も、サスペンションプラズマ溶射であっても、プラズマ溶射同様、溶射膜をオキシフッ化イットリウムとして安定して成膜することは難しい。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2002−080954号公報
【特許文献2】特開2007−308794号公報
【特許文献3】特開2002−115040号公報
【特許文献4】特開2004−197181号公報
【特許文献5】特開2014−009361号公報
【特許文献6】特開2010−150617号公報
【特許文献7】国際公開第2015/019673号
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、上記事情に鑑みてなされたものであり、酸化イットリウム溶射膜やフッ化イットリウム溶射膜と比べて、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物溶射膜を得るため、サスペンションプラズマ溶射で希土類酸フッ化物溶射膜を安定して成膜できるサスペンションプラズマ溶射用スラリー、
及びスラリーを用いた希土類酸フッ化物溶射膜の形成方
法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とするスラリーを溶射材料として、酸素を含有するガスを含む雰囲気下でサスペンションプラズマ溶射により溶射膜を形成することにより、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物を含む溶射膜を安定して形成することができ、基材上に、このようなスラリーを用いて形成した溶射膜を備える溶射部材が、希土類酸フッ化物を含み、ハロゲン系ガスプラズマに対する耐食性に優れたものであることを見出し、本発明をなすに至った。
【0010】
従って、本発明は、下記のサスペンションプラズマ溶射用スラリー、
及び希土類酸フッ化物溶射膜の形成方
法を提供する。
[1] 酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射に用いられる溶射材料であって、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とすることを特徴とするサスペンションプラズマ溶射用スラリー。
[2] 更に、有機化合物からなる凝集防止剤を3質量%以下含有することを特徴とする[1]記載のサスペンションプラズマ溶射用スラリー。
[3] 更に、希土類酸化物、希土類水酸化物及び希土類炭酸塩から選ばれる1種又は2種以上の微粒子添加剤を5質量%以下含有することを特徴とする[1]又は[2]記載のサスペンションプラズマ溶射用スラリー。
[4] 希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする[1]乃至[3]のいずれかに記載のサスペンションプラズマ溶射用スラリー。
[5] 上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする[1]乃至[4]のいずれかに記載のサスペンションプラズマ溶射用スラリー。
[6] 基材上に、[1]乃至[4]のいずれかに記載のスラリーを溶射材料とし、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により溶射膜を形成する工程を含むことを特徴とする希土類酸フッ化物溶射膜の形成方法。
[7] 上記サスペンションプラズマ溶射が、大気サスペンションプラズマ溶射であることを特徴とする[6]記載の形成方法。
[8] 上記溶射膜が、希土類酸フッ化物を主相として含むことを特徴とする[6]又は[7]記載の形成方法。
[9] 上記希土類酸フッ化物が、ReOF、Re
5O
4F
7、Re
6O
5F
8及びRe
7O
6F
9(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする[6]乃至[8]のいずれかに記載の形成方法。
[10] 上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする[6]乃至[9]のいずれかに記載の形成方法。
また、本発明は、下記の溶射部材が関連する。
[11] 溶射膜が形成される基材と、希土類酸フッ化物を主相として含む溶射膜とを備えることを特徴とする溶射部材。
[12] 希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする[11]記載の溶射部材。
[13] 上記希土類酸フッ化物が、ReOF、Re
5O
4F
7、Re
6O
5F
8及びRe
7O
6F
9(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物を含むことを特徴とする[11]又は[12]記載の溶射部材。
[14] 上記溶射膜が、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることを特徴とする[11]乃至[13]のいずれかに記載の溶射部材。
[15] 上記溶射膜の厚さが、10μm以上150μm以下であることを特徴とする[11]乃至[14]のいずれかに記載の溶射部材。
[16] 上記溶射膜の気孔率が1%以下であることを特徴とする[11]乃至[15]のいずれかに記載の溶射部材。
【発明の効果】
【0011】
本発明のサスペンションプラズマ溶射用スラリーを用いることにより、基材上に、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物を含む溶射膜を、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により、安定して形成することができる。この溶射膜を備える溶射部材は、ハロゲン系ガスプラズマに対する耐食性に優れている。
【発明を実施するための形態】
【0012】
以下、本発明について、更に詳細に説明する。
本発明のスラリーは、酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射、特に、大気雰囲気下でプラズマを形成する大気サスペンションプラズマ溶射に好適に用いられる。本発明においては、プラズマが形成される周囲の雰囲気ガスが、大気の場合を、大気サスペンションプラズマ溶射と呼ぶ。また、プラズマが形成される場の圧力は、大気圧下などの常圧の他、加圧下、減圧下であってもよい。
【0013】
本発明のサスペンションプラズマ溶射用スラリーは、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により、希土類酸フッ化物を含む溶射膜、特に希土類酸フッ化物を主相とする溶射膜を、安定して形成することができるものである。希土類フッ化物を、大気雰囲気下でプラズマ溶射すると、溶射膜の酸素濃度(酸素含有率)が増える一方、フッ素濃度(フッ素含有率)は減少する。このような希土類フッ化物の酸化により、希土類フッ化物から希土類酸フッ化物を含む溶射膜を形成することができるが、得られる溶射膜は、酸化の程度が低すぎる場合は、希土類フッ化物の特性が優位となってしまう一方、酸化の程度が高すぎる場合は、希土類酸化物の特性が優位となってしまう。
【0014】
本発明では、上述した希土類フッ化物の酸化によって、希土類酸フッ化物を含む溶射膜を得るために、サスペンションプラズマ溶射において供給するスラリーを、最大粒子径(D100(体積基準))が12μm以下の希土類フッ化物粒子を溶媒に分散させたスラリーとする。溶射材料を固体のまま供給するプラズマ溶射では、一般に、平均粒径(D50)が20〜50μmの粒子をプラズマ炎に供給して粒子を溶融させて、溶射膜を形成する。プラズマ溶射の場合は、粒径が小さすぎると、粒子が飛散してプラズマ炎に入らず、粒径が大きすぎると、プラズマ炎から落下し、溶融しないため、このような粒径のものが用いられる。
【0015】
一方、本発明においては、大気サスペンションプラズマ溶射などの、酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射において、溶射材料の粒子又はそれが溶融した液滴を酸化させるが、酸化は粒子又は液滴の表面から進行するため、希土類フッ化物を酸化させるためには、上述したプラズマ溶射で用いられるような大粒子では、プラズマ内での滞留時間を長くする必要が生じる。しかし、滞留時間を長くすると、プラズマ炎からの落下につながり、粒子又は液滴同士の結合も進行するため、プラズマ炎から落下する確率が高くなる。そのため、大粒径の粒子では、酸化の程度と溶射状態とを同時に制御することが困難である。
【0016】
これに対して、本発明では、上述した大気雰囲気下における酸化を考慮し、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を用いる。このような比較的小粒径の希土類フッ化物粒子を、水及び有機溶媒から選ばれる1種又は2種以上を分散媒とするスラリーとして、酸素を含有するガスを含む雰囲気下、特に大気雰囲気下でサスペンションプラズマ溶射することにより、酸化の程度を、希土類酸フッ化物の特性が効果的に発揮される酸素含有率、例えば、原料希土類フッ化物粒子の酸素含有率(質量%)と比較して、プラズマを通過することによって燃焼したり、揮発したりせずに、原料希土類フッ化物と共に溶射膜を形成する無機成分(例えば、後述する微粒子添加剤など)を除いた原料希土類フッ化物ベース(以下、単に原料希土類フッ化物ベースという)で、酸素含有率が1質量%(+1ポイント)以上、特に2質量%(+2ポイント)以上で、5質量%(+5ポイント)以下、特に4質量%(+4ポイント)以下、とりわけ3質量%(+3ポイント)以下増加した溶射膜を、制御性よく形成することができる。
【0017】
溶媒が水を含む場合、溶媒である水がフッ化物の酸化に寄与するので、例えば、スラリー中の希土類フッ化物粒子の酸素含有率が2質量%であれば、溶射膜の酸素含有率を、原料希土類フッ化物ベースの酸素含有率で3質量%以上、特に4質量%以上で、7質量%以下、特に6質量%以下、とりわけ5質量%以下とすることができる。また、スラリー中の希土類フッ化物粒子が、実質的に酸素を含有していないものであれば、溶射膜の酸素含有率を、原料希土類フッ化物ベースの酸素含有率で1質量%以上、特に2質量%以上で、5質量%以下、特に4質量%以下、とりわけ3質量%以下とすることができる。溶媒が有機溶媒のみの場合、有機溶媒は、構成元素中の酸素の割合が水と比べて低いので、酸化の程度が低くなり、例えば、スラリー中の希土類フッ化物粒子の酸素含有率が0.5質量%であれば、溶射膜の酸素含有率を、原料希土類フッ化物ベースの酸素含有率で0.1質量%以上、特に0.3質量%以上で、3質量%以下、特に2質量%以下、とりわけ1質量%以下とすることができる。一方、溶射膜のフッ素含有率は、例えば、原料希土類フッ化物がイットリウムフッ化物であり、スラリーが後述する微粒子添加剤を含まない場合、通常、31.6質量%以上、特に33.5質量%以上で、38質量%以下、特に37質量%以下、とりわけ35質量%以下である。
【0018】
本発明のスラリーに含まれる希土類フッ化物粒子の最大粒子径(D100)は、10μm以下、特に8μm以下であることが好ましい。最大粒子径(D100)の下限は、通常6μm以上である。また、希土類フッ化物粒子の平均粒径(D50(体積基準))は、1μm以上で、5μm以下、特に3μm以下が好適である。特に、溶射時のプラズマ印加電力(溶射電力)が120kW以下の場合は、希土類フッ化物粒子の平均粒径(D50)を、1μm以上3μm以下とすることがより好ましい。更に、希土類フッ化物粒子の比表面積(BET表面積)は、5m
2/g以下、特に3m
2/g以下、とりわけ2m
2/g以下が好ましい。希土類フッ化物粒子の比表面積(BET表面積)の下限は、特に限定されるものではないが、通常0.5m
2/g以上、好ましくは1m
2/g以上、より好ましくは1.5m
2/g以上である。
【0019】
希土類フッ化物は、従来公知の方法で製造されたものを用いることができ、例えば、希土類酸化物粉末と、希土類酸化物に対して当量で1.1倍以上の酸性フッ化アンモニウム粉末とを混合し、窒素ガス雰囲気などの酸素のない雰囲気下で、300℃以上800℃以下で、1時間以上10時間以下焼成することにより製造することができる。希土類フッ化物は、市販品であってもよい。これらは必要に応じて、ジェットミルなどで粉砕し、空気分級などで分級して、所定の粒径の粒子として用いることができる。
【0020】
原料である希土類フッ化物は、少量であれば酸素の含有は許容される。希土類フッ化物が酸素を含有している場合、その一部が、希土類酸化物や希土類酸フッ化物などで存在していることが考えられるが、本発明で用いられる原料希土類フッ化物のほとんど、例えば90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上、更に好ましくは99質量%以上が、希土類三フッ化物で構成されている点において、原料として希土類酸化物や希土類酸フッ化物を用いる場合とは異なる。原料希土類フッ化物は、実質的に全て(例えば99.9質量%以上)が希土類三フッ化物で構成されていてもよい。希土類フッ化物の酸素含有率は、10質量%以下、特に5質量%以下のものでも使用可能であるが、希土類フッ化物の酸素含有率は、2質量%以下であることが好ましく、特に1質量%以下であることが好ましく、実質的に酸素が含有されていない(例えば、酸素含有率が0.1質量%以下)であってもよい。
【0021】
スラリー中の希土類フッ化物粒子の濃度は、5質量%以上40質量%以下とする。この濃度は、20質量%以上が好ましく、また、30質量%以下が好ましい。スラリー中の希土類フッ化物粒子の濃度が5質量%未満では、溶射効率が低く、また、プラズマ中での希土類フッ化物の酸化が進行しすぎるため好ましくない。一方、40質量%を超えると、プラズマ中で安定して液滴を形成することができず、また、プラズマ中での希土類フッ化物の酸化が不足するため好ましくない。
【0022】
スラリーを構成する他の必須成分である溶媒としては、水及び有機溶媒から選ばれる1種又は2種以上を用いる。溶媒は、水は単独で用いても、有機溶媒と混合して用いても、有機溶媒単独で用いてもよい。スラリー中の原料希土類フッ化物粒子の酸素含有率に対して、溶射膜の酸素含有率をより高めたいときには、水系のスラリーがよく、溶射膜の酸素含有率の増大を抑えたいときには、有機溶媒のスラリーが好ましい。有機溶媒としては、有害性や環境への影響を考慮して選択することが好ましく、例えば、アルコール、エーテル、エステル、ケトンなどが挙げられる。より具体的には、炭素数が2〜6の一価又は二価のアルコール、エチルセロソルブ等の炭素数が3〜8のエーテル、ジメチルジグリコール(DMDG)等の炭素数が4〜8のグリコールエーテル、エチルセロソルブアセテート、ブチルセロソルブアセテート等の炭素数が4〜8のグリコールエステル、イソホロン等の炭素数が6〜9の環状ケトンなどが好ましい。有機溶媒は、燃焼性や安全性の観点から、水と混合できる水溶性有機溶媒が特に好適である。
【0023】
溶媒が水の場合は、プラズマが低温であると、水の蒸発に熱量が奪われてしまい、液滴を形成できない場合があるが、溶媒が有機溶媒であれば、その燃焼により熱量を補うことができる。そのため溶射時のプラズマ印加電力(溶射電力)が高い場合、例えば100kW以上の場合は、安全性の観点から水のみを用いることが有利であり、溶射電力が低い場合、例えば100kW未満、特に50kW未満の場合は、上記観点から有機溶媒のみを用いることが有利である。また、溶射電力が50kW以上100kW未満の場合は、水と有機溶媒との混合物を用いてもよい。
【0024】
本発明のスラリーには、希土類フッ化物粒子の凝集を防ぐため、有機化合物、特に水溶性有機化合物からなる凝集防止剤を含んでいてもよい。凝集防止剤としては、界面活性剤などが好適である。希土類フッ化物は、ゼータ電位が+に帯電しているので、アニオン界面活性剤が好ましく、特に、ポリエチレンイミン系のアニオン界面活性剤、ポリカルボン酸型高分子系のアニオン界面活性剤などを用いることが好ましい。溶媒が水を含むものの場合は、アニオン界面活性剤が好ましいが、溶媒が有機溶媒のみの場合は、ノニオン界面活性剤を用いることもできる。スラリー中の凝集防止剤の濃度は、3質量%以下、特に1質量%以下が好ましく、0.01質量%以上、特に0.03質量%以上がより好ましい。
【0025】
本発明のスラリーは、希土類酸化物、希土類水酸化物及び希土類炭酸塩から選ばれる1種又は2種以上の微粒子添加剤を含んでいてもよい。微粒子添加剤を添加することでも、希土類フッ化物粒子の凝集防止や沈降防止の効果が得られる。微粒子添加剤の平均粒径(D50(体積基準))は、希土類フッ化物粒子の平均粒径(D50(体積基準))の1/10以下が好ましい。スラリー中の微粒子添加剤の濃度は、5質量%以下、特に4質量%以下が好ましく、0.1質量%以上、特に2質量%以上がより好ましい。
【0026】
スラリーは、所定量の希土類フッ化物と、溶媒と、必要に応じて凝集防止剤、微粒子添加剤などの他の成分を混合することにより、製造することができる。特に、希土類フッ化物や微粒子添加剤などの固体成分を過度に粉砕しないようにするためには、例えば、樹脂製ボールミルと樹脂製ボール(例えば10mmφ以上)とを用いることが好ましい。この場合、混合時間は、例えば1時間以上6時間以下とすることができる。更に、凝集した粒子の解砕と、混入物の除去のためには、混合後のスラリーを、500メッシュ(目開き25μm)以下の篩に通すことが有効である。
【0027】
半導体製造装置用部材などに適用される溶射部材は、基材上に、上述したスラリーを溶射材料とし、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により溶射膜を形成することにより製造することができ、このような方法により、基材上に、希土類酸フッ化物溶射膜を形成することができる。
【0028】
基材としては、ステンレス、アルミニウム、ニッケル、クロム、亜鉛及びそれらの合金、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素及び石英ガラスなどから選ばれ、溶射部材の用途、例えば、半導体製造装置用の溶射部材として好適な基材が選択される。溶射の雰囲気、即ち、プラズマを取り囲む雰囲気は、希土類フッ化物を酸化させる必要があるため、酸素を含有するガスを含む雰囲気とする。酸素を含有するガスを含む雰囲気としては、酸素ガス雰囲気、酸素ガスと、アルゴンガスなどの希ガス及び/又は窒素ガスとの混合ガス雰囲気などが挙げられ、典型的には、大気雰囲気が挙げられる。また、大気雰囲気は、大気と、アルゴンガスなどの希ガス及び/又は窒素ガスとの混合ガス雰囲気であってもよい。
【0029】
プラズマを形成するためのプラズマガスは、アルゴンガス、水素ガス、ヘリウムガス、窒素ガスから選択される少なくとも2種類以上を組み合わせた混合ガスであることが好ましく、特に、アルゴンガス及び窒素ガスの2種の混合ガス、アルゴンガス、水素ガス及び窒素ガスの3種の混合ガス、又はアルゴンガス、水素ガス、ヘリウムガス及び窒素ガスの4種の混合ガスが好適である。
【0030】
溶射操作として具体的には、例えば、まず、スラリー供給装置に希土類フッ化物粒子を含むスラリーを充填し、配管(パウダーホース)を用いてキャリアガス(通常、アルゴンガス)により、プラズマ溶射ガン先端部まで希土類フッ化物粒子を含むスラリーを供給する。配管は内径が2〜6mmφのものが好ましい。この配管のいずれか、例えば、配管へのスラリー供給口には、500メッシュ(目開き25μm)以下の篩を設けることで、配管やプラズマ溶射ガンでの詰まりを防止することができる。この篩の目開きは、スラリー中の希土類フッ化物粒子の最大粒子径(D100)の2倍程度の大きさが、スラリーを安定して供給できるため好ましい。
【0031】
プラズマ溶射ガンからプラズマ炎の中にスラリーを液滴で噴霧して、パウダー、即ち、希土類フッ化物粒子を連続供給することで、希土類フッ化物が溶けて液化し、プラズマジェットの力で液状フレーム化する。サスペンションプラズマ溶射では、プラズマ炎内で溶媒が蒸発するため、本発明のスラリーを用いることにより、溶射材料を固体のまま供給するプラズマ溶射ではできなかった細かい粒子を溶融させることができ、また、粗い粒子がないので、大きさが一定に揃った液滴とすることができる。そして、基材に液状フレームを接触させることにより、溶融した希土類フッ化物が基材表面に付着し、固化して堆積する。この際、溶融前の希土類フッ化物、溶融した希土類フッ化物、及び基材上に堆積した希土類フッ化物が、各段階で酸化して、希土類酸フッ化物となる。希土類酸フッ化物溶射膜は、自動機械(ロボット)や人間の手を使って、液化フレームを基材表面に沿って左右又は上下に動かしながら、基板表面上の所定の範囲を走査することによって形成することができる。溶射膜の厚さは、10μm以上、特に30μm以上であることが好ましく、150μm以下、特に100μm以下であることが好ましい。
【0032】
サスペンションプラズマ溶射における、溶射距離、電流値、電圧値、ガス種類、ガス供給量などの溶射条件に、特に制限はなく、従来公知の条件を適用することができ、基材、希土類フッ化物粒子を含むスラリー、得られる溶射部材の用途などに応じて、適宜設定すればよい。また、基材上に希土類酸フッ化物溶射膜を形成する前に、予め、例えば、厚さが50〜300μm程度の希土類酸化物の層を、下地膜として、例えば常圧での、大気プラズマ溶射、大気サスペンションプラズマ溶射などで形成した後、希土類酸フッ化物溶射膜を形成してもよい。
【0033】
本発明のスラリーを用いたサスペンションプラズマ溶射により、希土類酸フッ化物を含む溶射膜、特に、希土類酸フッ化物を主相として含む溶射膜を形成することができ、基材上に、このような溶射膜を備える溶射部材を製造することができる。この希土類酸フッ化物には、ReOF、Re
5O
4F
7、Re
6O
5F
8及びRe
7O
6F
9(Reは希土類元素を表す)から選ばれる1種又は2種以上の希土類酸フッ化物が含まれていることが好ましい。溶射膜には、希土類酸フッ化物以外が含まれていてもよく、例えば、希土類酸フッ化物以外に、希土類酸化物及び/又は希土類フッ化物を含んでいてもよい。この場合、溶射膜は、希土類酸フッ化物と希土類酸化物と希土類フッ化物との混合物であることが特に好ましい。希土類酸フッ化物が主相である溶射膜は、例えば、溶射膜のX線回折(XRD)において、溶射膜を構成する結晶相の各相の最大ピークの和に対して、希土類酸フッ化物に帰属するピーク相の最大ピークの和が50%以上、特に60%以上であるものとすることができ、特に、最大ピークが希土類酸フッ化物に帰属するピークであることが好ましい。更に、本発明のスラリーを用いたサスペンションプラズマ溶射では、気孔率が1体積%以下、特に0.5体積%以下の緻密な溶射膜を得ることができる。
【0034】
本発明において、スラリーに含まれる希土類酸フッ化物、希土類酸化物、希土類水酸化物、希土類炭酸塩などにおける希土類元素、及び溶射膜を構成するReOF、Re
5O
4F
7、Re
6O
5F
8、Re
7O
6F
9(Reは希土類元素を表す)などの希土類酸フッ化物、更には、溶射膜に希土類酸フッ化物と共に含まれていてもよい希土類酸化物、希土類フッ化物などにおける希土類元素としては、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上が好ましく、希土類元素として、イットリウム、ガドリニウム、イッテルビウム及びルテチウムのいずれかを含むこと、特に、希土類元素が、イットリウムのみ、又は主成分(例えば90モル%以上)であるイットリウムと、残部のイッテルビウム又はルテチウムとで構成されていることが好ましい。
【実施例】
【0035】
以下に、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0036】
[実施例1〜7、比較例1、2]
〔実施例1〜7の希土類フッ化物粒子及びスラリーの製造〕
表1又は表2に示される希土類フッ化物の希土類元素の組成比で調整し、希土類酸化物1kgに対して、酸性フッ化アンモニウム粉末1.2kgを混合し、窒素雰囲気中、650℃で、2時間焼成して、希土類フッ化物を得た。得られた希土類フッ化物は、ジェットミルで粉砕し、空気分級して、表1又は表2に示される最大粒子径(D100)の希土類フッ化物粒子とした。得られた希土類フッ化物粒子の粒度分布(D100、D50)及びBET比表面積を表1又は表2に示す。粒度分布はレーザー回折法、BET比表面積は、(株)マウンテック製、全自動比表面積測定装置 Macsorb HM model−1280で、各々測定した(以下同じ)。また、得られた粒子の酸素濃度(酸素含有率)及びフッ素濃度(フッ素含有率)を表1又は表2に示す。酸素濃度は、LECO社製、THC600を用いて不活性ガス融解赤外吸収法により、フッ素濃度は、溶解イオンクロマトグラフィ法により、各々分析した(以下同じ)。
【0037】
次に、得られた希土類フッ化物粒子に、表1又は表2に示される凝集防止剤と、微粒子添加剤(実施例3〜5のみ)とを加え、更に、表1又は表2に示される溶媒を加え、これらを15mmφのナイロンボールが入ったナイロンポットに入れて約2時間混合し、得られた混合物を目開き500メッシュ(25μm)の篩に通して、希土類フッ化物のスラリーを得た。
【0038】
〔比較例1の酸フッ化イットリウム粒子及びスラリーの製造〕
酸化イットリウム1kgに対して、酸性フッ化アンモニウム粉末1.2kgを混合し、窒素雰囲気中、650℃で、4時間焼成して、酸フッ化イットリウムを得た。得られた酸フッ化イットリウムは、ジェットミルで粉砕し、空気分級して、表1又は表2に示される最大粒子径(D100)の酸フッ化イットリウム粒子とした。得られた酸フッ化イットリウム粒子の粒度分布(D100、D50)を表1又は表2に示す。また、得られた粒子の酸素濃度(酸素含有率)及びフッ素濃度(フッ素含有率)を表1又は表2に示す。
【0039】
次に、得られた酸フッ化イットリウム粒子に、表1又は表2に示される凝集防止剤を加え、更に、表1又は表2に示される溶媒を加え、これらを15mmφのナイロンボールが入ったナイロンポットに入れて約2時間混合し、得られた混合物を目開き500メッシュ(25μm)の篩に通して、酸フッ化イットリウムのスラリーを得た。
【0040】
〔比較例2のフッ化イットリウム粒子の製造〕
酸化イットリウム1kgに対して、酸性フッ化アンモニウム粉末1.2kgを混合し、窒素雰囲気中、650℃で、2時間で焼成して、フッ化イットリウムを得た。得られたフッ化イットリウムは、ジェットミルで粉砕し、バインダーとしてポリビニルアルコール(PVA)を添加してスラリーとし、スプレードライヤーを用いて造粒した後、窒素雰囲気中、700℃で、4時間焼成して、表1又は表2に示される最大粒子径(D100)のフッ化イットリウム粒子とした。得られたフッ化イットリウム粒子の粒度分布(D100、D50)を表1又は表2に示す。また、得られた粒子の酸素濃度(酸素含有率)及びフッ素濃度(フッ素含有率)を表1又は表2に示す。
【0041】
【表1】
【0042】
【表2】
【0043】
〔溶射膜の形成及び溶射部材の製造〕
実施例1〜7及び比較例1の各々のスラリー又は比較例2の粒子を用い、予め常圧下の大気プラズマ溶射により、表面上に厚さ150μmの酸化イットリウムの下地膜を形成したアルミニウム基材に、表3又は表4に示される条件で、大気プラズマサスペンション溶射(実施例1〜7及び比較例1)又は大気プラズマ溶射(比較例2)により、表3又は4に示される膜厚の溶射膜を形成した。実施例1、4及び5並びに比較例2は、エリコンメテコ社の溶射機Triplexにて、実施例2、3、6及び7並びに比較例1は、プログレッシブ社の溶射機CITSにて溶射を実施した。
【0044】
【表3】
【0045】
【表4】
【0046】
〔溶射膜の物性の評価〕
得られた溶射部材から溶射膜を削り取り、X線回折法により分析した。得られたX線プロファイルから、得られた各々の溶射膜を構成する相を同定し、それらの最大ピーク強度比を測定した。また、溶射膜の酸素濃度(酸素含有率)は、LECO社製、THC600を用いて不活性ガス融解赤外吸収法により、フッ素濃度(フッ素含有率)は、溶解イオンクロマトグラフィ法により、各々分析した。更に、溶射膜の断面の電子顕微鏡写真から画像解析で気孔率を、溶射膜表面の硬度を、(株)アカシ(現(株)ミツトヨ)製ビッカース硬度計AVK−C1により、各々測定した。結果を表5又は表6に示す。
【0047】
〔溶射膜の耐食性の評価〕
得られた溶射部材の溶射膜の表面上に、マスキングテープでマスキングした部分と、マスキングテープでマスキングしていない露出部分を形成し、リアクティブイオンプラズマ試験装置にセットして、周波数13.56MHz、プラズマ出力1,000W、エッチングガスCF
4(80vol%)+O
2(20vol%)、流量50sccm、ガス圧50mtorr(6.7Pa)、12時間の条件で、プラズマ耐食性試験を行った。試験後、マスキングテープを剥がし、レーザー顕微鏡を使用して、露出部分とマスキング部分との間の、腐食による高さの差を4点測定して、平均値を高さ変化量として求めることにより、耐食性を評価した。結果を表5又は表6に示す。
【0048】
【表5】
【0049】
【表6】
【0050】
最大粒子径(D100)が12μm以下の希土類フッ化物粒子のスラリーを用いて大気プラズマサスペンション溶射で溶射膜を形成した実施例1〜7では、溶射中に、希土類フッ化物粒子が酸化され、希土類酸フッ化物が成膜される。実施例1〜7では、希土類酸フッ化物を主相とする溶射膜が得られており、その結果、気孔率が低い緻密な膜であり、高硬度で、かつ耐食性に優れた溶射膜が得られている。また、水系のスラリーを用いた実施例1〜5では溶射膜の酸素含有率がより高まり、有機溶媒のスラリーを用いた実施例6、7では、酸素含有率の増大が抑えられている。
【要約】
酸素を含有するガスを含む雰囲気下でのサスペンションプラズマ溶射に用いられる溶射材料であって、最大粒子径(D100)が12μm以下の希土類フッ化物粒子を5質量%以上40質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を溶媒とするサスペンションプラズマ溶射用スラリー。基材上に、プロセスシフトや、パーティクルの発生が少ない希土類酸フッ化物を含む溶射膜を、酸素を含有するガスを含む雰囲気下で、サスペンションプラズマ溶射により、安定して形成することができる。この溶射膜を備える溶射部材は、ハロゲン系ガスプラズマに対する耐食性に優れている。