(58)【調査した分野】(Int.Cl.,DB名)
前記複数の貫通配線は、平面視において、前記貫通配線の外形の一部が搭載される前記半導体素子の外形の一部と重複する範囲に配置されるように設けられる請求項1又は2記載の配線基板。
前記電気接続用配線は平面上のみに形成され、前記ポリイミド層及び前記接着層の前記電気接続用配線と平面視で重複する領域には前記貫通配線は存在しない請求項1乃至3の何れか一項記載の配線基板。
【発明を実施するための形態】
【0010】
以下、図面を参照して発明を実施するための形態について説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
【0011】
〈第1の実施の形態〉
[第1の実施の形態に係る配線基板の構造]
まず、第1の実施の形態に係る配線基板の構造について説明する。
図1は、第1の実施の形態に係る配線基板を例示する図であり、
図1(b)は平面図、
図1(a)は
図1(b)のA−A線に沿う断面図である。
【0012】
図1を参照するに、配線基板1は、大略すると、ポリイミド層10と、接着層20と、配線31〜33と、めっき膜41〜45と、貫通配線50と、絶縁層60と、接着層70と、放熱板80とを有する。配線基板1において、ポリイミド層10と、接着層20と、配線31〜33と、めっき膜41〜45と、貫通配線50とを備えた部分を配線部Zと称する場合がある。つまり、配線基板1は、配線部Zが接着層70を介して放熱板80上に配置された構造を有する。但し、接着層20は付加的な要素であり、必須の構成要素ではない。
【0013】
なお、本実施の形態では、便宜上、配線基板1の絶縁層60側を上側又は一方の側、放熱板80側を下側又は他方の側とする。又、各部位の絶縁層60側の面を上面又は一方の面、放熱板80側の面を下面又は他方の面とする。但し、配線基板1は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物をポリイミド層10の一方の面の法線方向から視ることを指し、平面形状とは対象物をポリイミド層10の一方の面の法線方向から視た形状を指すものとする。
【0014】
配線基板1において、ポリイミド層10は、例えば、可撓性を有するポリイミド系絶縁樹脂フィルムからなる。ポリイミド層10の厚さは、例えば、25〜75μm程度とすることができる。
【0015】
接着層20は、ポリイミド層10の一方の面に貼着され、配線31〜33をポリイミド層10に接着している。接着層20としては、例えば、エポキシ系接着剤又はポリイミド系接着剤等の絶縁性樹脂製の耐熱性接着剤を用いることができる。接着層20の厚さは、例えば、5〜15μm程度とすることができる。
【0016】
配線31〜33は、ポリイミド層10の一方の面に接着層20を介して設けられており、互いに電気的に独立した配線である。配線31及び32は、発光素子等の半導体素子の端子と電気的に接続される電気接続用配線である。配線33は、発光素子等の半導体素子の動作には寄与しない(半導体素子とは電気的に接続されない)熱拡散用配線である。つまり、配線33には電流は流れない。電気接続用配線と熱拡散用配線とは、ポリイミド層10上の同一平面(本実施の形態では、接着層20の上面)に設けられている。配線33は、ポリイミド層10及び接着層20を貫通する貫通配線50の一端と接続されている。配線31〜33に半導体素子を搭載する形態については後述する。
【0017】
配線33(熱拡散用配線)の形成領域は、平面視において、半導体素子やモジュール又は半導体素子の放熱用端子やモジュールの放熱用端子が接合される絶縁層60の開口部60yの領域よりも外側に延在して、大きく設けられている。言い換えれば、ポリイミド層10(又は接着層20)の上面において、配線33が形成される領域は、配線31、32の形成領域よりも大きい。
【0018】
例えば、
図1(b)では、配線33は、配線31、32の形成領域を除き、接着層20の上面の領域を覆うようにH形状に設けられている。そして、配線33のH形状の各凹部分に配線31と配線32が対向するように配置されている。このように、配線33が形成される領域を広範囲に大きく延在させることで、半導体素子やモジュールの熱を貫通配線50だけでなく、配線33を介して平面方向にも拡散させることができるため、放熱効率を向上させることができる。
【0019】
配線33の平面形状は、H形状に限らず、矩形形状、多角形、円形、これらを組合せた結合形状など配線31、32の形成領域を考慮した種々の形状を用いることができる。これらの場合は、配線33の一部が対向する配線31と配線32の間に配置されるように設ければよい(例えば、
図7(b)参照)。
【0020】
配線31〜33の材料としては、例えば、銅(Cu)等を用いることができる。配線31〜33の厚さは、例えば、12〜35μm程度とすることができる。
【0021】
めっき膜41〜43は、配線31〜33の上面の絶縁層60から露出する部分に夫々設けられている。なお、
図1(a)の断面には表れていないが、配線31には一方の外部接続端子となる領域が存在し、その領域上にめっき膜44が設けられている。すなわち、めっき膜41とめっき膜44とは導通している。同様に、配線32には他方の外部接続端子となる領域が存在し、その領域上にめっき膜45が設けられている。すなわち、めっき膜42とめっき膜45とは導通している。めっき膜41〜45は、例えば、細長状に形成され、所定の間隔を開けて並置することができる。
【0022】
めっき膜41〜45の材料としては、例えば、Ni又はNi合金膜/Au又はAu合金膜をこの順番で積層形成しためっき膜を用いることができる。又、めっき膜の材料として、Ni又はNi合金膜/Pd又はPd合金膜/Au又はAu合金膜、Ni又はNi合金膜/Pd又はPd合金膜/Ag又はAg合金膜/Au又はAu合金膜、Ag又はAg合金膜、Ni又はNi合金膜/Ag又はAg合金膜、Ni又はNi合金膜/Pd又はPd合金膜/Ag又はAg合金膜等を用いてもよい。
【0023】
めっき膜41〜45のうち、Au又はAu合金膜、Ag又はAg合金膜の膜厚は、0.1μm以上とすることが好ましい。めっき膜41〜45のうち、Pd又はPd合金膜の膜厚は、0.005μm以上とすることが好ましい。めっき膜41〜45のうち、Ni又はNi合金膜の膜厚は、0.5μm以上とすることが好ましい。
【0024】
貫通配線50は、放熱用の配線でありサーマルビアとも称される。すなわち、貫通配線50は、配線基板1に発光素子等の動作時に発熱する半導体素子やモジュールが搭載された場合に、動作時に発する熱を放熱板80側に逃がす経路の一部となる部分である。配線33(熱拡散用配線)のポリイミド層10側の面には、ポリイミド層10及び接着層20を厚さ方向に貫通する貫通孔を充填するように、複数の貫通配線50が設けられている。配線33の直下に複数の貫通配線50(
図1の場合には、一例として6個)を設けることにより、放熱性を向上できる。
【0025】
貫通配線50は配線33と一体に形成されている。貫通配線50の一端は配線33と接続されており、他端はポリイミド層10の他方の面から露出している。なお、貫通配線50の他端は、ポリイミド層10の他方の面から突出してもよい。貫通配線50の平面形状は例えば円形とすることができ、その場合の直径は、例えば、0.5〜1mm程度とすることができる。但し、特に放熱性を向上させたい場合等には貫通配線50の直径を1mm以上としても構わない。なお、貫通配線50の平面形状は、例えば、楕円形や矩形等としても構わない。貫通配線50の厚さは、例えば、25〜75μm程度とすることができる。貫通配線50の材料としては、例えば、銅(Cu)等を用いることができる。
【0026】
なお、配線31及び32の直下には貫通配線50は設けられていない。すなわち、電気接続用配線である配線31及び32は、平面上(接着層20の上面)のみに形成されている。言い換えれば、配線31及び32と放熱板80の間には、接着層20、ポリイミド層10、及び接着層70が存在するのみであり、接着層20、ポリイミド層10、及び接着層70内の平面視において配線31及び32と重複する領域には、貫通配線50及び電気接続を行う他の配線等も存在しない。このような構造とすることにより、配線31及び32と放熱板80との絶縁性を向上できる。
【0027】
絶縁層60は、半導体素子が発光素子である場合に、発光素子の照射する光の反射率及び放熱率を上げるために、ポリイミド層10上に設けられた反射膜である。絶縁層60は、配線31及び32(電気接続用配線)を選択的に露出する開口部60xと、配線33(熱拡散用配線)を選択的に露出する開口部60yを有する。前述のように、絶縁層60から露出する配線31〜33上にめっき膜41〜45が設けられている。絶縁層60の材料としては、例えば、エポキシ系樹脂、オルガノポリシロキサン等のシリコーン系樹脂に、酸化チタン(TiO
2)や硫酸バリウム(BaSO
4)等のフィラーや顔料を含有させたものを用いることができる。絶縁層60の材料として、これらの材料製の白色インクを用いてもよい。
【0028】
絶縁層60は、接着層20の外縁部20aを露出するように設けると好適である。このように絶縁層60を設けると、配線基板1の製造工程において、最終的に配線基板1となる複数の領域を同時に作製して最後に個片化(切断)する際に、絶縁層60を切断しなくて済むため、絶縁層60周縁の欠けや脱落を防止できる。これにより、絶縁層60の表面積の減少を防止でき、絶縁層60の反射率の低下を防止できる。
【0029】
接着層70は、放熱板80上に設けられ、ポリイミド層10の他方の面に接して、ポリイミド層10と放熱板80とを接着している。接着層70は、貫通配線50から伝達される熱を放熱板80側に逃がす経路の一部となる部分であるため、熱伝導率の高い材料を用いることが好ましい。接着層70としては、例えば、アルミナ等のフィラーを含有したエポキシ系接着剤又はポリイミド系接着剤等の絶縁性樹脂製の耐熱性接着剤を用いることができる。接着層70の厚さは、例えば、20〜50μm程度とすることができる。
【0030】
放熱板80は、ポリイミド層10の他方の面に接着層70によって貼り付けられている。放熱板80の材料としては、例えば、熱伝導率の良い銅(Cu)やアルミニウム(Al)等から作製された金属板を用いることができる。放熱板80として、アルミナや窒化アルミニウム等のセラミックスやシリコン等の熱伝導率の高い絶縁材料で作製された絶縁板を用いてもよい。放熱板80の厚さは、例えば、100〜1000μm程度とすることができる。但し、特に放熱性を必要とする場合には、数mm程度の厚さとしてもよい。
【0031】
ここで、配線31及び32の直下には貫通配線50を設けず、配線33の直下のみに貫通配線50を設けることの効果について説明する。仮に、配線31及び32の直下に貫通配線50を設けると、ポリイミド層10の他方の面から露出する貫通配線50の他端が、アルミナ等のフィラーを含有した接着層70を介して、放熱板80と対向することになる。配線31及び32は電気接続用配線であるから、特に接着層70が薄い場合に(例えば、20〜50μm程度)、貫通配線50から接着層70を介して放熱板80にリークが生じ絶縁性が低下するおそれがある。
【0032】
そのため、配線31及び32の直下に貫通配線50を設ける場合には、接着層70をある程度厚くして(例えば、100〜150μm程度)絶縁性を確保する必要がある。しかし、接着層70は貫通配線50と放熱板80との間に位置する放熱経路の一部である。絶縁性を確保するために接着層70を厚くすると熱抵抗が上がり、放熱性が低下する。すなわち、配線31及び32の直下に貫通配線50を設けると、絶縁性と放熱性とを両立させることが困難となる。
【0033】
一方、本実施の形態では、配線31及び32の直下に貫通配線50を設けていないので、接着層70を薄くして(例えば、50μm程度)熱抵抗を下げても絶縁性が低下するおそれがない。又、配線33の直下には貫通配線50を設けているが、配線33は熱拡散用配線であって、搭載される半導体素子やモジュールとの電気的な接続はなく、電流が流れない。そのため、貫通配線50の他端が比較的薄い接着層70(例えば、20〜50μm程度)を介して放熱板80と対向してもリークが生じることがない。
【0034】
例えば、熱伝導率が3W/m・Kである接着層70の厚さを変えた場合の絶縁破壊電圧(kV)と熱抵抗(℃/W)は表1のようになる。条件A及びBは比較例であり、貫通配線50は設けていない。又、条件C及びDは、本実施の形態に係る構造、すなわち、配線31及び32の直下には貫通配線50を設けず配線33の直下のみに貫通配線50を設けた構造(
図1参照)である。なお、熱抵抗の値は、
図1のめっき膜43が形成されている部分の厚さ方向の熱抵抗を示している。
【0036】
表1より、条件A(接着層70の厚さが100μm)の場合には、絶縁破壊電圧は4.6(kV)であり、熱抵抗は0.41(℃/W)である。又、条件B(接着層70の厚さが150μm)の場合には、絶縁破壊電圧は5.8(kV)であり、熱抵抗は0.58(℃/W)である。このように、接着層70が厚くなれば、当然、絶縁破壊電圧は向上するが、熱抵抗が大きくなる。
【0037】
これに対し、条件C(接着層70の厚さが20μmかつ貫通配線50の厚さが50μm)の場合には、絶縁破壊電圧は6.1(kV)であり、熱抵抗は0.15(℃/W)である。又、条件D(接着層70の厚さが50μmかつ貫通配線50の厚さが50μm)の場合には、絶縁破壊電圧は6.9(kV)であり、熱抵抗は0.25(℃/W)である。条件C及びDの場合には、条件A及びBの場合と比べて、熱抵抗が大幅に向上していることがわかる。特に、条件Bと条件Dとを比べると、本実施の形態に係る構造では、同程度の絶縁破壊電圧を確保しながら、熱抵抗を半分程度にできることがわかる。
【0038】
このように、配線31及び32の直下には貫通配線50を設けず、熱拡散用配線であって電流が流れない配線33の直下のみに貫通配線50を設ける構造により、比較的薄い接着層70を用いた場合にも絶縁性の確保と放熱性の向上とを両立させることができる。
【0039】
[第1の実施の形態に係る配線基板の製造方法]
次に、第1の実施の形態に係る配線基板の製造方法について説明する。
図2〜
図6は、第1の実施の形態に係る配線基板の製造工程を例示する図である。なお、第1の実施の形態に係る配線基板の製造工程の説明で用いる断面図は、全て
図1(a)に対応する断面図である。
【0040】
まず、
図2(a)に示す工程では、ポリイミド層10として例えばリール状(テープ状)のポリイミドフィルムを準備し、ポリイミド層10の一方の面にエポキシ系接着剤等を塗布して接着層20を形成する。エポキシ系接着剤等の代わりにエポキシ系の接着フィルムを貼着して、接着層20を形成してもよい。そして、一方の面に接着層20が形成されたポリイミド層10に、ポリイミド層10及び接着層20を貫通する貫通孔10xを形成する。貫通孔10xは、例えば、パンチングによって形成できる。なお、ポリイミド層10等は配線基板1となる複数の領域を備えているが、各工程の説明では、配線基板1となる複数の領域のうちの1つのみを図示するものとする。
【0041】
次に、
図2(b)に示す工程では、接着層20上に、最終的にパターニングされて配線31〜33となる金属層30Aを形成し、所定の温度に加熱して接着層20を硬化させる。金属層30Aは、例えば、接着層20上に銅箔をラミネートすることにより形成できる。金属層30Aの厚さは、例えば、18〜35μm程度とすることができる。その後、
図2(b)に示す構造体をウェットエッチング用の溶液(例えば、過酸化水素系の溶液)に含浸させることにより、貫通孔10x内に露出する金属層30Aの下面と、金属層30Aの上面のエッチングを行う(所謂ソフトエッチング)。このエッチング処理により、金属層30Aの表面に存在する防錆剤を除去すると共に、金属層30Aの表面を僅かな厚さ(例えば、0.5〜1μm程度)だけ除去する。なお、このエッチング処理は必要に応じて行えばよく、必須の処理ではない。
【0042】
次に、
図2(c)に示す工程では、貫通孔10x内に金属層30Aと一体に接続された貫通配線50を形成する。具体的には、例えば、まず、金属層30Aの上面にマスキングテープを貼り付ける。マスキングテープは、電解めっき法により貫通配線50を形成する際に、金属層30Aの上面側にめっき膜が成長しないようにするために、金属層30Aの上面を覆うものである。
【0043】
そして、マスキングテープを貼り付けた後、金属層30Aを給電層とする電解めっき法により貫通配線50を形成し、マスキングテープを除去する。貫通配線50は、貫通孔10x内に露出する金属層30Aの下面にめっき金属を析出させて、貫通孔10x内にめっき金属を充填することにより、柱状に形成する。貫通配線50は、一端(図中の上端)が金属層30Aと接続され、他端(図中の下端)がポリイミド層10の他方の面から露出するように形成する。
【0044】
貫通配線50の他端とポリイミド層10の他方の面は、面一であってもよいし、貫通配線50の他端がポリイミド層10の他方の面から突出していても良い。貫通配線50の他端とポリイミド層10の他方の面が面一である場合は、配線部Zの厚さを薄くすることでき、放熱板80に接合する際の平坦性を確保することができる。又、貫通配線50の他端がポリイミド層10の他方の面から突出している場合は、突出することで表面積が増加し、放熱性を向上させることができる。貫通配線50の材料としては、例えば、銅(Cu)等を用いることができる。
【0045】
次に、
図3(a)及び
図3(b)に示す工程(
図3(b)は平面図、
図3(a)は
図3(b)のA−A線に沿う断面図)では、金属層30Aをパターニングして、配線31〜33を形成する。なお、後工程において電解めっき法でめっき膜41〜45を形成するために、配線31〜33を形成すると同時に、配線31〜33に接続されたバスラインを形成するが、ここでは図示を省略する。配線31〜33を形成するには、具体的には、例えば、金属層30A上にレジスト(図示せず)を塗布し、配線31〜33及びバスラインのパターンに合わせた露光を行い、レジストに配線31〜33及びバスラインのパターンを現像する。そして、レジストを用いてエッチングを行うことにより、配線31〜33及びバスラインを形成(パターニング)する。その後、レジストを除去する。
【0046】
この時、配線31、32と配線33の配線間のスペースTが狭い場合、配線31又は配線32に電圧が印可されると、近傍の配線である配線33にも反対の電圧が誘起され、放熱板80との絶縁信頼性に影響を与える可能性が生じる。そのため、配線31と配線31の近傍の配線33の配線間のスペースT及び配線32と配線32の近傍の配線33の配線間のスペースTは、電圧の誘起が生じないようにスペースを広く設けることが望ましい。
【0047】
次に、
図4(a)及び
図4(b)に示す工程(
図4(b)は平面図、
図4(a)は
図4(b)のA−A線に沿う断面図)では、配線31〜33を選択的に露出する(後に、めっき膜41〜45を形成する部分を露出する)絶縁層60(反射膜)を形成する。具体的には、配線31及び32(電気接続用配線)を選択的に露出する開口部60xと、配線33(熱拡散用配線)を選択的に露出する開口部60yを有する絶縁層60を形成する。
【0048】
又、絶縁層60は、配線31と配線33の配線間のスペースT及び配線32と配線33の配線間のスペースTにも充填するように形成されている。配線31、32(電気接続用配線)と配線33(熱拡散用配線)の間にも絶縁層60を形成することで、絶縁性及び反射効率を向上させることができる。
【0049】
絶縁層60としては、前述のように白系の材料を用いることができる。絶縁層60は、例えば、スクリーン印刷法等により形成できる。絶縁層60は、配線31〜33全体を覆うように白色インク等を形成後、フォトリソ法やブラスト処理やレーザ加工法等を用いて、めっき膜41〜45を形成する部分を露出させることにより形成してもよい。
【0050】
なお、絶縁層60は、配線基板1となる各々の領域の接着層20の外縁部20aを露出するように形成すると好適である。このようにすると、配線基板1となる各々の領域を個片化(切断)する際に、絶縁層60を切断しなくて済むため、絶縁層60周縁の欠けや脱落を防止できるからである。そして、絶縁層60の表面積の減少を防止でき、絶縁層60の反射率の低下を防止できるからである。必要に応じて、外縁部20aを露出しないように絶縁層60を設けてもよい(
図6(d)参照)。
【0051】
次に、
図5(a)及び
図5(b)に示す工程(
図5(b)は平面図、
図5(a)は
図5(b)のA−A線に沿う断面図)では、配線31〜33上に電解めっき法でめっき膜41〜45を形成する。具体的には、例えば、マスキングテープをポリイミド層10の他方の面側に貼り付ける。そして、配線31〜33に接続されたバスラインを含む給電経路により電解めっきを行い、配線31〜33の絶縁層60から露出する部分の上面にめっき膜41〜45を形成する。その後、マスキングテープを除去する。なお、めっき膜41〜45の材料や厚さ等は前述のとおりである。
【0052】
次に、
図5(a)及び
図5(b)に示す構造体の外縁部(絶縁層60から露出した領域のポリイミド層10及び接着層20等)をプレス加工、NC加工、レーザ加工等により切断して個片化し、配線基板1の配線部Zを複数形成する。なお、配線31〜33に接続されたバスラインも同時に切断される。
【0053】
次に、個片化された配線部Zを、接着層70を介して、放熱板80上に接着する。具体的には、例えば、放熱板80上にアルミナ等のフィラーを含有した熱硬化性のエポキシ系接着フィルム等を貼り付けて接着層70を形成し、接着層70上に個片化された構造体を配置する。そして、所定の温度に加熱しながら個片化された構造体を放熱板80側に加圧し、接着層70を硬化させる。接着層70は、例えば、スピンコート法により、放熱板80上に、アルミナ等のフィラーを含有した液状又はペースト状の熱硬化性のエポキシ系樹脂を塗布して形成してもよい。以上の工程により、複数の配線基板1(
図1参照)が完成する。
【0054】
上述の製造方法では、個片化された構造体(配線部Z)を接着層70を介して放熱板80に接着しているが、これに限らない。例えば、バスラインを切断した構造体(配線部Z)に接着層70を形成し、構造体(配線部Z)及び接着層70を個片化する。次に、個片化された構造体(配線部Zと接着層70)を所定の温度及び圧力で放熱板80に積層しても良い。又、例えば、配線部Zは、接着層70を介して放熱板80に接着した後に、一括して個片化してもよい。この工程の場合、配線部Z、接着層70、放熱板80の側面は、例えば、面一となる。なお、本実施の形態では、配線部Z、接着層70、放熱板80が同一の平面形状(側面が面一)で図示されているが、これに限らず、例えば、配線部Z及び接着層70は放熱板80より平面形状が小さくてもよい。
【0055】
なお、
図3〜
図5に示す工程に代えて
図6に示す工程としてもよい。まず、
図6(a)に示す工程では、
図3(a)及び
図3(b)に示す工程と同様にして、金属層30Aをパターニングして、配線31〜33及び配線31〜33に接続されたバスライン(図示せず)を形成する。
【0056】
次に、
図6(b)に示す工程では、配線31〜33上に電解めっき法でめっき膜41〜45を形成する。具体的には、例えば、配線31〜33の上面の所定部分(
図1(a)及び
図1(b)でめっき膜41〜45が形成されている部分)を選択的に露出するレジスト膜510を接着層20上に形成する。又、マスキングテープ520をポリイミド層10の他方の面側に貼り付ける。そして、配線31〜33に接続されたバスラインを含む給電経路により電解めっきを行い、配線31〜33のレジスト膜510から露出する部分の上面にめっき膜41〜45を形成する。なお、めっき膜41〜45の材料や厚さ等は前述のとおりである。次に、
図6(c)に示す工程では、レジスト膜510及びマスキングテープ520を除去する。
【0057】
次に、
図6(d)に示す工程では、
図4(a)及び
図4(b)に示す工程と同様にして、配線31〜33上の所定の部分(例えば、めっき膜41〜45の外縁部以外を露出するよう)に、絶縁層60を形成する。なお、
図6(d)では、接着層20の外縁部20aを露出しないように絶縁層60を設ける例を示している。
【0058】
最後に、
図6(d)に示す構造体の外縁部をプレス加工等により切断して個片化し、個片化された構造体を、接着層70を介して、放熱板80上に接着する。以上の工程により、複数の配線基板1が完成する。
【0059】
〈第1の実施の形態の変形例1〉
第1の実施の形態の変形例1では、第1の実施の形態とは貫通配線を形成する領域が異なる配線基板の例を示す。なお、第1の実施の形態の変形例1において、既に説明した実施の形態と同一構成部品についての説明は省略する。
【0060】
図7は、第1の実施の形態の変形例1に係る配線基板を例示する図であり、
図7(b)は平面図、
図7(a)は
図7(b)のA−A線に沿う断面図である。
【0061】
配線基板1では、絶縁層60の開口部60yから露出している配線33(めっき膜43の形成領域)の直下に貫通配線50が設けられている。しかし、配線基板1Aでは、配線基板1とは異なり、絶縁層60の開口部60yから露出している配線33(めっき膜43の形成領域)の直下ばかりでなく、配線33の絶縁層60に覆われている領域にも貫通配線50が設けられている。言い換えれば、配線33の形成領域全体に複数の貫通配線50が設けられている。例えば、
図9(b)のように、複数の貫通配線50を設けてもよい。
【0062】
このように、配線33の全体に複数の貫通配線50を設けることで、放熱効率を更に向上させることができる。
【0063】
説明の便宜上、複数の貫通配線50の説明や図示を省略する場合があるが、本実施形態全てに適応させることができる。
【0064】
〈第1の実施の形態の変形例2〉
第1の実施の形態の変形例2では、第1の実施の形態とは貫通配線を形成する配線の平面形状が異なる配線基板の例を示す。なお、第1の実施の形態の変形例2において、既に説明した実施の形態と同一構成部品についての説明は省略する。
【0065】
図8は、第1の実施の形態の変形例2に係る配線基板を例示する図であり、
図8(b)は平面図、
図8(a)は
図8(b)のA−A線に沿う断面図である。
【0066】
図8を参照するに、配線基板1Bは、配線31〜33が配線31B〜33Bに置換された点が、配線基板1(
図1参照)と相違する。配線31B〜33Bは、配線31〜33よりも接着層20上の狭い領域に設けられている。すなわち、配線31B〜33Bは、めっき膜41〜43が形成されている領域(半導体素子が実装される領域)近傍にのみ設けられている。
【0067】
このように、配線31B〜33Bは、めっき膜41〜43が形成されている領域(半導体素子が実装される領域)近傍にのみ設けても構わない。熱拡散用配線である配線33Bの平面形状を小さくすると放熱性が低下するが、熱拡散用配線をどの程度の面積とするかは、要求される放熱性を考慮して適宜決定できる。
【0068】
〈第2の実施の形態〉
第2の実施の形態では、第1の実施の形態で示した配線基板に半導体素子(発光素子)を搭載した半導体パッケージの例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
【0069】
図9は、第2の実施の形態に係る半導体パッケージを例示する図であり、
図9(b)は平面図、
図9(a)は
図9(b)のA−A線に沿う断面図である。なお、半導体素子120と貫通配線50との位置関係を容易に把握できるようにするため、
図9(b)において、半導体素子120を梨地模様で示し、更に、配線基板1上の半導体素子120以外の部材の図示を省略している。
【0070】
図9を参照するに、半導体パッケージ100は、配線基板1(
図1参照)と、半導体素子120と、はんだ(図示せず)と、封止樹脂140とを有する。半導体素子120は、配線基板1の電気接続用配線である配線31、32の絶縁層60から露出する開口部60x(めっき膜41、42の面)及び熱拡散用配線である配線33の絶縁層60から露出する開口部60y(めっき膜43の面)に搭載されている。具体的には、半導体素子120は、電気接続用端子130と熱拡散用端子135を備え、はんだ(図示せず)を介して、配線基板1上の電気接続用配線である配線31,32(めっき膜41,42)及び熱拡散用配線である配線33(めっき膜43)にフェイスダウン状態でフリップチップ実装されている。そして、半導体素子120は、封止樹脂140により封止されている。封止樹脂140としては、例えば、エポキシ系やシリコーン系等の絶縁性樹脂に蛍光体を含有させた樹脂を用いることができる。なお、
図9の例では、2個の半導体素子120が配線基板1上に並列に実装されているが、実装する半導体素子120の個数は任意とすることができる。
【0071】
半導体素子120の電気接続用端子130は、例えば、下面(配線基板1と対向する面)の一端側にアノード端子、他端側にカソード端子が形成されている。半導体素子120としては、発光素子であるLED(Light Emitting Diode)を用いることができる。但し、発光素子はLEDには限定されず、例えば、面発光型レーザ等を用いてもよい。ここでは、半導体素子120がLEDであるとして、以降の説明を行う。
【0072】
LEDである半導体素子120の電気接続用端子130の一方は、例えば、はんだ(図示せず)を介して、配線基板1のめっき膜41と接続されている。又、半導体素子120の電気接続用端子130の他方は、例えば、はんだ(図示せず)を介して、配線基板1のめっき膜42と接続されている。又、半導体素子120の下面の中央部近傍には熱拡散用端子135が設けられており、熱拡散用端子135は、はんだ(図示せず)を介して、配線基板1のめっき膜43と接続されている。配線基板1において、熱拡散用配線である配線33の形成領域は、第1の実施形態で述べたように、搭載される半導体素子120の熱拡散用端子の形成領域よりも大きいため、半導体素子120の発する熱を平面方向に効率よく拡散させて放熱させることができる。
【0073】
配線基板1のめっき膜44及び45を、例えば、半導体パッケージ100の外部に配置される電源や駆動回路等に接続し、半導体素子120の電気接続用端子130との間に所定の電位差を与えることにより、半導体素子120が発光する。半導体素子120は、発光時に発熱する。半導体素子120の発した熱は、めっき膜43及び配線33を介して貫通配線50に伝わり、更に、接着層70を経由して放熱板80に伝わり、放熱板80により放熱される。半導体素子120の熱拡散用端子の下側には複数の貫通配線50が設けられているので、半導体素子120の発した熱を効率よく放熱板80に伝達することができる。
【0074】
〈第2の実施の形態の変形例1〉
第2の実施の形態の変形例1では、第1の実施の形態で示した配線基板に半導体素子(発光素子)を搭載した半導体パッケージの他の例を示す。なお、第2の実施の形態の変形例1において、既に説明した実施の形態と同一構成部品についての説明は省略する。
【0075】
図10は、第2の実施の形態の変形例1に係る半導体パッケージを例示する図であり、
図10(b)は平面図、
図10(a)は
図10(b)のA−A線に沿う断面図である。なお、半導体素子120と貫通配線50との位置関係を容易に把握できるようにするため、
図10(b)において、半導体素子120を梨地模様で示し、更に、配線基板1上の半導体素子120以外の部材の図示を省略している。
【0076】
図10を参照するに、半導体パッケージ100Aは、配線基板1(
図1参照)と、半導体モジュール110とを有する。なお、
図10の例では、2個の半導体モジュール110が、配線基板1の電気接続用配線である配線31、32の絶縁層60から露出する開口部60x(めっき膜41、42の面)及び熱拡散用配線である配線33の絶縁層60から露出する開口部60y(めっき膜43の面)に搭載されている。2個の半導体モジュール110は、配線基板1上に並列に実装されているが、実装する半導体モジュール110の個数は任意とすることができる。
【0077】
半導体モジュール110において、基板150には配線161〜163が形成されている。配線161,162は、半導体素子120と電気的に接続される2つの電気接続用端子である。又、配線163は、半導体素子120とは電気的に接続されず半導体素子搭載部及び放熱を備える放熱用端子である。放熱用端子である配線163
の上面にはLEDである半導体素子120がフェイスアップ状態で実装されている。又、2つの電気接続用端子である配線161,162の上面は、半導体素子120のアノード端子及びカソード端子(図示せず)とボンディングワイヤ180を介して夫々接続されている。基板150の上面外縁部には、半導体素子120が発した光を反射するリフレクタ170が搭載されている。又、リフレクタ170の内側には、半導体素子120を封止する封止樹脂140が設けられている。
【0078】
2つの電気接続用端子である配線161,162の下面は基板150の下面から露出しており、はんだ139を介して、夫々配線基板1の電気接続用配線である配線31,32(めっき膜41及び42)と接続されている。放熱用端子である配線163の下面は基板150の下面から露出しており、はんだ139を介して、配線基板1の熱拡散用配線である配線33(めっき膜43)と接続されている。配線基板1において、熱拡散用配線である配線33の形成領域は、第1の実施形態で述べたように、搭載される半導体モジュール110の放熱用端子の形成領域よりも大きく設けられている。そのため、半導体素子120の発する熱を効率よく放熱できる。
【0079】
配線基板1のめっき膜44及び45を、例えば、半導体パッケージ100Aの外部に配置される電源や駆動回路等に接続し、半導体素子120のカソード端子とアノード端子との間に所定の電位差を与えることにより、半導体素子120が発光する。半導体素子120は、発光時に発熱する。半導体素子120の発した熱は、配線160の放熱用端子、めっき膜43、及び配線33を介して貫通配線50に伝わり、更に、接着層70を経由して放熱板80に伝わり、放熱板80により放熱される。半導体モジュール110の放熱用端子の下側には複数の貫通配線50が設けられているので、半導体素子120の発した熱を効率よく放熱板80に伝達することができる。
【0080】
〈第2の実施の形態の変形例2〉
第2の実施の形態の変形例2では、第1の実施の形態で示した配線基板に半導体素子(発光素子)を搭載した半導体パッケージの他の例を示す。なお、第2の実施の形態の変形例2において、既に説明した実施の形態と同一構成部品についての説明は省略する。
【0081】
図11は、第2の実施の形態の変形例2に係る半導体パッケージを例示する図であり、
図11(b)は平面図、
図11(a)は
図11(b)のA−A線に沿う断面図である。なお、半導体素子120と貫通配線50との位置関係を容易に把握できるようにするため、
図11(b)において、半導体素子120を梨地模様で示し、更に、配線基板1上の半導体素子120以外の部材の図示を省略している。
【0082】
図11を参照するに、半導体パッケージ100Bにおいて、半導体素子120は、配線基板1の熱拡散用配線である配線33の絶縁層60から露出する開口部60y(めっき膜43の面)に搭載されている。具体的には、配線基板1のめっき膜43上に、ダイアタッチフィルム等の接着層190を介して、複数の半導体素子120がフェイスアップ状態で実装されている。各半導体素子120は、封止樹脂140により封止されている。なお、
図11の例では、配線基板1上に4個の半導体素子120が実装されているが、実装する半導体素子120の個数は任意とすることができる。
【0083】
めっき膜43の短手方向(めっき膜41〜45が配列された方向)には2つの半導体素子120がボンディングワイヤ180を介して直列に接続されている。例えば、めっき膜43の短手方向に配置された一方の半導体素子120のアノード端子と他方の半導体素子120のカソード端子とがボンディングワイヤ180を介して接続されている。そして、例えば、一方の半導体素子120のカソード端子がボンディングワイヤ180を介してめっき膜41に接続され、他方の半導体素子120のアノード端子がボンディングワイヤ180を介してめっき膜42に接続されている。又、めっき膜43の短手方向に直接に接続された2つの半導体素子120の組が、めっき膜43の長手方向に2組並列に接続されている。
【0084】
配線基板1において、熱拡散用配線である配線33の形成領域は、搭載される半導体素子120の平面形状よりも大きく設けられている。そのため、半導体素子120の発する熱を効率よく放熱できる。
【0085】
配線基板1のめっき膜44及び45を、例えば、半導体パッケージ100Bの外部に配置される電源や駆動回路等に接続し、半導体素子120のカソード端子とアノード端子との間に所定の電位差を与えることにより、半導体素子120が発光する。半導体素子120は、発光時に発熱する。半導体素子120の発した熱は、めっき膜43及び配線33を介して貫通配線50に伝わり、更に、接着層70を経由して放熱板80に伝わり、放熱板80により放熱される。半導体素子120が搭載された配線33の下側には複数の貫通配線50が設けられているので、半導体素子120の発した熱を効率よく放熱板80に伝達することができる。
【0086】
図9〜
図11を参照しながら半導体パッケージについて説明したが、半導体パッケージにおける半導体素子120の外形と貫通配線50の好ましい位置関係について、
図12を参照しながら説明する。
【0087】
図12は、半導体素子の外形と貫通配線との位置関係を説明する図である。
図12に示すように、半導体パッケージに設けられる複数の貫通配線50は、平面視において、貫通配線50の外形の少なくとも一部が半導体素子120の外形と重複する範囲に配置するように設けられることが好ましい。又、半導体素子120の外形と重複する貫通配線50は、少なくとも2つ以上あることが好ましい。
【0088】
例えば、
図12(a)に示すように、平面視において、半導体素子120の外形の範囲内に少なくとも2つの貫通配線50の全部が位置していてもよい。但し、この場合、半導体素子120の外形の範囲内に位置する貫通配線50の数は3つでもよく、5つ以上でもよい。
【0089】
又、
図12(b)及び
図12(c)に示すように、平面視において、半導体素子120の外形の範囲内に少なくとも2つの貫通配線50の外形の一部が位置していれば、夫々の貫通配線50の外形の一部が半導体素子120の外形の範囲外に部分的にはみ出してもよい。又、貫通配線50は、平面視において、半導体素子120の外形の任意の1辺に対して斜めに配置してもよいし、向い合うように配置してもよい。
【0090】
又、
図12(d)に示すように、平面視において、半導体素子120の外形の範囲内に少なくとも2つの貫通配線50が位置していれば、半導体素子120の外形の範囲内に全部が位置している貫通配線50と、部分的にはみ出した貫通配線50とが混在してもよい。又、平面形状の異なる貫通配線50が混在してもよい。
【0091】
図12に例示したように、複数の貫通配線50が、平面視において、貫通配線50の外形の少なくとも一部が半導体素子120の外形と重複する範囲に配置するように設けることにより、更に、放熱性を向上させることができる。
【0092】
すなわち、例えば、平面視において、半導体素子120の外形の範囲内に1つの貫通配線50しか配置されていない場合には、1つの貫通配線50に熱が集中するため放熱効果が低下する。本実施の形態のように、2つの貫通配線50の外形の少なくとも一部を半導体素子120の外形の一部と重複する範囲に配置することで、熱の集中を避けることが可能となり、放熱性を向上させることができる。
【0093】
〈第3の実施の形態〉
第3の実施の形態では、ポリイミド層から突出した貫通配線を有する配線基板の例を示す。なお、第3の実施の形態において、既に説明した実施の形態と同一構成部品についての説明は省略する。
【0094】
図13は、第3の実施の形態に係る配線基板を例示する断面図である。前述のように、貫通配線50の他端がポリイミド層10の他方の面から突出する突出部を有してもよいが、この場合、
図13に示す配線基板1Cのように、隣接する貫通配線50の突出部同士が接してもよい。又、配線基板1Cにおいて、各貫通配線50の直径は同一であっても異なっていてもよい。又、配線基板1Cにおいて、各貫通配線50の突出部の直径や突出量は同一であっても異なっていてもよい。
【0095】
このように、隣接する貫通配線50の突出部同士が接する程度に貫通配線50の他端をポリイミド層10の他方の面から突出させることにより、貫通配線50の他端の表面積が大幅に増加するため、放熱性を更に向上させることができる。
【0096】
図14は、第3の実施の形態に係る半導体パッケージを例示する断面図である。
図14に示す半導体パッケージ200では、配線基板1Cに、はんだ220を介して、発光素子以外の発熱性の半導体素子210がフェイスダウン状態でフリップチップ実装されている。
【0097】
具体的には、半導体素子210の電気接続用端子(図示せず)は、はんだ220を介して、配線基板1C上の電気接続用配線である配線31,32(めっき膜41,42)と接続されている。又、半導体素子210の熱拡散用端子(図示せず)は、はんだ220を介して、配線基板1C上の熱拡散用配線である配線33(めっき膜43)と接続されている。なお、配線基板1Cに実装する半導体素子210の個数は任意とすることができる。
【0098】
半導体素子210としては、動作時の電流により発熱する周知の発熱性の半導体素子を用いることができる。半導体素子210の例としては、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のようなパワー半導体素子等を挙げることができる。
【0099】
このように、配線基板1Cに搭載する半導体素子は発光素子には限定されず、動作時の電流により発熱する周知の発熱性の半導体素子を搭載することができる。配線基板1Cは放熱性に優れているため、搭載する発熱性の半導体素子の放熱性を向上させ、熱に起因する問題を低減することができる。配線基板1、1A、1Bに発熱性の半導体素子を搭載してもよい。
【0100】
なお、前述のように、半導体素子が発光素子である場合には、発光素子の照射する光の反射率及び放熱率を上げるため、絶縁層60を白色インク等を用いた反射膜とすると好適である。しかし、発光素子以外の発熱性の半導体素子を搭載する場合には、絶縁層60を反射膜とする必要はなく、絶縁層60に反射膜とは異なる機能を持たせることができる。例えば、絶縁層60をソルダーレジスト層としてもよいし、エポキシ系樹脂やポリイミド系樹脂等からなる種々の絶縁層としてもよい。又、必要に応じて、絶縁層60を形成しなくてもよい。
【0101】
以上、好ましい実施の形態及びその変形例について詳説したが、上述した実施の形態及びその変形例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及びその変形例に種々の変形及び置換を加えることができる。
【0102】
例えば、
図11に示すように、半導体素子120をフェイスアップで実装し、半導体素子120の裏面とめっき膜43とをはんだ等で接続せずに接着層190を介して実装する場合には、めっき膜43を設けずに、配線33の全体を絶縁層60で被覆してもよい。つまり、絶縁層60に、配線33を露出する開口部を設けなくてもよい。この場合、配線33を被覆する絶縁層60上に、接着層190を介して、半導体素子120が実装される。つまり、半導体素子120の直下に絶縁層60が存在する。
【0103】
又、ポリイミド層10に接着層20を介して金属層30Aを貼り付ける代わりに、以下のようにしてもよい。すなわち、ポリイミド系樹脂製のフィルム(ポリイミドテープ)等であるポリイミド層10を準備し、無電解めっき法やスパッタ法、電解めっき法等を用いて、ポリイミド層10の一方の面に銅(Cu)等からなる金属層を直接形成する(接着層20は設けない)。形成された金属層が金属層30Aの代わりとなり、金属層30Aと同様の機能を発揮する。この場合、貫通孔10xは、レーザ加工法等でポリイミド層10のみに形成する。つまり、貫通孔10xの一方の側はポリイミド層10上に形成された金属層で塞がれる。この場合は、接着層20は存在しない。
【0104】
又、他の例として、銅箔等の金属箔上にポリイミド系絶縁樹脂を塗布してポリイミド層10を作製してもよい。この場合も、貫通孔10xは、レーザ加工法等でポリイミド層10のみに形成する。つまり、貫通孔10xの一方の側はポリイミド層10上に形成された金属箔で塞がれる。この場合も、接着層20は存在しない。