【国等の委託研究の成果に係る記載事項】(出願人による申告)平成28年度、国立研究開発法人新エネルギー・産業技術総合開発機構「エネルギー・環境新技術先導プログラム/トリリオンセンサ社会を支える高効率MEMS振動発電デバイスの研究」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
前記可動側部の前記第1の面の前記複数個の凹部と凸部と、前記固定側部の前記第2の面の前記複数個の凹部と凸部とは、前記可動側部の前記振動振幅が小さいときには、前記可動側部の前記第1の面の前記凸部と、前記固定側部の前記第2の面の前記凸部との間隔の最小値が大きい状態となり、かつ、前記可動側部の前記振動振幅が大きいときには、前記可動側部の前記第1の面の前記凸部と、前記固定側部の前記第2の面の前記凸部との間隔の最小値が小さい状態となるように、形成されている
ことを特徴とする請求項1に記載の振動発電デバイス。
前記可動側部の前記第1の面の複数個の前記凸部と、前記固定側部の前記第2の面の複数個の前記凸部とは、前記振動方向に直交する方向が高さが低いものほど、前記振動方向の幅が狭くされている
ことを特徴とする請求項1または請求項2に記載の振動発電デバイス。
前記可動側部の前記第1の面の複数個の前記凸部と、前記固定側部の前記第2の面の複数個の前記凸部は、前記振動方向の存在密度が、前記振動方向において変えられている
ことを特徴とする請求項1〜請求項3のいずれかに記載の振動発電デバイス。
前記可動側部の前記第1の面及び前記固定側部の前記第2の面のそれぞれの表面の、前記凸部は、前記振動方向に直交する方向に突出する複数個の突部が前記振動方向に櫛歯状に配列されている
ことを特徴とする請求項1〜請求項4のいずれかに記載の振動発電デバイス。
前記可動側部の前記第1の面と前記固定側部の前記第2の面とは、それぞれ前記半導体基板の基板面に直交する方向の面であり、前記可動側部の前記振動方向の両端は、前記半導体基板から形成された支持梁により支持されて、前記可動側部が振動移動可能とされている
ことを特徴とする請求項9に記載の振動発電デバイス。
前記振動移動方向に直交する方向に複数個の前記可動側部を備えると共に、前記固定側部材は、複数個の前記可動側部の前記第1の面のそれぞれに対向する複数個の前記第2の面を有する
ことを特徴とする請求項1〜請求項14のいずれかに記載の振動発電デバイス。
前記可動側部の前記第1の面及び前記固定側部の前記第2の面に形成されている前記複数個の凹部と凸部は、前記振動方向の配列ピッチの位相が異なる第1のグループと第2のグループとに分けられており、
前記第1のグループにおいて、前記可動側部の複数個の前記凸部と、前記固定側部の複数個の前記凸部とが対向して前記振動方向に直交する方向において重なる状態のときには、前記第2のグループの前記可動側部の複数個の前記凸部と、前記固定側部の複数個の前記凸部とは前記振動方向に直交する方向において重ならない状態となるようにされている
ことを特徴とする請求項1〜請求項15のいずれかに記載の振動発電デバイス。
【発明を実施するための形態】
【0018】
以下、この発明による振動発電デバイスの実施形態を、図を参照しながら説明する。
【0019】
[第1の実施形態]
先ず、この発明による振動発電デバイスの原理的な構成例を、第1の実施形態として示す。以下に示す実施形態の振動発電デバイスは、半導体製造プロセスにより製造されるMEMESデバイスとして構成される場合の例である。
【0020】
図1は、この第1の実施形態の振動発電デバイス10の全体の構成例を説明するための斜視図を示すものである。この第1の実施形態の振動発電デバイス10は、半導体基板1に対して、後述するような半導体製造プロセスが実行されることにより形成される可動側部2と、固定側部3A,3Bと、可動側部2を支持する支持梁部4L,4Rとからなる。
【0021】
可動側部2は、断面が矩形の細長状に形成されており、
図1において矢印ARで示すように、当該可動側部2の長手方向を振動方向として振動可能なように構成されている。すなわち、この可動側部2の振動方向である長手方向の両端は、半導体基板1から半導体製造プロセスにより形成された支持梁部4L及び支持梁部4Rにより、可動側部2が振動可能となるように支持されている。なお、この例では、この可動側部2の振動方向は、
図1において、半導体基板1の基板面に直交する方向(
図1で矢印Bで示す方向)とは直交する方向、つまり、半導体基板1の基板面に沿う方向とされている。
【0022】
支持梁部4L及び支持梁部4Rのそれぞれは、振動方向に直交する方向に設けられている2枚の薄板状部41,42及び薄板状部43,44からなる支持梁の構成とされている。支持梁部4L及び支持梁部4Rのそれぞれは、半導体基板1において、可動側部2の振動方向の両側に形成されている空間5L及び空間5Rの周囲を取り囲むように半導体基板1に形成されている支持梁保持部6L及び支持梁保持部6Rに取り付けられている。
【0023】
可動側部2の長手方向の両端部2a及び2bは、2枚の薄板状部41,42及び薄板状部43,44の中央部分で支持梁部4L及び支持梁部4Rと結合されて、振動方向に移動可能とされている。
【0024】
支持梁部4L及び支持梁部4Rのそれぞれは、1枚の薄板状部で構成することもできるが、複数枚、この例では2枚の薄板状部41,42及び薄板状部43,44で構成することにより、可動側部2の振動方向が偏向しづらくなるようにすると共に、可動側部2が対向する固定側部3A,3Bと接触せずに、安定して矢印ARの方向に振動することができるようにしている。
【0025】
固定側部3A,3Bは、この例では、可動側部2の振動方向に直交する方向に、可動側部2を挟むような位置に設けられている。この場合に、固定側部3A,3Bのそれぞれは、
図1において矢印Bで示す基板面に直交する方向に沿う方向であって、可動側部2の振動方向に沿う方向の面31A及び面31Bを有するように構成されている。そして、固定側部3Aの面31Aは、可動側部2の基板面に直交する方向に沿う方向であって、可動側部2の振動方向に沿う方向の面21と所定の間隔を隔てて対向する状態となるようにされている。また、固定側部3Bの面31Bは、可動側部2の基板面に直交する方向に沿う方向であって、可動側部2の振動方向に沿う方向の面22と所定の間隔を隔てて対向する状態となるようにされている。なお、面21、面22、面31A、面31Bは、以下の説明においては、対向面21、対向面22、対向面31A、対向面31Bと称する。
【0026】
そして、可動側部2の対向面21及び対向面22には、振動方向に直交する方向に突出する複数個の突部23及び突部24が、振動方向に沿う方向に櫛歯状に配列されて形成されていると共に、固定側部3Aの対向面31A及び固定側部3Bの対向面31Bにも、振動方向に直交する方向に突出する複数個の突部32A及び突部32Bが、振動方向に沿う方向に櫛歯状に配列されて形成されている。この例の場合、突部23,24,32A及び32Bは、同様の構成を備えるようにされており、この例では、断面が矩形の突条が矢印B方向に延伸するように形成されている。この例の場合、突部23,24,32A及び32Bは、それぞれ凸部を構成すると共に、複数の突部23,24,32A及び32Bのそれぞれの間は、凹部を構成する。
【0027】
図2は、固定側部3Aと可動側部2との対向部分の一部を、
図1の矢印Bの方向に、可動側部2の振動方向に直交する上方から見た図であり、可動側部2が静止している状態を示している。この
図2に示すように、可動側部2の対向面21に形成されている複数個の突部23と、固定側部3Aの対向面31Aに形成されている複数個の突部32Aとは、可動側部2の振動方向に沿う方向の幅は、共に同じ幅Wtとされていると共に、振動方向に沿う方向に同一の配列ピッチLで形成されている。したがって、隣接する突部23及び突部32Aの間は、Wb=L−Wtだけ隔てられている。
【0028】
そして、
図2に示すように、可動側部2が静止している状態では、可動側部2の対向面21に形成されている複数個の突部23と、固定側部3Aの対向面31Aに形成されている複数個の突部32Aとが互いに対向しているように構成されている。そして、可動側部2の対向面21において振動方向に配列されている複数個の突部23の振動方向に直交する方向の長さ、すなわち、突部23の高さHmは、一定ではなく、高さHmの変化が例えば正弦波状になるように異ならされている。同様に、固定側部3Aの対向面31Aにおいて振動方向に配列されている複数個の突部32Aの振動方向に直交する方向の長さ、すなわち、突部32Aの高さHsも、一定ではなく、高さHsの変化が例えば正弦波状になるように異ならされている。
【0029】
なお、振動発電デバイス10の可動側部2の突部23,24の個数と、固定側部3A,3Bの突部32A,32Bの個数は、
図1及び
図2では、作図の便宜上、10〜12個程度となっているが、その個数は、実際的には、より多数である。そして、突部23,24,32A,32Bの高さの正弦波状の変化も、
図1及び
図2のような1周期程度ではなく、突部の個数に応じた複数周期に亘るものである。
【0030】
そして、この例の場合、
図2に示すように、可動側部2が静止している状態では、互いに対向する突部23と突部32Aとの間隔が、複数の突部23と複数の突部32Aにおいて、等しい間隔gsとなるように、突部23の高さHmと、突部32Aの高さHsとが変化するように構成されている。更に、この場合において、
図2に示すように、高さHmが最大である突部23と、高さHsが最大である突部32Aとが対向した場合にも、微小な間隔gminだけ、両者の間に空隙が生じるように構成されている。
【0031】
したがって、以上のように可動側部2の突部23の高さHmが振動方向ARにおいて変化すると共に、固定側部3Aの突部32Aの高さHsが振動方向ARにおいて変化していても、最小の間隔gの空隙が存在するように構成されているので、可動側部2は、固定側部3Aに対して、間隔gの空隙を保って、
図1及び
図2の矢印ARで示す振動方向に振動移動することが可能とされている。
【0032】
なお、可動側部2の突部23が形成されている対向面21(突部23の付け根位置)と、固定側部3Aの突部32Aが形成されている対向面31A(突部32Aの付け根位置)との間は、距離Dだけ隔てられている。
【0033】
この例では、Wt=20μm、Wb=40μm、L=60μm、Hm(最大値)=Hs(最大値)=42.5μm、g=5μm、D=90μmとされている。そして、振動発電デバイスとしては、可動側部2の振動方向の長さが、例えば12mm、振動方向に直交する方向の長さが、例えば8mmとされている。
【0034】
なお、図示は省略するが、固定側部3Bの対向面31Bに形成されている複数個の突部32Bと、可動側部2の対向面22に形成されている複数個の突部24との関係も、
図2と同様に構成されている。この場合に、この例では、可動側部2の対向面21に形成されている突部23と固定側部3Aの対向面31Aに形成されている突部32Aとの位置関係(対向位相関係)が
図2に示すような可動側部2が静止している状態のときには、可動側部2の対向面22に形成されている突部24と固定側部3Bの対向面31Bに形成されている突部32Bとの位置関係(対向位相関係)も同様の状態となるようにされている。すなわち、可動側部2の突部23と固定側部3Aの突部32Aとの対向位相関係と、可動側部2の突部24と固定側部3Bの突部32Bとの対向位相関係は同相となるようにされている。
【0035】
そして、後述するように、この実施形態では、固定側部3A,3Bまたは可動側部2の一方には、エレクトレット膜が形成され、そのエレクトレット膜が形成されている固定側部3A,3Bまたは可動側部2の一方は、所定のエレクトレット電位Eとされる。この例では固定側部3A,3Bにエレクトレット膜が形成されて、固定側部3A,3Bは、例えば−400ボルトのエレクトレット電位Eとされる。なお、固定側部3A,3Bと可動側部2とは、後述するように、半導体基板の絶縁層により、互いに電気的に絶縁されている。
【0036】
そして、
図1に示すように、可動側部2には、その振動方向の両端部において電極25及び電極26が形成されると共に、固定側部3A及び固定側部3Bには、可動側部2の振動方向に直交する方向の端部において電極33A及び電極33Bが形成される。これら電極25及び電極26、電極33A及び電極33Bは、振動発電デバイス10を充電回路と接続する際の接続端子電極となる。
【0037】
以上のように構成されているので、固定側部3A及び固定側部3Bと可動側部2との間には、可動側部2の振動に応じて変化する静電容量が得られる。
図3(A),(B),(C)は、可動側部2が振動するときにおける対向面21の突部23と、固定側部3Aの対向面31Aの突部32Aとの対向位相関係と、その時の静電容量との関係を説明するための図である。なお、可動側部2が振動するときにおける対向面22の突部24と、固定側部3Bの対向面31Bの突部32Bとの対向位相関係と、その時の静電容量との関係も同様であるので、ここでは説明は省略する。
【0038】
すなわち、
図3(A)は、可動側部2の突部23が固定側部3Aの隣り合う突部32Aの中央に位置する場合であり、突部23と突部32Aとの先端の端面は、振動方向に直交する方向において全く対向しない状態である。この
図3(A)の状態では、可動側部2の突部23の先端の端面は、距離Dだけ隔てた固定側部3Aの対向面31Aに対向する状態となっており、可動側部2と固定側部3Aとの間の静電容量は小さい値C(小)になる。
【0039】
また、
図3(C)は、可動側部2の突部23の先端の端面と固定側部3Aの突部32Aの先端の端面とが、振動方向に直交する方向において全体的に対向する状態である。この
図3(C)の状態では、可動側部2の突部23の先端の端面と固定側部3Aの対向面31Aの先端の端面とが所定の間隔(最小値g)を介して対向する状態となっており、可動側部2と固定側部3Aとの間の静電容量は大きな値C(大)になる。
【0040】
また、
図3(B)は、可動側部2の突部23の先端の端面と固定側部3Aの突部32Aの先端の端面とが、振動方向に直交する方向において部分的に対向する状態である。この
図3(B)の状態は、
図3(A)の状態と、
図3(C)の状態との中間の状態であり、可動側部2と固定側部3Aとの間の静電容量は、前記小さい値C(小)と前記大きな値C(大)との間の中間値C(中)になる。
【0041】
以上のように、この実施形態の振動発電デバイス10においては、外部から振動エネルギーが加わって、可動側部2が振動すると、可動側部2と、固定側部3A及び固定側部3Bとの間の静電容量の変化と、外力と、振動速度などに応じた交流出力電力が発生する。そして、この実施形態の振動発電デバイス10が発生した交流出力電力を負荷に供給したり、蓄電素子に蓄電するなどすることができる。
【0042】
この場合に、この実施形態の振動発電デバイス10の等価回路を考えた場合、外力をf、出力電流をi、出力電圧をe、外力による励振速度をv、出力インピーダンスをZm、振動発電デバイス10で生成される静電容量をCo、浮遊容量をCsとしたとき、その線形方程式は、
図19の(式1)で示すような行列で表すことができる。この(式1)において、Aは、力係数(電気機械変換係数)であり、
図19の(式2)のように表すことができる。
【0043】
この(式2)において、nは可動側部2と固定側部3A,3Bとで対向する突部の数、ε
oは真空の誘電率、bは振動発電デバイス10の厚み、Eはエレクトレット電位、doは可動側部2の突部23及び24と、固定側部3A、3Bの突部32A,32Bとの間の間隔(空隙)である。
【0044】
この実施形態の振動発電デバイス10では、可動側部2の突部23及び24と、固定側部3A、3Bの突部32A,32Bとの間の間隔(空隙)doは、上述したように、可動側部2の振動方向の振動振幅に応じて変化するので、力係数(電気機械変換係数)Aは、この間隔doの変化に応じて変化するものとなる。
【0045】
すなわち、例えば
図2において突部23,24及び突部32A、32Bの配列ピッチL内程度の振動振幅が小さいときには、
図2から分かるように、突部23,24及び突部32A、32Bとの間の隙間の間隔doは、可動側部2が静止状態であるときの大きな間隔gsの近傍の大きさとなって比較的大きなものとなる。このため、(式2)に示す力係数(電気機械変換係数)Aの値は比較的小さな値となる。
【0046】
振動発電デバイス10の出力インピーダンスZmは、
図19の(式3)に示すように、Zm=r/A
2であるので、このときの出力インピーダンスZmは大きくなる。ここで、rは、この実施形態の振動発電デバイス10の機械抵抗(ダンピング抵抗)である。このときの振動発電デバイス10の出力電流iは、
図19の(式4)に示すように、i=Af/Zmであるので小さい。そして、振動発電デバイス10の出力電圧eは、
図19の(式5)に示すように、e=f/Aであるが、出力インピーダンスZmが大きいため、振動発電デバイス10の出力電流を整流するためのダイオードを導通させるのに十分な値になる。
【0047】
以上のように、振動発電デバイス10に加わる励振加速度が低加速度の状態で、振動振幅が小さいときであっても、振動発電デバイス10の出力インピーダンスZmが大きいので、振動発電デバイス10の出力電圧eは、整流用ダイオードを導通させるのに十分な値になり、小さい値の出力電流iであっても、それにより蓄電素子を充電させるようにすることができる。
【0048】
そして、
図2に示したように、静止状態から励振加速度が低加速度の状態においては、突部23,24及び突部32A、32Bとの間の隙間の間隔doが比較的大きいので、可動側部2と固定側部3A,3Bとの間の静電容量は小さくなるから、静電的拘束力が小さくなり、振動発電デバイス10の可動側部2は振動し易い状態となっている。このため、この実施形態の振動発電デバイス10によれば、外力による励振加速度が低加速度のときにも、効率良く、その外力に応答して振動することができ、小さい出力電流であっても、効率良く発電をして、効率良く充電することができるという効果がある。
【0049】
次に、外力が大きくなって、振動発電デバイス10の振動振幅が大きくなると、
図4に示すように、突部23,24及び突部32A、32Bとの間の隙間の間隔doが、低加速度時よりも狭い値となる。このため、
図19の(式2)に示される力係数(電気機械変換係数)Aは、大きくなる。すると、
図19の(式3)に示される出力インピーダンスZmが小さくなり、
図19の(式4)に示す電流iは大きくなる。一方、振動発電デバイス10の
図19の(式5)に示す出力電圧eは、力係数(電気機械変換係数)Aが大きくなるので小さくなるが、外力fが大きくなっていることから、振動発電デバイス10の出力電流を整流するためのダイオードを導通させるのに十分な値は維持する。
【0050】
したがって、上述の構成の振動発電デバイス10においては、励振加速度が高加速度の状態で、振動振幅が大きいときには、振動発電デバイス10の出力インピーダンスZmが小さくなって、振動発電デバイス10の出力電流iは大きくなり、このときの振動発電デバイス10の出力電圧eにより整流用ダイオードは導通状態となるので、大きい値の出力電流iにより、蓄電素子を充電させるようにすることができる。
【0051】
以上のように、この実施形態の振動発電デバイス10は、励振加速度が低加速度のときには、出力インピーダンスが大きくなり、高加速度のときには、出力インピーダンスが小さくなる。したがって、この実施形態の振動発電デバイス10によれば、低加速度の状態から高加速度の状態にまで広範囲に分布する環境振動エネルギーの励振加速度に対して振動応答したときの出力電流及び出力電圧により、効率良く、整流回路を駆動して蓄電することができる。
【0052】
なお、
図1において、7は錘であり、この錘7は、半導体基板1から作成されるのではなく、別途に作成されて、この第1の実施形態の振動発電デバイス10の可動側部2の上に装着されるものである。この錘7を可動側部2の上に載せることで、可動側部2の質量mを大きくして、振動発電デバイス10の振動発電による出力P(
図19の(式6)参照)を大きくすることができる。
【0053】
この
図19の(式6)において、mは、錘7を含めた可動側部2の質量であり、xは振動振幅、ωは角速度、Qは可動側部2の共振時における尖鋭度(いわゆるQ値(Quality factor))であり、外部励振振動の振幅に対する可動側部2の振動振幅の比である。この(式6)から明らかなように、この第1の実施形態の振動発電デバイス10においては、錘7を可動側部2の上に取り付けたことで、発電出力電力を大きくすることができる。
【0054】
なお、可動側部と固定側部の櫛歯状の突部を、互いに噛み合うようにすると共に、その噛み合っている突部の高さ方向に可動側部を振動させるようにする振動発電デバイスも知られている(例えば公知文献(JOURNAL OF MICROELECTROMECHANICAL SYSTEM. VOL.20.NO.6.DECEMBER 2011)等参照)。
【0055】
しかし、この種の振動発電デバイスにおいては、可動側部は固定側部に対して近づいたり、遠ざかったりするように振動するため、静電力によりプルイン現象(引き込み現象)が生じ易くなってしまい、振動が継続できない恐れがある。すなわち、所定の空隙を隔てて対向する2面間に静電力が働いているときに、可動側部が、固定側部に対して、対向する2面間の空隙の長さの1/3以上近づくと、プルイン現象が生じて、振動が停止してしまうからである。
【0056】
これに対して、この実施形態の振動発電デバイス10においては、上述したように、可動側部2の対向面21,22に形成した櫛歯状配列の突部23,24と、固定側部3Aの対向面31Aに形成した櫛歯状配列の突部32A及び固定側部3Bの対向面31Bに形成した櫛歯状配列の突部32Bとの間には、最小でも間隔gminの空隙が設けられており、可動側部2は、対向面21,22,31A,31Bの面に沿う方向に振動移動する構成である。したがって、この実施形態の振動発電デバイス10は、可動側部2は、固定側部3A,3Bとの間に、最低限として間隔gminの距離を保って、当該間隔gの方向とは直交する方向に振動移動するので、プルイン現象は生じない。したがって、この実施形態の振動発電デバイス10においては、原理的には可動側部2の振動の振幅に制限を設ける必要はないというメリットがある。
【0057】
また、この実施形態の振動発電デバイスにおいては、前述したように、振動開始時の静電拘束力が小さいので、外部振動エネルギーにより振動が成長しやすいというメリットもある。
【0058】
[第1の実施形態の振動発電デバイスの製法]
この第1の実施形態の振動発電デバイス10は、前述したように、半導体基板1に対して施される半導体プロセスにより形成されるMEMSデバイスである。半導体基板の例としては、単結晶のシリコン基板、多結晶のシリコン基板、SOI(Silicon on Insulator)基板、セラミック基板、金属基板、ガラス基板、ポリマー基板等を用いることができる。以下に説明するこの実施形態の振動発電デバイス10についての半導体製造プロセスの例においては、半導体基板としてSOI基板を用いている。
【0059】
図5〜
図9は、この実施形態の振動発電デバイス10についての半導体製造プロセスの例を示す図である。
【0060】
半導体プロセスの実行に先立ち、SOI基板からなる半導体基板1を用意する。最終的には、半導体基板1からエッチングにより振動発電デバイス10を分離する。以下の説明では、便宜上、その分離された1つの振動発電デバイス10についてプロセスを説明することとする。
図5(A)は、1つの振動発電デバイス10についての半導体基板1を示すもので、横方向の長さXが、例えば12mm、縦方向の長さYが、例えば8mmとされている。この半導体基板1を、その基板面1aに直交する方向に破断したときの断面図を
図5(B)に示す。この
図5(B)は、
図5(A)のA−A線断面図である。
【0061】
図5(B)に示すように、半導体基板1は、基板面1aに直交する方向に複数層が積層されており、この例では、基板面1aを形成するSOI層101と、埋め込み酸化膜層102と、ハンドル層103とならなる。SOI層101は、この例では、厚さが300μmで、比抵抗が例えば0.1ΩcmのP型シリコン層からなる。埋め込み酸化膜層102は、厚さが2μmの酸化膜からなる絶縁層である。また、ハンドル層103は、厚さが500μmで、比抵抗が例えば0.1ΩcmのP型シリコン層からなる。
【0062】
この半導体基板1に対して、先ず、
図5(C)の断面図(
図5(B)の断面図と同じ位置の断面図)に示すように、SOI層101の表面(基板面1a)上に、LPCVD(Low Pressure Chemical Vapor Deposition)法により、窒化シリコン(Si3N4)膜104を成膜する。この窒化シリコン膜104は、後において、
図1に示した電極25,26,33A,33Bを形成する位置を確保するためのものである。
【0063】
窒化シリコン膜104は、パターニング処理されて、
図5(D)及び
図5(E)に示すように、電極25,26,33A,33Bを形成する位置部分104a,104b,104c,104dのみを残して除去される。なお、
図5(E)は、
図5(A)と同様に、半導体基板1を、その基板面1a側から見た図であり、
図5(D)は、
図5(E)におけるB−B線断面図である。
【0064】
次に、
図6(A)においてハッチングを付して示すように、半導体基板1の基板面1a上にレジスト膜105を塗布し、かつ、その塗布したレジスト膜105について、可動側部2と、固定側部3A及び固定側部3Bと、支持梁部4L及び支持梁部4Rとを形成する部分に対応する部分を残して、それらの部分をマスクするようにパターニング処理する。なお、
図6(A)は、
図5(A)と同様に、半導体基板1を、その基板面1a側から見た図であり、
図6(B)は、
図6(A)におけるC−C線断面図である。
【0065】
なお、振動発電デバイス10の可動側部2の突部23,24の個数と、固定側部3A,3Bの突部32A,32Bの個数は、
図6〜
図8の半導体製造プロセスの図においては、作図の便宜上、5〜6個となっているが、前述したように、その個数は、実際的には、より多数である。また、振動発電デバイス10の可動側部2の突部23,24と、固定側部3A,3Bの突部32A,32Bとは、
図6〜
図8の半導体製造プロセスの図においては、作図の便宜上、全て同一の高さを有するものとして示してあるが、実際上は、
図2に示したように、振動方向において高さが異なるものであることは言うまでもない。
【0066】
次に、
図6(C)の断面図(
図6(B)の断面図と同じ位置の断面図)に示すように、ICP(Inductively Coupled Plasma;誘導結合プラズマ)−RIE(Reactive Ion Etching;反応性イオンエッチング)による深掘りエッチング処理を施して、SOI層101の内の、レジスト膜105によりマスクされていない部分を、埋め込み酸化膜層102のところまで、エッチング除去する。
【0067】
次に、レジスト膜105を除去する処理して、
図6(D)及び(E)に示すように、SOI層101を露呈させるようにする。なお、
図6(E)は、半導体基板1を、その基板面1a側から見た図であり、
図6(D)は、
図6(E)におけるB−B線断面図である。
【0068】
次に、半導体基板1の基板面1aとは反対側の裏面1b(ハンドル層103の露呈面)上に、
図7(A)においてハッチングを付して示すように、可動側部2と支持梁部4L及び支持梁部4R以外の部分をマスクするようにパターニングしたレジスト膜106を形成する。すなわち、半導体基板1に対して裏面レジストパターニング処理する。なお、
図7(A)は、半導体基板1を、その裏面1b側から見た図であり、
図7(B)は、
図7(A)におけるE−E線断面図である。
【0069】
次に、
図7(C)の断面図(
図7(B)の断面図と同じ位置の断面図)に示すように、ICP−RIEによる深掘りエッチング処理を施して、ハンドル層103の内の、レジスト膜106によりマスクされていない部分を、埋め込み酸化膜層102のところまで、エッチング除去する。
【0070】
次に、レジスト膜106を除去する処理して、
図7(D)及び(E)に示すように、ハンドル層103を裏面1b側に露呈させるようにする。なお、
図7(E)は、半導体基板1を、その裏面1b側から見た図であり、
図7(D)は、
図7(E)におけるF−F線断面図である。
【0071】
次に、バッファー弗酸溶液により、埋め込み酸化膜層102の露呈している部分をエッチング除去する処理を施して、
図8(A)の断面図(
図7(D)の断面図と同じ位置の断面図)に示すように、可動側部2と支持梁部4L及び支持梁部4Rの部分が可動可能となるようにする。
【0072】
次に、KOH(水酸化カリウム)溶液によるバブリング酸化処理を行って、
図8(B)の断面図(
図8(A)の断面図と同じ位置の断面図)に示すように、カリウム含有酸化膜107を形成する。カリウム含有酸化膜107は、後述するエレクトレット膜を生成するエレクトレット化の処理のためのものであり、例えば厚さが1μmとされる。なお、このKOH(水酸化カリウム)溶液によるバブリング酸化処理については、例えば特開2016−82836号公報の
図2、
図3及びその説明部分に記載の技術を用いることができる。ここではその詳細は省略する。
【0073】
次に、窒化ケイ素膜104a,104b,104c,104dを、
図8(C)の断面図に示すようにエッチング除去する処理をして、当該エッチング除去した部分を、前述した電極25,26,33A,33Bとして形成する。
【0074】
以上のようにして、半導体基板1から、この実施形態の振動発電デバイスの構成部分が、
図8(D)に示すように作成することができる。そして、この
図8(D)に示す振動発電デバイスの可動側部2または固定側部3A及び3Bのいずれか一方にエレクトレット膜を生成するエレクトレット化処理をする。この例では、固定側部3A及び3Bに、負に帯電させたエレクトレット膜を生成する。このエレクトレット化の処理は、例えば特開2013−13256号公報に記載のBias−Temperature法を用いて行うことができる。ここではその詳細な説明は省略する。
【0075】
図9は、この実施形態の振動発電デバイス10を用いた充電回路の回路構成例を示す図である。
図9に示すように、この実施形態の振動発電デバイス10は、可動側部2の電極25と、固定側部3Aの電極33Aとの間に生成される静電容量C1と、可動側部2の電極26と、固定側部3Bの電極33Bとの間に生成される静電容量C2とが、この例では並列に接続されたものとされる。したがって、この例では、振動発電デバイス10で生成される静電容量Cは、C=C1+C2となる。
【0076】
そして、
図9の例においては、この振動発電デバイス10の静電容量Cに得られる発電出力が、この例では、ダイオードD1及びダイオードD2からなる整流回路8により整流されて、その整流出力により、蓄電用キャパシタ9が充電されて、蓄電される。
【0077】
[上述の第1の実施形態の変形例]
上述の実施形態の振動発電デバイス10では、可動側部2の突部23,24の振動方向の幅と、固定側部3A,3Bの突部32A,32Bの振動方向の幅は、全て同一としたが、可動側部2の振動のし易さと、高加速度時の大電流をより効率良く利用することができるように、突部23,24及び突部32A,32Bの幅を変化させるようにしてもよい。
【0078】
図10は、突部23,24及び突部32A,32Bの幅を変化させた振動発電デバイス10Aにおける可動側部2と固定側部3Aとの対向部分を示す図である。なお、図示は省略するが、可動側部2と固定側部3Bとの対向部分も、同様に構成することは言うまでもない。
【0079】
この
図10に示すように、可動側部2の複数の突部23及び固定側部3Aの複数の突部32Aは、
図2に示した高さHm及び高さHsが高いものは振動方向の幅が広く、高さHm及びHsが低くなるにしたがって、徐々に、振動方向の幅が狭く構成されている。
【0080】
図10の例では、可動側部2の中央の高さHmが大きい4個の突部23の振動方向の幅は、幅Wt1に選定され、それらよりも高さHmが低く、それらの両側の2個ずつの突部23の振動方向の幅は、幅Wt1よりも狭い幅Wt2とされている。そして、それら幅Wt2よりも高さHmが低い左右の2個ずつの突部23の振動方向の幅は、幅Wt2よりも狭い幅Wt3とされている。
【0081】
また、
図10の例では、固定側部3Aの両端の高さHsが大きい3個ずつの突部32Aの振動方向の幅は、幅Wt1に選定され、それらよりも高さHsが低く、それらの隣の2個ずつの突部32Aの振動方向の幅は、幅Wt1よりも狭い幅Wt2とされている。そして、それら幅Wt2よりも高さHsが低い中央の2個の突部32Aの振動方向の幅は、幅Wt2よりも狭い幅Wt3とされている。
【0082】
したがって、振動発電デバイス10Aでは、可動側部2が静止している状態では、可動側部2の中央の大きい幅Wt1の4個の突部23Aは、固定側部3Aの中央の幅Wt3の2個の突部32A及びその両隣の幅Wt2の2個の突部32Aと対向する状態となる。一方、固定側部3Aの大きい幅Wt1の突部32Aは、可動側部2の幅Wt2(<Wt1)及び幅Wt3(<Wt1)の突部23と対向する状態となる。すなわち、この
図10の例の振動発電デバイス10Aにおいては、可動側部2が静止している状態では、可動側部2の複数の突部23と固定側部3Aの複数の突部32Aとは、互いに振動方向の幅が異なるもの同士が対向するような状態となる。
【0083】
したがって、この
図10の例の振動発電デバイス10Aにおいては、可動側部2が静止している状態では、可動側部2の複数の突部23と固定側部3Aの複数の突部32Aとは、大きい間隔gsだけ空隙を空けて対向するだけでなく、互いに振動方向の幅が異なるもの同士が対向して、静電容量を形成する実効の対向面積は小さくなる。このため、振動方向の力に対抗する静電力が、
図2の場合よりも小さくなるので、この
図10の例の振動発電デバイス10Aは、
図2の例の振動発電デバイス10よりも、可動側部2が静止している状態からの振動のし易さが向上する。
【0084】
そして、高加速度となった時には、可動側部2の複数の突部23と固定側部3Aの複数の突部32Aとは、
図10に示すように、互いに、大きい幅Wt1同士が狭い間隔gminで対向する状態となって、上述した振動発電デバイス10と同様に、出力インピーダンスが小さい状態となる。したがって、この
図10の例の振動発電デバイス10Aにおいても、励振加速度が高加速度のときには、大電流となり、蓄電素子を効率良く蓄電することができる。
【0085】
上述した
図10の例において、可動側部2及び固定側部3A,3Bの複数の突部23,24及び32A,32Bのうち、振動方向の幅が狭い突部は、静電容量の形成について、それほど寄与しないと考えられる。そこで、当該振動方向の幅が狭い突部を省略することが可能である。
図11は、このことを踏まえた
図10の例の変形例である。
【0086】
すなわち、
図11の例においては、
図10の例において、振動方向の幅が最も狭い幅Wt3である突部23及び32Aは設けない。可動側部2の固定側部3Bとの対向面22の突部24及び固定側部3Bの対向面31Bにおいても同様とする。したがって、
図11の例の振動発電デバイスにおいては、可動側部2の対向面21及び22の突部23及び24は、可動側部2の振動方向に異なる密度で形成されている(すなわち、振動方向に密度変調されている)と共に、固定側部3A,3Bの対向面31A及び31Bの突部32A及び32Bにおいても、可動側部2の振動方向に異なる密度で形成されている(すなわち、振動方向に密度変調されている)。そして、
図11に示すように、可動側部2の突部23、24が高密度の部分(突部23,24が存在している部分)と、固定側部3A,3Bの突部32A,32Bが低密度の部分(突部23,24が存在していない部分)とは、可動側部2が静止状態では、互いに対向するようになるように構成される。
【0087】
この
図11の例の振動発電デバイスにおいても、
図10の例の振動発電デバイス10Aと同様の作用効果が得られることは言うまでもない。
【0088】
なお、
図11の例は、可動側部2の突部23,24及び固定側部3A,3Bの突部32A,32Bを、可動側部2の振動方向に密度変調するようにする構成は、
図10の例に適用した場合であった。しかし、可動側部2の突部23,24及び固定側部3A,3Bの突部32A,32Bを、可動側部2の振動方向に密度変調することにより、
図19の(式2)に示す力係数(電気機械変換係数)Aにおける、対向する突部の数nを変更することができて、当該力係数(電気機械変換係数)Aを、小振幅時(低加速度時)と、大振幅時(高加速度時)とで、変更することができる。したがって、可動側部2の突部23,24及び固定側部3A,3Bの突部32A,32Bの高さHm及びHsが全て同一で、突部23,24と突部32A,32Bとの間隔(可動側部2の対向面21側、対向面22側と、固定側部3A,3Bの対向面31A,31B側との間隔)が一定であってもよい。また、突部23,24と突部32A,32Bとの振動方向の幅も一定であってもよい。
【0089】
上述の
図1〜
図8を用いて説明した第1の実施形態の振動発電デバイス10においては、凸部を構成する複数の突部23,24,32A及び32Bのそれぞれの間の凹部は、空間としたが、この凹部に所定の誘電率の誘電体を充填するようにしてもよい。
【0090】
図12の例は、複数の突部23及び32Aのそれぞれの間の凹部に所定の誘電率の誘電体81及び82をそれぞれ充填した振動発電デバイスの可動側部2と固定側部3Aとの対向部分を示す図である。可動側部2と固定側部3Bとの対向部分における複数の突部24及び32Bのそれぞれの間の凹部も同様に構成される。なお、この例においては、
図2に示したのと同様に、複数の突部23,24,32A及び32Bの高さHm及びHsが振動方向に沿って正弦波状に変化するように構成されている。
【0091】
この
図12の例の振動発電デバイスにおいては、複数の突部23,24,32A及び32Bのそれぞれの間の凹部に誘電体81,82が充填されているので、複数の突部23,24,32A及び32B及びそのそれぞれの間の凹部は、この発明の凸部及び凹部を構成しなくなる。その代わりに、可動側部2においては、複数の突部23及び24の高さHmが振動方向に沿って正弦波状に変化しているので、当該正弦波状の変化において、
図12に示すように、可動側部2には、凸部27と凹部28とが形成される。また、固定側部3Aにおいては、複数の突部32A及び32Bの高さHsが振動方向に沿って正弦波状に変化しているので、当該正弦波状の変化において、
図12に示すように、固定側部3A,3Bには、凸部34と凹部35とが形成される。
【0092】
この
図12の例の振動発電デバイスにおいても、上述の実施形態の振動発電デバイスと同様の作用効果を得ることができる。
【0093】
[上述の第1の実施形態のその他の変形例]
なお、上述の第1の実施形態の振動発電デバイス10では、可動側部2の振動方向に直交する方向の両側の振動方向に沿う方向の面21,22のそれぞれに突部23,24を櫛歯状に配設すると共に、面21,22に対向する面31A,31Bを有する2個の固定側部3A,3Bを設け、面21,22のそれぞれに突部32A,32Bを櫛歯状に配設する構成とした。しかし、可動側部2の振動方向に直交する方向の両側を利用せずに、その片側の可動側部2と固定側部3Aとの組み合わせ、あるいは、可動側部2と固定側部3Bとの組み合わせの構成とするようにしてもよい。
【0094】
また、上述の第1の実施形態の振動発電デバイス10では、固定側部3A及び3Bにエレクトレット膜を生成するようにしたが、可動側部2にエレクトレット膜を生成するようにしてもよい。
【0095】
また、上述の第1の実施形態の振動発電デバイス10では、固定側部3A及び3Bの全体に亘ってエレクトレット膜を生成するようにしたが、エレクトレット膜は、全体に生成する必要はなく、少なくとも、固定側部3A及び3Bの対向面31A及び31Bにエレクトレット膜を生成すればよい。
【0096】
なお、振動発電デバイスの可動側部2または固定側部3A及び3Bのいずれか一方にエレクトレット膜を生成するエレクトレット化処理をするようにしたが、一方に負のエレクトレット電位、他方に正のエレクトレット電位を与えるように、可動側部2及び固定側部3A及び3Bの両方にエレクトレット膜を生成するようにしてもよい。
【0097】
なお、上述の
図5〜
図8に示した、第1の実施形態の振動発電デバイス10についての半導体製造プロセスは、一例であり、半導体製造プロセスは、上述の例に限られないことは言うまでもない。
【0098】
[第2の実施形態]
上述の実施形態の振動発電デバイス10では、可動側部と固定側部とで、櫛歯状に配列された突部が対向する組み合わせは1対としたが、複数対設けることにより、より高出力の振動発電デバイスを提供することができる。以下に説明する第2の実施形態の振動発電デバイスは、そのように構成した場合の一例である。
【0099】
図13は、この第2の実施形態の振動発電デバイス10Mを、半導体基板1Mの基板面に直交する方向に当該基板面側から見た図である。この第2の実施形態の振動発電デバイス10Mも、半導体基板1Mに対して、第1の実施形態の振動発電デバイス10と同様の半導体製造プロセスを施すことで製造されるものである。すなわち、可動側部と固定側部とを形成する際のレジスト膜によるエッチングのマスクパターンが異なるのみで、その他はほぼ同様となる。なお、この例の振動発電デバイス10Mの大きさは、振動方向の長さは、例えば24mmとされ、振動方向に直交する方向の長さは、例えば15mmとされている。厚さ方向の大きさは、第1の実施形態と同様である。
【0100】
図13に示すように、この第2の実施形態においても第1の実施形態の振動発電デバイス10と同様に、可動側部2Mに対して、当該可動側部2Mの振動方向に直交する方向の両側に固定側部3AMと固定側部3BMとが配設される構成である。
【0101】
そして、可動側部2Mは、第1の実施形態の振動発電デバイス10の可動側部2と同様に、支持梁部4LM及び4RMで振動方向の両端が支持されて、
図13中の矢印ARで示す方向に振動するように構成されている。
【0102】
この第2の実施形態の振動発電デバイス10Mの可動側部2Mは、細長形状の可動主軸部201と、この可動主軸部201の長手方向のほぼ中央位置の両側から振動方向に直交する方向に伸びるアーム部202Uとアーム部202Dと、これらのアーム部202U及びアーム部202Dのそれぞれの左側と右側の両側から矢印ARで示す振動方向に延伸する複数の可動枝部203UL及び203URと可動枝部203DL及び203DRとを備える。
【0103】
この例の場合、アーム部202Uは、可動側部2Mの可動主軸部201から、固定側部3AMの方向に張り出すように構成されている。また、アーム部202Dは、可動側部2Mの可動主軸部201から、固定側部3BM側の方向に張り出すように構成されている。
【0104】
そして、可動枝部203UL及び可動枝部203URは、可動側部2Mの振動方向に、アーム部202Uの左側と右側の両側から、振動方向に直交する方向に互いに所定の間隔を空けて、
図13の例では3本ずつが延伸するように形成されている。また、可動枝部203DL及び可動枝部203DRは、可動側部2Mの振動方向に、アーム部202Dの左側と右側の両側から、
図13の例では3本ずつが延伸するように形成されている。
【0105】
一方、固定側部3AMは、この第2の実施形態においては、可動側部2Mの可動主軸部201と平行に設けられる固定主軸部301Aと、その長手方向の両端から可動主軸部201の方向に延伸されるアーム部302AL及びアーム部302ARを備える。そして、これらのアーム部302AL及びアーム部302ARは、可動側部2Mのアーム部202Uに対向する面から、矢印ARで示す振動方向に延伸する複数の固定枝部303AL及び固定枝部303ARを備える。
【0106】
この例の場合には、固定枝部303AL及び固定枝部303ARは、可動枝部203UL及び可動枝部203URの本数に合わせた3本ずつとされており、
図13に示すように、可動枝部203UL及び可動枝部203URと、固定枝部303AL及び固定枝部303ARとが交互に噛み合うように構成されている。
【0107】
また、固定側部3BMは、この第2の実施形態においては、可動側部2Mの可動主軸部201と平行に設けられる固定主軸部301Bと、その長手方向の両端から可動主軸部201の方向に延伸されるアーム部302BL及び302BRとを備える。そして、これらのアーム部302BL及びアーム部302BRは、可動側部2Mのアーム部202Dに対向する面から、矢印ARで示す振動方向に延伸する複数の固定枝部303BL及び固定枝部303BRを備える。
【0108】
この例の場合には、固定枝部303BL及び固定枝部303BRは、可動枝部203DL及び可動枝部203DRの本数に合わせて3本ずつとされており、
図13に示すように、可動枝部203DL及び203DRと、固定枝部303BL及び303BRとが交互に噛み合うように構成されている。
【0109】
なお、可動枝部及び固定枝部の数は、3本ずつではなく、1本または2本でもよいし、3本よりも多数とすることも可能であることは言うまでもない。
【0110】
図14(A)に、固定側部3AMの左側のアーム部302ALに形成されている固定枝部303ALと、可動側部2Mのアーム部202Uの左側に形成されている可動枝部203ULとの噛み合い状態を説明するための一部拡大図を示す。また、
図14(B)には、固定側部3AMの右側のアーム部302ARに形成されている固定枝部303ARと、可動側部2Mのアーム部202Uの右側に形成されている可動枝部203URとの噛み合い状態を説明するための一部拡大図を示す。
【0111】
なお、固定側部3BMの左側のアーム部302BLに形成されている固定枝部303BLと、可動側部2Mのアーム部202Dの左側に形成されている可動枝部203DLとの噛み合い状態、また、固定側部3BMの右側のアーム部302BRに形成されている固定枝部303BRと、可動側部2Mのアーム部202Dの右側に形成されている可動枝部203DRとの噛み合い状態は、
図14(A)及び
図14(B)と同様になる。そこで、ここでは、可動枝部203UL及び可動枝部203URと、固定枝部303AL及び固定枝部303ARとの関係の説明のみを行い、可動枝部203DL及び可動枝部203DRと、固定枝部303BL及び固定枝部303BRとの関係については、その説明は省略する。
【0112】
図14(A)に示すように、可動枝部203ULの、固定枝部303ALと対向し、振動方向に沿う方向の面それぞれには、第1の実施形態の可動側部2の突部23及び突部24と同様にして、突部204UL及び突部205ULが形成されている。一方、固定枝部303ALの可動枝部203ULに対向する面には、第1の実施形態の固定側部3Aの突部32Aに対応する突部304AL及び突部305ALが形成されている。
【0113】
そして、この例においても、可動側部2Mの可動枝部203ULに形成されている突部204UL及び突部205ULと、固定枝部303ALに形成されている突部304AL及び突部305ALとは、第1の実施形態において、
図2を用いて説明したのと同様の寸法関係で構成されている。すなわち、突部204UL及び突部205UL、突部304AL及び突部305ALの幅Wtは20μm、配列ピッチLは60μm、高さHは42.5μmとされ、突部204UL及び突部205ULの先端面と、突部304AL及び突部305ALの先端面との間の間隔の最小値gminは、5μmとされている。
【0114】
また、
図14(B)に示すように、可動枝部203URの、固定枝部303ARと対向し、振動方向に沿う方向の面それぞれには、同様にして、突部204UR及び突部205URが形成されていると共に、固定枝部303ARの可動枝部203URに対向する面には、突部304AR及び突部305ARが形成されている。そして、可動側部2Mの可動枝部203URに形成されている突部204UR及び205URと、固定枝部303ARに形成されている突部304AR及び305ARとは、可動側部2Mの可動枝部203ULに形成されている突部204UL及び205ULと、固定枝部303ALに形成されている突部304L及び305Lとの関係と同様に構成されている。
【0115】
なお、この場合に、固定側部3AMの固定主軸部301にも、固定枝部303ALの突部305AL及び突部305AL、また、固定枝部303ARの突部305AR及び突部305AR、と同様の突部305Mが形成されている。また、可動側部2Mの可動主軸部201にも、可動枝部203UL及び可動枝部203URの突部203UL及び203URと同様の突部が形成されている。
【0116】
なお、可動側部2の突部23,24の個数と、固定側部3A,3Bの突部32A,32Bの個数は、
図13及び
図14においては、作図の便宜上、少数となっているが、前述したように、その個数は、実際的には、より多数である。また、可動側部2の突部23,24と、固定側部3A,3Bの突部32A,32Bとは、
図13及び
図14においては、作図の便宜上、全て同一の高さを有するものとして示してあるが、実際上は、
図2に示したように、振動方向において高さが異なるものであることは言うまでもない。また、上述した第1の実施形態の変形例のように構成されていてもよい。
【0117】
ところで、一般に、この種の静電型の振動発電デバイスの場合、支持梁部4LM及び4RMの復元力と、可動側部2Mと固定側部3AM及び3BMとの間の静電力が同一方向に働くと、静電力により可動構造が制動されて動きにくくなる。
【0118】
これに鑑み、この第2の実施形態では、
図14(A)に示すアーム部202Uの左側の可動枝部203ULと固定側部3AMの左側の固定枝部303ALとの左側グループにおける突部204UL及び205ULと突部304AL及び305ALとの対向位相と、
図14(B)に示すアーム部202Uの右側の可動枝部203URと固定側部3AMの右側の固定枝部303ARとの右側グループにおける突部204UR及び205URと突部304AR及び305ARとの対向位相とが、静電力による影響が、左側グループと、右側グループとで互いに相殺されるように異なる構成とされている。
【0119】
この
図13の例では、配列ピッチLを1周期(360度)としたとき、左側グループと、右側グループとで90度位相が異なるように構成されている。すなわち、
図14(A)に示すように、左側グループの可動枝部203ULの突部204UL及び205ULと、固定枝部303ALの突部304AL及び305ALとが互いに正対するような状態であるときには、
図14(B)に示すように、右側グループの可動枝部203URの突部204UR及び205URと、固定枝部303ARの突部304AR及び305ARとは、正対せずに、90度ずれた状態となるように構成されている。
【0120】
なお、図示は省略するが、上述と同様にして、アーム部202Dの左側の可動枝部203DLと固定側部3BMの左側の固定枝部303BLとの左側グループにおける突部204DL及び205DLと突部304BL及び305BLとの対向位相と、アーム部202Dの右側の可動枝部203DRと固定側部3BMの右側の固定枝部303BRとの右側グループにおける突部204DR及び205DRと突部304BR及び305BRとの対向位相とが、同様にして、静電力による影響が、左側グループと、右側グループとで互いに相殺されるように異なる構成とされている。
【0121】
このように、この第2の実施形態の振動発電デバイス10Mにおいては、可動側部2Mの突部を、振動方向に2つのグループに分け、固定側部3AM及び固定側部3BMの突部との間の対向位相が、その2つのグループで互いに異なるようにしたことにより、可動側部2Mと固定側部3AM及び固定側部3BMとの間に働く静電力を、それらの2つのグループで逆方向に働かせるようにすることができ、可動側部2Mが静電力により制動されて、振動しづらくなる状態を軽減、あるいは振動を継続しなくなる状態を回避することができる。
【0122】
なお、上述の説明では、可動側部2Mの突部を、振動方向に2つのグループに分けたが、固定側部3AM及び固定側部3BMの突部を、振動方向に2つのグループに分けるようにしても勿論よい。
【0123】
図示は省略したが、この第2の実施形態の振動発電デバイス10Mにおいても、可動側部2Mの可動主軸部201の上には、錘が載せられるのは、第1の実施形態の振動発電デバイス10の場合と同様である。
【0124】
この第2の実施形態の振動発電デバイス10Mも、第1の実施形態の振動発電デバイス10と同様にして、可動側部2Mの両端側に電極25M及び26Mが形成されると共に、固定側部3AMには電極33AMが形成され、固定側部3BMには電極33BMが形成される。そして、この第2の実施形態の振動発電デバイス10Mの場合にも、
図9に示した充電回路により、蓄電用キャパシタ9に蓄電することができる。
【0125】
この場合に、この第2の実施形態においては、
図9に示す電極25に対応する電極25Mと、電極33Aに対応する電極33AMとの間には、複数の可動枝部203UL及び可動枝部203UR(可動主軸部201を含む)と複数の固定枝部303AL及び固定枝部303AR(固定主軸部301Aを含む)との対の間でそれぞれ生成される複数個の静電容量が並列に接続されていることになる。同様に、
図9に示す電極26に対応する電極26Mと、電極33Bに対応する電極33BMとの間には、複数の可動枝部203DL及び可動枝部203DR(可動主軸部201を含む)と複数の固定枝部303BL及び固定枝部303BR(固定主軸部301Bを含む)との対の間でそれぞれ生成される複数個の静電容量が並列に接続されていることになる。
【0126】
したがって、この第2の実施形態の振動発電デバイス10Mによれば、第1の実施形態と同様の作用効果を有する上に、振動発電の発電量を大きくすることができる広帯域の振動発電デバイスを実現することができる。
【0127】
そして、この第2の実施形態の振動発電デバイス10Mによれば、可動側部の突部と固定側部の突部との対向位相が互いに異なる2つのグループに分け、それら2つのグループ間で、可動側部と固定側部との間に働く静電力を互いに相殺するように構成したので、可動側部が静電力により振動しづらくなる状態を軽減、あるいは振動を継続しなくなる状態を回避することができる。
【0128】
[第2の実施形態の変形例]
上述の第2の実施形態の例においても、固定側部3BM側を省略して、可動側部2Mと、固定側部3AMとの組み合わせからなるものとしてもよい。
【0129】
また、可動側部2Mの可動主軸部201から振動方向に直交する方向に延伸するアーム部を、更に、振動方向の異なる位置に複数個設け、それぞれのアーム部について、上述と同様の構成となるようにするとともに、固定側部3AM及び3BMも、それぞれのアーム部に対応する部分を、上述と同様に構成することにより、より多数の可動枝部と固定枝部との対からなる構成とすることもできる。
【0130】
また、上述の第2の実施形態においては、可動側部と固定側部との間の静電力を相殺するようにするために、突部の対向位相が異なるグループを、可動側部の振動方向に配置するようにした。しかし、突部の対向位相が異なるグループを、振動方向に直交する方向に配置してもよい。すなわち、可動側部2Mと固定側部3AMとのグループと、可動側部2Mと固定側部3BMとのグループとで、突部の対向位相が異なるグループを構成してもよい。その場合には、第1の実施形態においても適用が可能であることは言うまでもない。
【0131】
そして、突部の対向位相の異なりは、上述の例の90度に限らず、可動側部と固定側部との間の静電力を相殺するようにする寄与する位相の異なりであればよい。
【0132】
[第3の実施形態]
上述の実施形態では、可動側部2の対向面21,22及び固定側部3A,3Bの対向面31A,31Bには、振動方向に直交する方向の高さHm及びHsが異なる複数個の櫛歯状の突部23,24及び32A,32Bをそれぞれ形成するようにした。しかし、このような櫛歯状の突部を形成することなく、可動側部2の対向面21,22及び固定側部3A,3Bの対向面31A,31Bの形状を、平面ではなく、可動側部2の振動方向の振幅の大きさに応じて、可動側部2の対向面21,22と、固定側部3A,3Bの対向面31A,31Bとの間隔が変化するように構成する。
【0133】
第3の実施形態は、この場合の構成例である。
図15は、この第3の実施形態の振動発電デバイスの要部を説明するための図で、上述の実施形態の可動側部2の対向面と固定側部3Aの対向面の形状の例を示す図である。
【0134】
すなわち、
図15の例においては、可動側部2の固定側部3Aとの対向面21Wと、固定側部3Aの可動側部2との対向面31AWとは、平面ではなく、矢印ARで示す可動側部2の振動方向において、
図15に示すように、同一の繰り返し周期の正弦波状の波形形状となるように形成されている。
【0135】
したがって、可動側部2の対向面21Wにおいては、波形形状において、固定側部3Aの対向面31AW側に突出する部分が凸部91となると共に、隣接する2個の凸部91の間が凹部92となる。また、固定側部3Aの対向面31AWにおいては、波形形状において、可動側部2の対向面21W側に突出する部分が凸部93となると共に、隣接する2個の凸部93の間が凹部94となる。
【0136】
そして、
図15に示すように、可動側部2が静止状態においては、可動側部2の対向面の凸部91と固定側部3Aの対向面31AWの凹部94とが対向すると共に、可動側部2の凹部92と固定側部3Aの凸部93とが対向するように構成されている。そして、この可動側部2が静止状態であるときの、可動側部2の対向面21Wと固定側部3Aの対向面31AWとの間隔は、上述の第1の実施形態の場合と同様に、比較的大きい間隔gsとなるように構成されている。そして、可動側部2が振動して、可動側部2の対向面の凸部91と固定側部3Aの対向面31AWの凹部94とが対向するようになったときの、可動側部2の対向面21Wと固定側部3Aの対向面31AWとの間隔は、上述の第1の実施形態の場合と同様に、微小な間隔gmin(<gs)となるように構成されている。
【0137】
この第3の実施形態の振動発電デバイスにおいては、可動側部2と固定側部3Bとの間も同様に構成されるのは勿論である。
【0138】
これにより、この
図15の例の振動発電デバイスにおいても、振動振幅が小さいときには、
図19の(式2)のdo=gsとなって、力係数(電気機械変換係数)Aが小さくなり、出力インピーダンスは大きくなる。また、振動振幅が大きいときには、
図19の(式2)のdo=gminとなって、力係数(電気機械変換係数)Aが大きくなり、出力インピーダンスは小さくなる。したがって、この第3の実施形態の振動発電デバイスにおいても、第1の実施形態の振動発電デバイス10と同様に、低加速度の状態から高加速度の状態まで、効率良く、出力電流を整流して、蓄電することができる。
【0139】
なお、この第3の実施形態を、上述の第2の実施形態に適用することができることは言うまでもない。
【0140】
[第4の実施形態]
以上の実施形態では、
図19の(式2)で表される力係数(電気機械変換係数)Aが、可動側部2と固定側部3A,3Bとの間の間隔doに応じて変化することに鑑み、可動側部2の振動振幅に応じて、この間隔doを、振動振幅が小さいときには大きく、振動振幅が大きいときには小さくするようにした。しかし、力係数(電気機械変換係数)Aを変化させる因子は、
図19の(式2)から分かるように、間隔doに限られず、エレクトレット電位Eであってもよい。
【0141】
第4の実施形態においては、固定側部3A,3Bまたは可動側部2のいずれか一方にエレクトレット膜を生成する際に、そのエレクトレット膜のエレクトレット電位Eを、可動側部2の振動方向において変化させることで、力係数(電気機械変換係数)Aを変化させるように構成する。
【0142】
図16は、この第4の実施形態の振動発電デバイスの要部を説明するための図で、上述の実施形態の可動側部2の対向面と固定側部3Aの対向面の部分の場合の例を示す図である。この第4の実施形態では、
図16の例に示すように、可動側部2の振動方向の長さは、固定側部3Aの振動方向の長さよりも短く構成する。そして、この例では、固定側部3Aにエレクトレット膜を形成するようにするが、そのエレクトレット電位Eを、可動側部2の振動方向において、
図16において、一点鎖線で示すように、変化させておくようにする。
【0143】
すなわち、可動側部2が静止状態においては、固定側部3Aの可動側部2と対向している中央部分のエレクトレット電位Eは低くくしておく。また、可動側部2が大きく振動したときに対向することとなる固定側部3Aの部分には、エレクトレット電位Eは高くしておく。
【0144】
なお、
図16の例では、可動側部2の対向面21と固定側部3Aの対向面31Aとには、突部23と突部32Aは形成されず、また、可動側部2の対向面21と固定側部3Aの対向面31aとの間の間隔は、一定の間隔、例えば間隔gminとする。
【0145】
また、可動側部2と固定側部3Bとの間の関係は、上述した可動側部2と固定側部3Aとの関係と同様に構成する。
【0146】
このように構成した第4の実施形態の振動発電デバイスにおいては、可動側部2の振動振幅が小さいときには、対向する固定側部3A,3Bにおけるエレクトレット電位Eは低いので、力係数(電気機械変換係数)Aは、(式2)から小さくなり、出力インピーダンスは大きくなる。一方、可動側部2の振動振幅が大きくなると、対向する固定側部3A,3Bにおけるエレクトレット電位Eは高くなるので、力係数(電気機械変換係数)Aは、(式2)から大きくなり、出力インピーダンスは小さくなる。
【0147】
したがって、この第3の実施形態の振動発電デバイスにおいても、第1の実施形態の振動発電デバイス10と同様に、低加速度の状態から高加速度の状態まで、効率良く、出力電流を整流して、蓄電することができる。
【0148】
なお、
図16の例では、可動側部2の対向面21と固定側部3Aの対向面31Aとには、突部23と突部32Aは形成されず、また、可動側部2の対向面21と固定側部3Aの対向面31aとの間の間隔は、一定の間隔としたが、可動側部2の対向面21と固定側部3Aの対向面31Aとにおいては、第1の実施形態や第1の実施形態の変形例、さらに、第3の実施形態のように構成してもよい。また、この第4の実施形態を、第2の実施形態に適用することも可能であることは言うまでもない。
【0149】
[その他の実施形態または変形例]
上述の実施形態の振動発電デバイスは、半導体製造プロセスにより製造されるMEMSデバイスの場合であったが、この発明による振動発電デバイスは、MEMSデバイスに限られるものではない。
【0150】
また、上述の第1の実施形態においては、可動側部及び固定側部に形成する突部(凸部)は、断面が矩形形状のものとしたが、突部(凸部)の形状は、これに限られるものではない。
【0151】
また、上述の実施形態では、振動発電デバイスを重力方向から見たときに、可動側部の左右方向に固定側部を配置するようにしたが、
図17に示すように、可動側部と固定側部とを上下方向に所定の間隔g(可動側部の振動により変化する場合有り)を空けて配置するようにしてもよい。
図17の例の場合、上側が可動側部2Cであり、下側が固定側部3Cとなるが、可動側部2Cの固定側部3Cに対する対向面21Cと、固定側部3Cの可動側部2に対する対向面31Cとは、上述した第1の実施形態、その変形例、あるいは第3の実施形態や第4の実施形態のいずれかと同様に形成するようにする。
【0152】
また、可動側部の振動方向は、直線方向ではなく、回転方向であってもよい。
図18は、そのように構成される振動発電デバイスの可動側部2Dと、固定側部3Dの一例である。すなわち、
図18に示すように、可動側部2Dと、固定側部3Dとは円板状に構成され、所定の間隔g(可動側部の振動により変化する場合有り)を空けて配置する。そして、可動側部2Dは、
図18において矢印で示すように、固定側部3Dとの間隔を保った状態で、その円板に直交する方向を回転中心軸Oz(円板の中心位置)として回転するように構成される。
【0153】
この
図18の例においても、可動側部2Dの固定側部3Dに対する対向面21Dと、固定側部3Dの可動側部2Dに対する対向面31Dとは、上述した第1の実施形態、その変形例、あるいは第3の実施形態や第4の実施形態のいずれかと同様に形成するようにする。ただし、振動方向が回転方向となるので、突部の高さの変化方向や、エレクトレット電位Eの変化方向などが回転方向となる点が、上述の実施形態とは異なる。