(58)【調査した分野】(Int.Cl.,DB名)
前記第2の方向は、前記マスク(16)が、それが前記照明系(12)によって照明される間にそれに沿って移動する走査方向(Y)に対応することを特徴とする請求項8に記載の照明系。
前記光学光変調器(52)と前記マスク平面(88)の間の光路に配置された散乱板(122)を含むことを特徴とする請求項3から請求項11のいずれか1項に記載の照明系。
前記空間光変調器(52)の前記光射出面(57)上の全ての物体区域(110)の少なくとも半分が、前記瞳形成ユニット(36)によって完全に照明されることを特徴とする請求項1から請求項12のいずれか1項に記載の照明系。
前記物体区域(110)上に前記第1のビーム偏向要素(40)によって生成される前記光点(94)は、該物体区域よりも大きいことを特徴とする請求項2に記載の照明系。
前記光学光変調器(52)の前記光射出面(57)上の前記物体区域(110)は、能動物体区域(110)内の点に関連付けられた投影光が前記光入射ファセット(75)のうちの前記1つの上に入射することを阻止することができるような該能動物体区域であり、
前記空間光変調器(52)は、受動物体区域内の点に関連付けられた投影光が前記光入射ファセット(75)のうちの前記1つの上に入射することを阻止することができないような該受動物体区域である別の物体区域(140)を含む、
ことを特徴とする請求項1から請求項14のいずれか1項に記載の照明系。
前記瞳形成ユニット(36)によって前記空間光変調器(52)上に生成される照射が、前記受動物体区域上よりも前記能動物体区域(110)上でより高いことを特徴とする請求項15に記載の照明系。
前記受動物体区域及び前記能動物体区域は、前記照明系(12)の光軸(OA)に関して互いに点対称に配置されることを特徴とする請求項15又は請求項16に記載の照明系。
前記光学光変調器(52)の前記光射出面(57)は、前記光入射ファセット(75)上に結像されない区域(130)によって分離された物体区域(110)の群(54−1、54−2)を含み、
前記対物系(58)は、前記物体区域(110)の前記像(110’)を該物体区域の該像(110’)が前記光学インテグレーター(60)上で当接するように組み合わせるように構成される、
ことを特徴とする請求項1から請求項14のいずれか1項に記載の照明系。
【背景技術】
【0002】
マイクロリソグラフィ(フォトリソグラフィ又は簡易的にリソグラフィとも呼ばれる)は、集積回路、液晶ディスプレイ、及び他の微細構造化デバイスの製作のための技術である。マイクロリソグラフィ処理は、エッチング処理との併用で基板、例えば、シリコンウェーハ上に形成された薄膜スタック内に特徴部をパターン化するのに使用される。製作の各層では、ウェーハは、深紫外(DUV)光のような放射線に敏感な材料であるフォトレジストで最初に被覆される。次いで、フォトレジストをその上に有するウェーハは、投影露光装置内で投影光に露光される。装置は、パターンを含むマスクをフォトレジスト上にフォトレジストがマスクパターンによって決定されるある一定の場所でのみ露光されるように投影する。露光後に、フォトレジストが現像され、マスクパターンに対応する像が生成される。次いで、エッチング処理は、パターンをウェーハ上の薄膜スタック内に転写する。最後に、フォトレジストが除去される。異なるマスクを用いたこの工程の反復は、多層微細構造化構成要素をもたらす。
【0003】
一般的に、投影露光装置は、光源と、光源によって生成された投影光でマスクを照明する照明系と、マスクを位置合わせするためのマスク台と、投影対物系と、フォトレジストで被覆されたウェーハを位置合わせするためのウェーハ位置合わせ台とを含む。照明系は、例えば、矩形又は湾曲スリットの形状を有することができるマスク上の視野を照明する。
【0004】
現在の投影露光装置では、2つの異なるタイプの装置の間で区別を付けることができる。一方のタイプでは、ウェーハ上の各ターゲット部分は、マスクパターン全体をこのターゲット部分の上に1回で露光することによって照射される。そのような装置は、一般的にウェーハステッパと呼ばれる。一般的にステップアンドスキャン装置又はスキャナと呼ばれる他方のタイプの装置では、各ターゲット部分は、マスクパターンを投影ビームの下で走査方向に徐々に走査し、一方、同時に基板をこの方向と平行又は逆平行に移動することによって照射される。ウェーハの速度とマスクの速度の比は、通常は1よりも小さく、例えば、1:4である投影対物系の倍率に等しい。
【0005】
「マスク」(又はレチクル)という表現は、パターン化手段として広義に解釈されるものとすることは理解されるものとする。一般的に使用されるマスクは、不透過性又は反射性のパターンを含み、例えば、バイナリ、交互位相シフト、減衰位相シフト、又は様々な混成マスクタイプとすることができる。しかし、能動マスク、例えば、プログラム可能ミラーアレイとして達成されるマスクも存在する。更に、プログラム可能LCDアレイを能動マスクとして使用することができる。
【0006】
微細構造化デバイスを生成するための技術が進歩すると、照明系に対しても絶えず高まる要求が存在する。理想的には、照明系は、マスク上の照明視野の各点を十分に定められた空間照射分布及び角度照射分布を有する投影光で照明する。角度照射分布という表現は、マスク平面内の特定の点に向けて収束する光束の全光エネルギが、光束を構成する光線の様々な方向の間でどのように分布されるかを表している。
【0007】
マスク上に入射する投影光の角度照射分布は、通常、フォトレジスト上に投影されるパターンのタイプに適応される。多くの場合に、角度照射分布は、パターン内に含まれる特徴部のサイズ、向き、及びピッチに依存する。最も一般的に使用される投影光角度照射分布は、従来照明設定、環状照明設定、及び二重極照明設定、及び四重極照明設定と呼ばれる。これらの表現は、照明系の瞳平面内の照射分布を意味する。例えば、環状照明設定を使用すると、瞳平面内で環状領域だけが照明される。従って、投影光の角度照射分布には小さい角度範囲しか存在せず、全ての光線は、マスク上に類似の角度で斜方入射する。
【0008】
当業技術では、望ましい照明設定を達成するためにマスク平面内の投影光の角度照射分布を修正するための様々な手段が公知である。最も単純な場合に、照明系の瞳平面に1又は2以上の開口を含む絞り(ダイヤフラム)が位置決めされる。瞳平面内の場所は、マスク平面のようなフーリエ関連視野平面内の角度に変換されるので、瞳平面内の開口のサイズ、形状、及び場所は、マスク平面内の角度照射分布を決定する。しかし、照明設定のいずれかの変更は、絞りの交換を必要とする。絞りの交換は、僅かに異なるサイズ、形状、又は場所を有する開口を有する非常に多くの個数の絞りを必要とすることになるので、照明設定を微調節することは困難になる。更に、絞りの使用は、光損失、従って、装置のスループットの低下を不可避にもたらす。
【0009】
従って、多くの一般的な照明系は、瞳平面の照明を少なくともある一定の範囲で連続的に変更することを可能にする調節可能要素を含む。多くの照明系は、瞳平面に望ましい空間照射分布を生成するために交換可能な回折光学要素を使用する。回折光学要素と瞳平面の間にズーム光学系と1対のアキシコン要素とが設けられる場合に、この空間照射分布を調節することが可能である。
【0010】
近年、瞳平面を照明するミラーアレイを使用することが提案されている。EP 1 262 836 A1では、ミラーアレイは、1000個よりも大きい微小ミラーを含むマイクロ電気機械システム(MEMS)として達成されている。ミラーの各々は、互いに対して垂直な2つの異なる平面内で傾斜させることができる。従って、そのようなミラーデバイス上に入射する放射線は、(実質的に)あらゆる望ましい半球方向に反射することができる。ミラーアレイと瞳平面の間に配置されたコンデンサーレンズは、ミラーによって生成された反射角を瞳平面内の場所に変換する。この公知の照明系は、複数のスポットで瞳平面を照明することを可能にし、各スポットは、1つの特定の微小ミラーに関連付けられ、かつこのミラーを傾斜させることによって瞳平面内で自由に移動可能である。
【0011】
類似の照明系は、US 2006/0087634 A1、US 7,061,582 B2、WO 2005/026843 A2、及びWO 2010/006687 A1から公知である。US 2010/0157269 A1は、マイクロミラーアレイがマスク上に直接結像される照明系を開示している。
【0012】
上述のように、通常、マスク上の全ての点は、少なくとも走査積分の後では同じ照射分布及び角度照射分布を有するように照明することが望ましい。マスク上の点が異なる照射で照明される場合に、通常、ウェーハレベル上で臨界寸法(CD)の望ましくない変化をもたらす。例えば、照射変動の存在下では、感光体上でマスク上の均一な線の像は、その長さに沿って照射変動を有する可能性もある。レジストの固定露光閾値の理由から、そのような照射変動は、線の像によって定められるべき構造の幅変動に直接的に変換される。
【0013】
角度照射分布がマスク上の照明視野にわたって変化する場合に、感光面上に生成される像の品質に対して同じく悪影響を有する。例えば、角度照射分布が完全には均衡でない場合に、すなわち、一方の側からその反対側からよりも多い光がマスク点上に入射する場合に、感光面が投影対物系の焦点面内に完全に配置されていないと、感光面上の共役像点が横方向にシフトされることになる。
【0014】
US 6,404,499 A及びUS 2006/0244941 A1は、照明視野内の空間照射分布を修正するために、横並びに配置されて走査方向と平行に位置合わせされた不透過性の指状絞り要素の2つの対向するアレイを含む機械的デバイスを提案している。互いに対向する絞り要素の各対は、これらの絞り要素の両端の間の距離が変更されるように走査方向に沿って変位させることができる。このデバイスが、対物系によってマスク上に結像される照明系の視野平面に配置される場合に、走査方向に沿った幅を交差走査方向に沿って変更することができるスリット形照明視野を生成することができる。照射は走査処理中に積分されるので、照明視野内の複数の交差走査位置に関して積分照射(時に照明投与量とも呼ばれる)を微調節することができる。
【0015】
残念ながら、これらのデバイスは、機械的に非常に複素で高価である。これは、これらのデバイスを通常は可動視野絞りのブレードが配置される視野平面に又はその直近に配置しなければならないという事実にも起因する。
【0016】
角度照射分布を視野依存方式で調節するのは、より困難である。これは、主として、空間照射分布が空間座標x、yのみの関数であるのに対して、角度照射分布が角度α、βにも依存するという理由からである。
【0017】
WO 2012/100791 A1は、照明系の瞳平面に望ましい照射分布を生成するために第1のミラーアレイが使用される照明系を開示している。複数の光入射ファセットを有する光学インテグレーターが、瞳平面の直近に配置される。すなわち、光入射ファセットの像は、マスク上で重ね合わされる。ミラーアレイによって生成される光点は、光入射ファセットの全面積よりも少なくとも5倍小さい面積を有する。従って、光入射ファセット上に可変光パターンを生成することができる。このようにして、照明視野の異なる部分の上に異なる角度照射分布を生成することができる。すなわち、例えば、照明視野内で与えられた時点にX二重極及びY二重極証明設定を生成することが可能である。
【0018】
異なる照明設定を有する各部分の境界が鮮明に境界付けられることを保証するために、デジタルミラーデバイス(DMD)として構成された第2のミラーアレイを使用することが提案されている。この第2のミラーアレイは、第1のミラーアレイによって照明され、かつ対物系によって光入射ファセット上に結像される。第2のミラーアレイのマイクロミラーのより大きい群を「オフ」状態にすることにより、鮮明な境界を有する光入射ファセット上の照射分布を生成することが可能である。
【0019】
しかし、第1のミラーアレイを用いて非常に多くの非常に小さい自由に移動可能な光点を生成するのは困難であるという結果になった。更に、この従来技術の照明系は、主として、照明視野内の異なる部分に完全に異なる照明設定を生成することに関するものである。この理由から、通常、光入射ファセットは完全には照明されず、単に部分的に照明される。
【発明の概要】
【発明が解決しようとする課題】
【0023】
本発明の目的は、空間照射分布と角度照射分布の両方を視野依存方式で調節することができるマイクロリソグラフィ投影露光装置の照明系を提供することである。これは、照明視野内の異なる点で照射分布と角度照射分布とを異なって調節することが可能であるべきであることを意味する。
【課題を解決するための手段】
【0024】
本発明により、上述の目的は、瞳平面と、投影光によって照明されるマスクを配置することができるマスク平面と、光学インテグレーターとを含む照明系によって達成される。光学インテグレーターは、瞳平面に位置する複数の2次光源を生成するように構成される。光学インテグレーターは、各々が2次光源のうちの1つに関連付けられる複数の光入射ファセットを含む。光入射ファセットの像は、マスク平面内で少なくとも実質的に重なる。照明系は、光射出面を有し、かつ空間分解方式で入射投影光を透過又は反射するように構成された空間光変調器と、投影光を空間光変調器上に向けるように構成された瞳形成ユニットと、光射出面上の物体区域の像が光入射ファセットのうちの1つと完全に一致するように空間光変調器の光射出面を光学インテグレーターの光入射ファセット上に結像する対物系とを更に含む。制御ユニットは、物体区域が瞳形成ユニットによって完全に照明され、かつ物体区域内の点に関連付けられた投影光が光入射ファセットのうちの1つの上に入射することが少なくとも部分的かつ可変的に阻止されるように瞳形成ユニット及び空間光変調器を制御するように構成される。
【0025】
本発明は、光入射ファセット上に照射分布の鮮明な縁部を生成するだけのために空間光変調器を使用する代わりに、光入射ファセット上に結像される物体区域が完全に照明される場合に、鮮明な縁部の必要がなくなるように照射分布を修正するためにこの空間光変調器を使用することもできるという認識に基づいている。
【0026】
上述の方式で制御される空間光変調器を使用することで、従来技術の照明系において空間照射分布を交差走査方向に沿って調節し、同時にマスクレベルにおいて視野依存方式で角度照射分布を柔軟に調節するのに使用される複雑な機械的デバイスを省略することができる。幾何学的光学流束は光学インテグレーターの前で小さいので、空間光変調器の光射出面を光入射ファセット上に結像する対物系は、極めて少数の好ましくは球面形のレンズを用いて実現することができる。
【0027】
照明系の全ての構成要素は、純粋に反射性とすることができるので、本発明は、原理的にEUV照明系に対して使用することができる。
【0028】
瞳形成ユニットは、光学インテグレーターの光入射ファセット上に結像される空間光変調器上の照射分布を定めるための回折光学要素を含むことができる。この照射分布の微調節に向けて、回折光学要素と空間光変調器の間の光路内にズーム光学系及び/又は1対のアキシコン要素を配置することができる。
【0029】
瞳形成ユニットが、第1の反射性又は透過性のビーム偏向要素の第1のビーム偏向アレイを含む場合に、空間光変調器上での照射分布のより柔軟な設定が可能である。各ビーム偏向要素は、ビーム偏向要素によって生成される偏向角を変更することによって可変である位置で空間光変調器上のスポットを照明するように構成される。
【0030】
空間光変調器は、透過タイプ又は反射タイプのものとすることができ、かつ入射光を減衰するか、完全に遮蔽するか、又は偏向するために使用することができる要素アレイを含むことができる。例えば、空間光変調器は、制御ユニットによって個々に制御することができる光学活性を有するLCDセルの2次元アレイを含むLCDパネルとして構成することができる。透過タイプの変調器では、物体区域は、通常はその裏側から照明される。
【0031】
一実施形態において、空間光変調器は、第2の反射性又は透過性のビーム偏向要素の第2のビーム偏向アレイを含む。各第2のビーム偏向要素は、入射光を光学インテグレーターに向けて誘導する「オン」状態と、入射光をいずれかの他の場所、例えば、光吸収面上に向ける「オフ」状態とにあることができる。そのような第2のビーム偏向アレイは、数百万個の個々のマイクロミラーを含むことができるデジタルミラーデバイスとして構成することができる。
【0032】
一般的に、物体区域に配置される第2のビーム偏向要素の個数が多い程、照射分布及び角度照射分布の視野依存調節の空間分解能は良好である。好ましくは、少なくとも10個、更に好ましくは、少なくとも50個の第2のビーム偏向要素が物体区域に配置される。
【0033】
一実施形態において、物体区域に配置された隣接する第2のビーム偏向要素の中心は、直線に沿って位置合わせされる。この直線の像は、光入射ファセットのうちの上記1つの境界線に対して角度αを形成し、αは、m=0,1,2,3,...である時にm・45°と明確に異なる。光入射面に対する第2のビーム偏向アレイのそのような斜方配置を使用すると、照明視野内で減衰率が異なる交差走査位置の間の距離が短縮される。
【0034】
例えば、第2のビーム偏向要素の境界は、第1の矩形格子で配置することができ、光入射ファセットの境界は、第2の矩形格子で配置することができる。次に、光入射ファセット上に形成される第1の矩形格子の像は、第2の矩形格子に対して角度αを形成する。
【0035】
マスクが、照明系によって照明される間に走査方向に沿って移動する場合に、マスク上の点での照射分布及び角度照射分布は、走査処理中に、すなわち、マスク上の点が照明視野を通って移動する間に照射分布及び角度照射分布を積分することによって得られる。この理由から、照射分布及び角度照射分布の視野依存を微調節することができることを保証するために、交差走査方向に沿って多くの個数の第2のビーム偏向要素を設けるが、走査方向に沿っては少数のビーム偏向要素しか設けなくても十分とすることができる。通常、これは、第1の方向に沿った物体区域の長さが、第1の方向と直交する第2の方向に沿った物体区域の長さよりも大きくなければならないことを意味する。次に、対物系は、|M|が第2の方向よりも第1の方向に沿って小さい倍率Mを有するアナモフィック対物系でなければならない。アナモフィック対物系は、細長の物体区域の像が細長ではなく、光入射ファセットの形状(通常は正方形)と一致することを保証する。
【0036】
アナモフィック対物系を使用する代わりに又はそれに加えて、瞳平面と一致する前側焦点面と第2の方向よりも第1の方向に沿って短い焦点距離fとを有するアナモフィックコンデンサーを使用することが可能である。
【0037】
一般的に、光入射ファセットが配置された平面と平行な対物系の物体平面内に第2のビーム偏向要素が配置される場合が好ましい。この配置は、第2のビーム偏向要素が、「オン」状態において入射光のゼロとは明確に異なる角度の偏向をもたらすように構成される場合に達成することができる。これに加えて又はこれに代えて、対物系は、物体側で非テレセントリックとし、像側でテレセントリックとすることができる。
【0038】
一般的に、第1のビーム偏向アレイによって物体区域上に生成される光点は、物体区域よりも大きくなる。しかし、本発明は、スポットが物体区域よりも小さい場合にも使用することもできる。
【0039】
第2のビーム偏向要素の間の間隙は、光学インテグレーターの光入射ファセットを通して最終的に照明視野上に結像されるので、この結像が照明視野内の空間照射分布及び角度照射分布の均一性を損なうことのないような対策を取らなければならない。この目的に対して、光学光変調器とマスク平面の間の光路内、好ましくは、視野平面の近くに散乱板を配置することができる。散乱板は、光入射ファセット上の照射分布を不鮮明にし、従って、照明視野内に暗線が発生しないことを保証する。
【0040】
光学光変調器の光射出面上の物体区域が、区域内の点に関連付けられた投影光が光入射ファセットのうちの1つの上に入射することを阻止することができるような能動物体区域であると考えられる場合に、空間光変調器は、区域内の点に関連付けられた投影光が光入射ファセットのうちの1つの上に入射することを阻止することができないような受動物体区域である別の物体区域を含むことができる。能動物体区域と受動物体区域とのそのような組合せは、光学光変調器によって能動物体区域内に生成される空間分解能が非常に高くなる場合に特に好適とすることができる。光学光変調器が、例えば、デジタルミラーデバイスとして構成される場合に、通常は光入射ファセットの個数が多いので、同じく莫大な個数のマイクロミラーを必要とすることになる。そのような莫大な個数のマイクロミラーを有するデジタルミラーデバイスは、未だ容易には利用可能でない可能性がある。この理由から、例えば、従来のデジタルミラーデバイスによって形成された小さめの能動物体区域と、これらの区域の間にある例えば平面ミラーとして達成される受動物体区域とで光学光変調器を組み立てることが好適である場合がある。そのような配置は、多くの場合に、全ての光入射ファセットではなく、そのうちの一部の上の照射分布だけを修正することしか必要ではないので有用である場合がある。
【0041】
極均衡を維持するために、瞳形成ユニットによって空間光変調器上に生成される照射は、受動物体区域よりも能動物体区域の上で高くすることができる。このより高い照射は、光が光入射ファセットに到達することを阻止することによって引き起こされる光損失を補償する。
【0042】
好ましくは、受動物体区域と能動物体区域は、照明系の光軸に関して互いに点対称に配置される。これは、マスク上の点に収束する光束のエネルギ均衡(テレセントリック性)を常に調節することができることを保証する。次に、光射出面の全面積の約半分を能動物体区域によって覆うことができ、他方の半分を受動物体区域によって覆うことができる。
【0043】
光学光変調器の光射出面が、光入射ファセット上に結像されない区域によって分離される物体区域の群を含む場合に、対物系は、物体区域の像が光入射ファセット上で当接するように、能動物体区域の像を組み合わせるように構成することができる。
【0044】
特に、対物系は、各第1の光学要素が物体区域のうちの1つの拡大像を中間像平面に形成する第1の光学要素の第1のアレイと、中間像平面を光入射ファセット上に結像する結像光学系とを含むことができる。
【0045】
本発明の主題はまた、a)光射出面を有し、かつ空間分解方式で入射投影光を透過又は反射するように構成され、光射出面が投影光によって完全に照明される物体区域を含む空間光変調器上に投影光の照射分布を生成する段階と、b)物体区域の像が光入射ファセットと完全に一致するように光射出面上の物体区域を光学インテグレーターの光入射ファセット上に結像する段階と、c)物体区域内の点に関連付けられた投影光が光入射ファセット上に入射することから少なくとも部分的に阻止されるように空間光変調器を制御する段階とを含むマイクロリソグラフィ投影露光装置の照明系を作動させる方法である。
【0046】
本発明の主題はまた、a)空間光変調器(52)上の物体区域(110)を完全に照明する段階と、b)物体区域(110)を光学インテグレーター(60)の光入射ファセット(75)上に結像する段階と、c)物体区域内の点に関連付けられた全ての光が光入射ファセット上に入射することを阻止する段階とを含むマイクロリソグラフィ投影露光装置の照明系を作動させる別の方法である。
【0047】
定義
本明細書では、いずれかの電磁放射線、特に可視光、UV光、DUV光、VUV光、及びEUV光、並びにX線を表す上で「光」という表現を使用する。
【0048】
本明細書では、線で表すことができる伝播経路を有する光を表す上で「光線」という表現を使用する。
【0049】
本明細書では、視野平面に共通の起点を有する複数の光線を表す上で「光束」という表現を使用する。
【0050】
本明細書では、特定のレンズ又は別の光学要素を通過する全ての光を表す上で「光ビーム」という表現を使用する。
【0051】
本明細書では、3次元空間内の物体の基準点の場所を表す上で「位置」という表現を使用する。通常、位置は、1組の3つの直交座標によって示される。従って、向きと位置は、3次元空間内の物体の配置を完全に表している。
【0052】
本明細書では、3次元空間内のいずれかの平面又は曲面を表す上で「面」という表現を使用する。面は、物体の一部とすることができ、又は通常は視野平面又は瞳平面の場合にそうであるように、物体から完全に分離されたものとすることができる。
【0053】
本明細書では、マスク平面又はマスク平面と光学的に共役なあらゆる他の平面を表す上で「視野平面」という表現を使用する。
【0054】
「瞳平面」という表現は、視野平面に対して(少なくとも近似的に)フーリエ関係が確立される平面である。一般的に、マスク平面内の異なる点を通過する周辺光線が、瞳平面内で交わり、主光線が光軸と交わる。当業技術で通例であるように、瞳平面が実際には数学的な意味で平面ではなく、若干湾曲しており、従って、厳密な意味では瞳面と呼ぶべきである場合であっても「瞳平面」とう表現を使用する。
【0055】
本明細書では、位置に依存しない特性を表す上で「均一」という表現を使用する。
【0056】
本明細書では、他の同一又は類似な光学ラスター要素と共に配置され、複数の隣接する光学チャネルのうちの1つに各々が関連付けられるいずれかの光学要素、例えば、レンズ、プリズム、又は回折光学要素を表す上で「光学ラスター要素」という表現を使用する。
【0057】
本明細書では、NAが開口数であり、aが照明視野面積である時に、積NA・aを増大させる光学系を表す上で「光学インテグレーター」という表現を使用する。
【0058】
本明細書では、2つの平面の間、例えば、視野平面と瞳平面の間にフーリエ関係を確立する(少なくとも近似的に)光学要素又は光学系を表す上で「コンデンサー」という表現を使用する。
【0059】
本明細書では、結像関係がその間に確立される複数の平面を表す上で「共役平面」という表現を使用する。共役平面の概念に関するより多くの情報は、E.Delano著、論文名「1次設計及び
図(First−order Design and the
Diagram)」、Applied Optics、1963年、第2巻第12号、1251〜1256ページに記載されている。
【0060】
本明細書では、視野平面内の位置への物理量のいずれかの関数依存性を表す上で「視野依存性」という表現を使用する。
【0061】
本明細書では、光が入射する実面又は虚面にわたって全照射がどのように変化するかを表す上で「空間照射分布」という表現を使用する。通常、空間照射分布は、x、yが面上の点の空間座標である時に関数I
s(x,y)によって表すことができる。
【0062】
本明細書では、光束の照射が、光束を構成する光線の角度に依存してどのように変化するかを表す上で「角度照射分布」という表現を使用する。通常、角度照射分布は、α、βが光線の方向を表す角座標である時に関数I
a(α,β)によって表すことができる。角度照射分布が視野依存性を有する場合に、I
aは、視野座標の関数、すなわち、I
a=I
a(α,β,x,y)にもなる。角度照射分布の視野依存性は、x、yにおけるI
a(α,β,x,y)のテイラー(又は別の適切な)展開の1組の展開係数a
ijによって表すことができる。
【0063】
以下に続く詳細説明を添付図面に関連付けて参照することで、本発明の様々な特徴及び利点をより容易に理解することができる。
【発明を実施するための形態】
【0065】
I.投影露光装置の基本構成
図1は、本発明による投影露光装置10の非常に簡略化した斜視図である。装置10は、例えば、エキシマレーザとして実現することができる光源11を含む。この実施形態において、光源11は、193nmの中心波長を有する投影光を生成する。他の波長、例えば、257nm又は248nmも考えられている。
【0066】
装置10は、光源11によって供給される投影光を以下により詳細に説明する方式で調整する照明系12を更に含む。照明系12から射出する投影光は、マスク16上で照明視野14を照明する。マスク16は、
図1に細線として略示す複数の小さい特徴部19によって形成されたパターン18を含む。この実施形態において、照明視野14は矩形の形状を有する。しかし、他の形状、例えば、リングセグメントの照明視野14も企図される。
【0067】
レンズL1からL6を含む投影対物系20が、照明視野14の範囲のパターン18を基板24によって支持された感光層22、例えば、フォトレジスト上に結像する。シリコンウェーハによって形成することができる基板24は、感光層22の上面が、投影対物系20の像平面に正確に位置するようにウェーハ台(図示せず)上に配置される。マスク16は、マスク台(図示せず)を用いて投影対物系20の物体平面に配置される。投影対物系20は、|β|<1である倍率βを有するので、感光層22上には照明視野14の範囲のパターン18の縮小像18’が投影される。
【0068】
投影中に、マスク16及び基板24は、
図1に示すY方向に対応する走査方向に沿って移動する。照明視野14は、次に、それよりも大きいパターン付き区域を連続的に結像することができるようにマスク16の上を走査する。基板24の速度とマスク16の速度の間の比は、投影対物系20の倍率βに等しい。投影対物系20が像を反転させない場合(β>0)には、
図1に矢印A1及びA2に示すように、マスク16と基板24とは同じ方向に沿って移動する。しかし、本発明は、マスクの投影中にマスク16及び基板24が移動しないステッパツールに対して使用することができる。
【0069】
II.視野依存の角度照射分布
図2は、別の例示的なパターン18を含むマスク16の拡大斜視図である。簡略化の目的で、パターン18は、Y方向に沿って延びる特徴部19のみを含むと仮定する。更に、Y方向に沿って延びる特徴部19は、感光層22上にX二重極照明設定を用いて最良に結像されると仮定する。
【0070】
図2では、光束に関連付けられた射出瞳26aを円で例示している。光束は、走査サイクル中の最初の時点で照明視野14のある一定のX位置に配置される視野点に向けて収束する。射出瞳26a内でX方向に沿って分離された2つの極27aが、投影光がこの視野点に向けて伝播する方向を表している。各極27a内に集中する光エネルギは等しいと仮定する。従って、+X方向から入射する投影光は、−X方向から入射する投影光と同じエネルギを有する。特徴部19がパターン18にわたって均一に分布されると仮定しているので、このX二重極照明設定がマスク16上の各視野点上に生成されるはずである。
【0071】
26bで表記している別の射出瞳は、走査サイクルの後の時点で照明視野14の別のX位置に配置される視野点に向けて収束する光束に関連付けられる。各極27b内に集中する光エネルギは、この場合にも等しい。しかし、極27bに関連付けられる光は、理想的な極27aに関連付けられる光の光円錐と比較して傾斜される。この傾斜は、視野点が同じ量の投影光を受光するが、投影光が視野点上に入射する方向が特徴部19を感光層22上に結像するのに理想的ではないことを意味する。
【0072】
26cで表記している更に別の射出瞳は、照明視野14内の更に別のX位置に位置付けられた点に関連付けられる。ここで、投影光が視野点上に入射する方向は、再び特徴部19を結像するのに理想的であると仮定する。従って、極27cに関連付けられる光円錐は、理想的な射出瞳26aに関連付けられる円錐と同じ円錐角及び向きを有する。しかし、極27cは均衡ではなく、すなわち、極27c内に集中する光エネルギは互いに異なる。従って、+X方向から入射する投影光は、−X方向から入射する投影光よりも低いエネルギを有する。
【0073】
以上により、射出瞳26aで表す理想的な角度照射分布は、照明視野14内の各X位置で得られるわけではないことが明らかになる。従って、角度照射分布は視野依存のものであり、すなわち、角度照射分布は、異なる視野点で異なる。
【0074】
視野依存性は、照明視野14の範囲でX方向だけではなくY方向に沿っても発生する可能性がある。次に、マスク16上の1つの点は、走査サイクル中に照明視野14を通過する間に異なる角度照射分布に露出される。Y方向(すなわち、走査方向)に沿った視野依存性が発生する場合に、特定の視野点に関する全体効果が、異なる角度照射分布を積分することによって得られることを考慮しなければならない。
【0075】
理想的な角度照射分布からの実角度照射分布の様々な更に別の視野依存偏差がある。例えば、いくつかの視野点に関連付けられる射出瞳内の極は、変形されるか、不鮮明になるか、又は望ましい不均一照射分布を持たない可能性がある。
【0076】
理想的な角度照射分布からの視野依存偏差が発生する場合に、一般的に、感光層22上に形成されるパターン像の品質に対して悪影響を有する。特に、装置10を用いて生成される構造の寸法が不用意に変化する場合があり、それによってこれらの構造を含むデバイスの機能が損なわれる可能性がある。従って、一般的に、照明視野14内の照明設定のあらゆる視野依存性を排除することが望ましい。
【0077】
しかし、時には角度照射分布の視野依存性を意図的に導入することが望ましい。例えば、投影対物系20又はマスク16が、感光層22上のパターン18の像に対して影響を及ぼす視野依存特性を有する場合に、この導入を好適とすることができる。例えば、製造公差、経年変化現象、又は不均一温度分布の結果として、投影対物系20の結像特性の変化が発生する可能性がある。マスク16の視野依存性は、多くの場合に、例えば、異なる向き又は寸法を有する特徴部の結果として発生する。多くの場合に、視野依存の悪影響は、角度照射分布の視野依存性を選択的に導入することによって首尾良く低減することができる。これらの効果のうちの一部は非常に急速に変化するので、時には1回の走査サイクル中に角度照射分布の視野依存性を変更することが望ましい。
【0078】
III.照明系の基本構成
図3は、
図1に示す照明系12を通る子午断面図である。明瞭化の目的で、
図3の図は大きく簡略化したものであり、正確な縮尺のものではない。特に、これは、異なる光学ユニットが1つ又は極めて少数の光学要素だけによって表されていることを意味する。実際には、これらのユニットは、有意に多くのレンズ及び他の光学要素を含むことができる。
【0079】
図示の実施形態において、光源11によって放出された投影光は、ビーム拡大ユニット32に入射し、ビーム拡大ユニット32は、拡大されてほぼ平行化された光ビーム34を出力する。この目的に対して、ビーム拡大ユニット32は、いくつかのレンズを含むことができ、又は例えばミラー装置として実現することができる。
【0080】
次いで、投影光ビーム34は、それに続く平面に可変空間照射分布を生成するのに使用される瞳形成ユニット36に入射する。この目的に対して、瞳形成ユニット36は、アクチュエータを用いて2つの直交軸の周りに個々に傾斜させることができる非常に小さいミラー40の第1のミラーアレイ38を含む。
図4は、2つの平行光ビーム42、44が、これらの光ビームが入射するミラー40の傾斜角に依存して異なる方向にどのように反射されるかを示す第1のミラーアレイ38の斜視図である。
図3及び
図4では、第1のミラーアレイ38は6×6個のミラー40のみを備え、実際には第1のミラーアレイ38は、数百個又は数千個にも達するミラー40を含むことができる。
【0081】
瞳形成ユニット36は、照明系12の光軸OAに対して両方共に傾斜した第1の平面48aと第2の平面48bとを有するプリズム46を更に含む。これらの傾斜面48a、48bでは、入射光は内部全反射によって反射される。第1の面48aは、入射光を第1のミラーアレイ38のミラー40に向けて反射し、第2の面48bは、ミラー40から反射された光をプリズム46の射出面49に向けて誘導する。従って、射出面49から射出する光の角度照射分布は、第1のミラーアレイ38のミラー40を個々に傾斜させることによって変更することができる。瞳形成ユニット36に関する更なる詳細は、US 2009/0116093 A1から集めることができる。
【0082】
瞳形成ユニット36によって生成された角度照射分布は、第1のコンデンサー50を用いて空間照射分布に変換される。他の実施形態では省略することができるコンデンサー50は、空間分解方式で入射光を反射するように構成されたデジタル空間光変調器52に向けて入射光を誘導する。この目的に対して、デジタル空間光変調器52は、ミラー平面57に配置されたマイクロミラー56の第2のミラーアレイ54を含み、
図3の拡大抜粋
図C及び
図5の拡大抜粋
図C’で最も明確に見ることができる。しかし、第1のミラーアレイ38のミラー40とは対照的に、第2のミラーアレイ54の各マイクロミラー56は、2つだけの安定した作動状態、すなわち、入射光を第1の対物系58を通して光学インテグレーター60に向ける「オン」状態と、入射光を光吸収面62に向けて誘導する「オフ」状態とを有する。
【0083】
第2のミラーアレイ54は、例えば、ビームプロジェクターにおいて一般的に使用される場合のように、デジタルミラーデバイス(DMD)として実現することができる。そのようなデバイスは、2つの作動状態の間で毎秒何千回も切り換えを行うことができる数百万個までのマイクロミラーを含むことができる。
【0084】
瞳形成ユニット36と同様に、空間光変調器52は、光軸OAと垂直に配置された入射面65と、両方共に照明系12の光軸OAに対して傾斜された第1の平面66a及び第2の平面66bとを有するプリズム64を更に含む。これらの傾斜面66a、66bでは、入射光は、内部全反射によって反射される。第1の面66aは、入射光を第2のミラーアレイ54のマイクロミラー56に向けて反射し、第2の面66bは、マイクロミラー56から反射された光をプリズム64の面68に向けて誘導する。
【0085】
第2のミラーアレイ54の全てのマイクロミラー56が「オン」状態にある場合に、第2のミラーアレイ54は、実質的に平面ビーム折り返しミラーの効果を有する。しかし、1又は2以上のマイクロミラー56が「オフ」状態に切り換えられた場合に、ミラー平面57から射出する光の空間照射分布が修正される。この修正は、マスク16上の角度光分布の視野依存の修正をもたらすために、以下により詳細に説明する方式に使用することができる。
【0086】
既に上述のように、プリズム64から射出した光は第1の対物系58を通過し、光学インテグレーター60上に入射する。第1の対物系58を通過する光はほぼ平行化されるので、第1の対物系58は、非常に低い開口数(例えば、0.01又は更に低い)を有することができ、従って、少数の小さい球面レンズを用いて実現することができる。第1の対物系58は、空間光変調器52のミラー平面57を光学インテグレーター60上に結像する。
【0087】
光学インテグレーター60は、図示の実施形態では光学ラスター要素74の第1のアレイ70と第2のアレイ72とを含む。
図6は、2つのアレイ70、72の斜視図である。各アレイ70、72は、X方向及びY方向それぞれに沿って延びる円柱レンズの平行アレイを支持板の各面に含む。2つの円柱レンズが交差する空間領域は、光学ラスター要素74を形成する。従って、各光学ラスター要素74を円柱曲面を有するマイクロレンズと見なすことができる。円柱レンズの使用は、特に光学ラスター要素74の屈折力がX方向に沿ってかつY方向に沿って異なることになる場合であれば有利である。通例のように光学インテグレーター60上の正方形の照射分布がスリット形照明視野14に変換されることになる場合には、異なる屈折力が必要である。以下では、空間光変調器52に向けて指向する光学ラスター要素74の面を光入射ファセット75と呼ぶ。
【0088】
第1及び第2のアレイ70、72それぞれの光学ラスター要素74は、第1のアレイ70の1つの光学ラスター要素74が第2のアレイ72の1つの光学ラスター要素74と1対1対応で関連付けられるように互いに前後に配置される。互いに関連付けられた2つの光学ラスター要素74は、共通軸に沿って位置合わせされ、光学チャネルを定める。光学インテグレーター60内では、1つの光学チャネル内で伝播する光ビームは、他の光学チャネル内で伝播する光ビームと交差又は重ならない。従って、光学ラスター要素74に関連付けられた光学チャネルは、互いから光学的に分離される。
【0089】
この実施形態において、照明系12の瞳平面76は、第2のアレイ72の背後に位置付けられるが、それは、同じくその前に配置することができる。第2のコンデンサー78は、瞳平面76と調節可能視野絞り82が配置された視野絞り平面80との間でフーリエ関係を確立する。
【0090】
視野絞り平面80は、光学インテグレーター60の光入射ファセット75内又はその直近に位置付けられたラスター視野平面84と光学的に共役である。これは、ラスター視野平面84内の各光入射ファセット75が、それに関連付けられた第2のアレイ72の光学ラスター要素74と第2のコンデンサー78とによって全体の視野絞り平面80上に結像されることを意味する。全ての光学チャネル内の光入射ファセット75上の照射分布の像が視野絞り平面80内で重なり、それによってマスク16の非常に均一な照明がもたらされる。マスク16の均一な照明を表す別の手法は、瞳平面76内の各光学チャネルによって生成される照射分布に基づくものである。この照射分布は、多くの場合に2次光源と呼ばれる。全ての2次光源は、異なる方向からの投影光で視野絞り平面80を共通に照明する。2次光源が「暗」である場合に、マスク16上には、この特定の光源に関連付けられる(小さい)方向範囲からは光が入射しない。従って、瞳平面76内に形成される2次光源を単純にオン及びオフに切り換えることにより、マスク16上に望ましい角度光分布を設定することができる。この切り換えは、瞳形成ユニット36を用いて光学インテグレーター60上の照射分布を変更することによって達成される。
【0091】
視野絞り平面80は、マスク16がマスク台(図示せず)を用いて配置されたマスク平面88上に第2の対物系86によって結像される。調節可能視野絞り82もマスク平面88上に結像され、かつ走査方向に沿って延びる照明視野14の少なくとも短い側辺を定める。
【0092】
瞳形成ユニット36及び空間光変調器52は、制御ユニット90に接続され、これは、次に、パーソナルコンピュータとして示す全体システム制御器92に接続される。制御ユニット90は、マスク平面88内の角度照射分布が均一であるか、又は望ましい視野依存角度照射分布が得られるように瞳形成ユニット36のミラー40及び空間光変調器52のマイクロミラー56を制御するように構成される。
【0093】
以下では、これがどのように達成されるかを説明する。
【0094】
IV.照明系の機能及び制御
1.瞳形成
図7は、瞳形成ユニット36が、空間光変調器52のマイクロミラー56上にどのように照射分布を生成するかを略示している。簡略化の目的で、プリズム46、64を示していない。
【0095】
第1のミラーアレイ38の各ミラー40は、それぞれのミラー40によって生成される偏向角を変更することによって可変である位置で空間光変調器52のミラー平面57上のスポット94を照明するように構成される。従って、ミラー40をその傾斜軸の周りに傾斜させることにより、スポット94をミラー平面57にわたって自由に移動することができる。このようにして、ミラー平面57上に様々な異なる照射分布を生成することができる。95において示すように、スポット94が部分的又は完全に重なることも可能である。次に、段階的な照射分布を生成することもできる。
【0096】
図8は、空間光変調器52内に含まれる第2のミラーアレイ54の
図5と類似の斜視図である。この図では、瞳形成ユニット36が、各々が正確に6×6個のマイクロミラー56にわたって延びる2つの正方形の極27の照射分布を第2のミラーアレイ54上に生成したと仮定している。極27は、X方向に沿って点対称に配置される。
【0097】
対物系58は、
図9に示すように、光学インテグレーター60の光入射ファセット75上に上述の照射分布の像を形成する。ここで、第2のミラーアレイ54上に形成される照射分布が光学インテグレーター60の光入射ファセット75上で同一に再現されるように(対物系58の倍率に起因して起こり得るスケーリングを除いて)、全てのマイクロミラー56が「オン」状態にあると仮定している。簡略化の目的で、第2のミラーアレイの隣接マイクロミラー56を分離する間隙の像を無視している。光入射ファセット75上に示す規則的な格子は、マイクロミラー56の境界の像を表すが、この像は、極27の外側には出現せず、
図9では、単に例示の理由で示したものである。
【0098】
2.視野依存性
光入射ファセット75は、ラスター視野平面84に位置するので、光入射ファセット75上の照射分布は、第2のアレイ72の光学ラスター要素74と第2のコンデンサー78とを通して視野絞り平面80上に結像される。
【0099】
次いで、この結像を
図3からの拡大抜粋図であって正確な縮尺のものではない
図10を参照して以下に説明する。この図では、光学インテグレーター60の光学ラスター要素74の2対のみと、第2のコンデンサー78と、中間視野絞り平面80とを略示している。
【0100】
以下では、単一光学チャネルに関連付けられる2つの光学ラスター要素74を第1のマイクロレンズ101及び第2のマイクロレンズ102と呼ぶ。時にマイクロレンズ101、102を視野ハニカムレンズ及び瞳ハニカムレンズと呼ぶ。特定の光学チャネルに関連付けられるマイクロレンズ101、102の各対は、瞳平面76内に2次光源106を生成する。
図10の上側半分では、それぞれ実線及び一点鎖線で示す収束光束L1a、L2a、及びL3aは、第1のマイクロレンズ101の光入射ファセット75の異なる点上に入射すると仮定している。2つのマイクロレンズ101、102、及びコンデンサー78を通った後に、各光束L1a、L2a、及びL3aは、焦点F1、F2、F3にそれぞれ収束する。
図10の上側半分からは、光線が光入射ファセット75上に入射する点と、これらの光線が視野絞り平面80(又はいずれかの他の共役視野平面)を通過する点とが光学的に共役であることが明らかになる。
【0101】
図10の下側半分は、平行化された光束L1b、L2b、及びL3bが、第1のマイクロレンズ101の光入射ファセット75の異なる領域上に入射する場合を示している。これは、光学インテグレーター60上に入射する光は通常は実質的に平行化されるので、より現実的な場合である。光束L1b、L2b、及びL3bは、第2のマイクロレンズ102に位置する共通の焦点Fにフォーカスされ、次いで、視野絞り平面80をここで再度平行化されて通過する。ここでもまた、光学的共役性の結果として、光束L1b、L2b、及びL3bが光入射ファセット75上に入射する領域が、視野絞り平面80内で照明される領域に対応することを見ることができる。当然ながら、マイクロレンズ101、102がX方向とY方向の両方に沿って屈折力を有する場合に、これらの考察は、X方向とY方向とで別個に適用される。
【0102】
従って、光入射ファセット75上の各点は、中間視野絞り平面80内(従って、マスク16上の照明視野14内)の共役点に直接的に対応する。すなわち、光入射ファセット75上の点上の照射に選択的に影響を及ぼすことができる場合に、照明系の光軸OAに対する光入射ファセット75の位置に依存する方向から照明視野14内の共役点上に入射する光線の照射に影響を及ぼすことができる。光軸OAから光入射ファセット75までの間の距離が大きい程、当該光線がマスク16上の点上に入射する際の角度は大きい。
【0103】
3.光入射ファセット上の照射の修正
照明系12では、光入射ファセット75上の点上の照射を修正するのに空間光変調器52が使用される。
図9では、各極27が、マイクロミラー56の像である複数の小区域にわたって延びていることを見ることができる。マイクロミラーが「オフ」状態に入れられた場合に、光入射ファセット75上の共役区域は照明されなくなり、その結果、この特定の光入射ファセット75に関連付けられる(小さい)方向範囲からは、投影光がマスク上の共役区域上に入射することがなくなる。
【0104】
これをそれぞれ空間光変調器52のマイクロミラー56及び光学インテグレーター60の光入射ファセット75の上面図である
図11a及び11bを参照してより詳細に以下に説明する。
【0105】
第2のミラーアレイ54上の太い点線は、このアレイのミラー平面57を各々が3×3個のマイクロミラー56を含む複数の物体区域110に分割する。対物系58は、光学インテグレーター60上に各物体区域110の像を形成する。以下ではこの像を像区域110’と呼ぶ。各像区域110’は、光入射ファセット75と完全に一致し、すなわち、像区域110’は、光入射ファセット75と同じ形状、サイズ、及び向きを有し、光入射ファセット75上に完全に重ね合わされる。各物体区域110は3×3個のマイクロミラー56を含むので、像区域110’も同じくマイクロミラー56の3×3個の像56’を含む。
【0106】
図11aでは、瞳形成ユニット36による投影光で完全に照明される8つの物体区域110が存在する。これら8つの物体区域110は、2つの極27を形成する。物体区域110のうちの一部において、黒色の正方形として表す1つ、2つ、又は3つ以上のマイクロミラー56dが、入射投影光が対物系58ではなく吸収体62に向けて誘導される「オフ」状態になるように制御ユニット90によって制御されたことを見ることができる。従って、マイクロミラーを「オン」状態と「オフ」状態の間で切り換えることにより、
図11bに示すように、投影光が光入射ファセット75上の像区域110’の範囲の対応する領域上に入射することを変更可能に阻止することができる。以下ではこれらの領域を暗スポット56d’と呼ぶ。
【0107】
図10を参照して上述したように、光入射ファセット75上の照射分布は視野絞り平面80上に結像される。
図12の上側部分に示すように、光入射ファセット75が1又は2以上の暗スポット56d’を含む場合に、関連付けられた光学チャネルによってマスク平面88内に生成される照射分布もまた、ある一定のX位置で暗スポットを有することになる。従って、マスク上の点が照明視野14を通過する場合に、全走査積分照射は、
図13のグラフに示すように、照明視野14内の点のX位置に依存することになる。照明視野14の中央にある点は、暗スポットを通過しないことで最も高い走査積分照射を受けることになり、照明視野14の長手端部にある点は、異なる程度まで低減された全照射を受け入れることになる。従って、空間光変調器52の1又は2以上のマイクロミラー56を選択的に「オン」状態から「オフ」状態に入れることにより、マスク16上の角度光分布の視野依存性を修正することができる。
【0108】
上記では、光入射ファセット75のうちの1つの上に結像される各物体区域110が3×3個のマイクロミラー56のみを含むと仮定しなければならなかった。従って、角度光分布の視野依存性を修正するのに使用することができる交差走査方向Xに沿った分解能は比較的粗い。各物体区域110の範囲のマイクロミラー56の個数を増加させると、この分解能を改善することができる。
【0109】
図14は、各物体区域110内に20×20個のマイクロミラー56が含まれる実施形態に関する光入射ファセット75のうちの1つの上面図を示している。次に、
図15に示すグラフに示すように、X方向に沿ってより複雑な走査積分照射分布をマスク16上で達成することができる。
【0110】
4.クリッピング
上記では、瞳形成ユニット36が、正確に4つの隣接物体区域110にわたって延びる第2のミラーアレイ54上の極27を照明すると仮定した。しかし、一般的に、鮮明な縁部を有するそのような照射分布を生成するのは困難になる。
【0111】
空間光変調器52は、照明されることになる物体区域110の外側に位置するマイクロミラー56を「オフ」状態に入れることによってミラー平面57内の不鮮明な照射分布をクリッピングするのに使用することができる。
【0112】
このクリッピングを第2のミラーアレイ54上の照射分布96を示す
図16及び
図17に例示している。ここでは、瞳形成ユニット36のミラー40によって生成される可動光点94が、4つの極を形成するように重ね合わされると仮定している。空間光変調器52の全てのマイクロミラー56が、
図16に示すように「オン」状態にある場合に、不鮮明な照射分布96が光入射ファセット75上に結像されることになる。望ましい物体区域110を取り囲むマイクロミラー56が、
図17に示すように「オフ」状態に入れられた場合に、これらのマイクロミラーは、極の区切る枠を形成し、従って、光入射ファセット上に強度分布の鮮明な縁部を生成する。
【0113】
5.相対回転
これまでに記述した実施形態において、マイクロミラー56は、物体区域110の境界と平行に位置合わせされると仮定した。マイクロミラー56によって形成される矩形格子は、次に、光入射ファセット75によって形成される矩形格子と平行である。それによって
図13及び
図15に示すように、マイクロミラー56の1つの「列」に沿った照射が常に均一である照射分布がもたらされる。従って、光入射ファセット75上に階段状のものに限った照射分布を生成することができる。
【0114】
時には、階段状のものではなく、傾斜部分を含む照射分布を生成することが望ましい。この照射分布は、
図18に示すように2つの矩形格子が互いに平行に配置されず、角度αを有する場合に達成することができる。ここでは、マイクロミラー56の像56’は、光入射ファセット75の側辺と角度αを形成する格子114を形成する。次に、隣接マイクロミラー56の中心は、光入射ファセット75の境界線に対して同じ角度αを形成して像を有する直線116に沿って位置合わせされる。この角度αが、m=0,1,2,3,...である時にm・45°と明確に異なる場合に、照射分布は、
図13及び
図15に示すような階段状分布の形状を持たないことになる。
【0115】
図19は、
図18に示す回転された配置に関してX方向に沿って走査積分された照射分布を示すグラフである。
図18には、いくつかの特定のX位置を破線に示している。角度αが、m=0,1,2,3,...である時にm・45°と明確に異なる場合には、劣化が軽減し、それによってより多くの異なるX位置で望ましい減衰を達成することができる。言い換えれば、以上により、角度照射分布の視野依存性を修正するのに利用可能なX方向に沿った分解能を実質的に高めることができる。
【0116】
6.間隙−横方向変位
上述のように、通常、第2のミラーアレイ38の隣接マイクロミラー56の間に小さい間隙が形成されることは不可避である。光入射ファセット75上、更にマスク16上にもこれらの間隙の像が形成される。これらの像が交差走査方向Xと平行に延びる場合に、これは、走査作動からもたらされる積分効果に起因して殆ど心配はない。しかし、走査方向Yと平行に延びる暗線は、積分効果によって補償することはできないと考えられる。
【0117】
図20aは、間隙の像を118’で表記した光入射ファセット75のうちの1つの上面図を上側部分に示している。
図20aの下側部分にあるグラフは、この特定の光入射ファセット75によってマスク平面88内に生成される交差走査方向Xに沿った照射分布を示している。全ての光入射ファセット75が同じX位置に暗線120を生成することになる場合に、これらの位置では投影光がマスク16上の点に到達しないことになる。
【0118】
図20b及び
図20cは、間隙像118’が交差走査方向Xに沿って異なる度合で横方向に変位した他の光入射ファセット75を示している。その結果、これらの図の下側部分に示す照射分布内の暗線120も横方向に変位される。各光学チャネルによって生成される照射分布は、マスク平面88内で重ね合わされるので、暗線120は、
図21に示すように平均化される。光入射ファセット75の個数が多い程、更に暗線120が小さい程、マスク平面88内の照射分布I(x)は均一な分布に近づく。
【0119】
6.間隙−散乱板
これに代えて又はこれに加えて、間隙像118’によってマスク平面88上に引き起こされる暗線を回避するために、光学光変調器52とマスク平面88の間の光路内に散乱板122を配置することができる。散乱板122の適切な位置は、光学光変調器52と対物系58の間、対物系58と光学インテグレーター60の間、又は視野絞り平面80の近くである。
【0120】
図22は、空間光変調器52のいくつかのマイクロミラー56と、対物系58と、これらの間に配置された散乱板122とを示す略子午断面図である。2つの隣接マイクロミラー56の間の間隙118が幅dを有すると仮定し、散乱板122と空間光変調器52の光射出面57との間の軸線方向距離をbで表記している。散乱板122の固有散乱角βが約d/bである場合に、光入射ファセット75上に形成される間隙118の像は十分に不鮮明である。散乱角βがd/bよりも有意に大きい場合に、照射分布及び角度照射分布の視野依存性に対する望ましい空間分解能は低下する。散乱角βが過度に小さい場合に、間隙の像は、光入射ファセット75上で依然として顕著であることになる。
【0121】
7.矩形物体区域
上述の実施形態において、走査方向Yに沿ったマイクロミラー56の個数と交差走査方向Xに沿ったマイクロミラー56の個数とは等しいと仮定した。従って、正方形のマイクロミラー56の矩形格子は、光学インテグレーター60の正方形の光入射ファセット75内に完全に嵌り込む。
【0122】
交差走査方向Xに沿ったマイクロミラー56の個数N
Xは、照射分布及び角度照射分布の視野依存性を調節するのに利用可能な分解能を決定する。この個数は、可能な限り多くなければならない。
【0123】
走査方向Yに沿ったマイクロミラー56の個数N
Yは、走査作動によって引き起こされる積分効果に起因して有意に少ない場合がある。例示的には、走査方向Yに沿って隣接する複数の光学チャネルは、走査サイクル中にマスク16上の点上の照射の低下に寄与することができる。これは、交差走査方向Xに沿って隣接する光学チャネルには当て嵌まらない。
【0124】
これらの要件は、物体区域110が、交差走査方向Xに沿った長さが走査方向Yに沿った物体区域の長さよりも大きい(例えば、2倍、好ましくは、少なくとも5倍大きい)十分に矩形である場合があることを示唆している。マイクロミラー56が方向XとYとに沿って等しい寸法を有すると仮定すると、上述のことは、交差走査方向Xに沿ったマイクロミラー56の個数N
Xが走査方向Yに沿った個数N
Yよりも多いことを意味する。
【0125】
矩形物体区域110が、正方形光入射ファセット75上に結像されることになる場合に、対物系58はアナモフィックのものでなければならない。より具体的には、倍率Mの絶対値が、走査方向Yよりも交差走査方向Xに沿って小さく、すなわち、|M
X|<|M
Y|である必要がある。これを
図23に例示しており、この図では、単一矩形物体区域110と光学ラスター要素74の光入射ファセット75との間に対物系58の2つの円柱レンズ124、126が配置されている。交差走査方向Xに沿った物体区域110の長さがL
Xであり、走査方向Yに沿った長さがL
Yである場合に、|M
X|<|M
Y|は、L
Y/L
Xに等しくなければならない。
【0126】
類似の結果は、対物系58ではなく、それに続くコンデンサー78が、その焦点距離fがX方向とY方向で異なるようにアナモフィックのものである場合に達成される。対物系58が回転対称であり、従って、M
X=M
Yである場合に、光入射ファセット75上の照射分布は、物体区域110と同じアスペクト比L
Y/L
Xを有する矩形になる。次に、この矩形照射分布は、視野絞り平面80及びそれに続くマスク平面88内で正方形照射分布が得られるようにアナモフィックコンデンサー78によって拡大される。この手法は、方向X、Yに沿って異なるコンデンサーの焦点距離を光学ラスター要素74の屈折力によって補償しなければならないので、光学インテグレーター60の再設計を必要とする場合がある。
【0127】
8.ミラー平面の配置
通常は、投影光の主光線が光学インテグレーター60上に垂直に入射する場合が好ましい。次に、対物系58によって光入射ファセット75上に結像されるミラー平面57も、
図24に示すように光軸OAと垂直に配置しなければならない。マイクロミラー56と光入射ファセット75とのそのような平行配置では、マイクロミラー56は、それらが「オン」状態にある場合に、ゼロとは明確に異なる偏向角を生成しなければならない。これは、全てのミラー面が、それらが「オン」状態にある場合に単一平面に配置される従来のデジタルミラーデバイス(DMD)とは異なる。
【0128】
これに加えて又はこれに代えて、第2のミラーアレイ54及び光入射ファセット75は、対物系58の物体視野及び像視野それぞれの軸外領域に配置することができる。
図25に示すように、次に、物体側ではテレセントリックではないが、像側でテレセントリックであるような対物系58を使用することが可能である。これは、物体側で光軸OAとある角度を形成する主光線が、依然として像側では光軸OAと平行であることを意味する。
【0129】
9.物体区域のグループ分け
各物体区域110内のマイクロミラー56の個数、更に光学チャネルの個数(従って、光入射ファセット75の個数)が多くなる場合に、第2のミラーアレイ54内のマイクロミラー56の全数が莫大になる可能性がある。そのような莫大な個数のマイクロミラー56を含む単一の第2のミラーアレイ54を設けることは困難である可能性があるので、第2のミラーデバイスをいくつかのサブユニットに分割するように考えられている。より具体的には、第2のミラーアレイ54は、光入射ファセット上に結像されない暗区域(すなわち、投影光が射出しない区域)によって互いから分離されたいくつかの物体区域群から組み合わせることができる。各群は、単一デバイス、例えば、デジタルミラーデバイス(DMD)として実現することができる。
【0130】
図26は、上述の実施形態による第2のミラーアレイ54及び対物系58を通る略子午断面図である。第2のミラーアレイ54は、各々がデジタルミラーデバイス(DMD)として実現される2つの群54−1、54−2を含むと仮定している。各群54−1、54−2は、複数のマイクロミラー56にわたって延びる3つの物体区域110を含む。2つの群54−1、54−2は、吸収性を有して瞳形成ユニット36がその上に投影光を向けてはならない暗区域130によって分離される。
【0131】
対物系58は、物体区域110の像110’をそれらが光学インテグレーター60上で少なくとも実質的に継ぎ目なく当接するように組み合わせるように構成される。光学インテグレーター60上では、各像区域110’は、光入射ファセット75のうちの1つと完全に一致する。この目的に対して、対物系58は、第1のレンズ134のアレイを用いて中間像平面132内に物体区域110の拡大像を生成する。対物系58は、中間像平面132に配置された第2のレンズ136のアレイを更に含む。次に、共通の結像光学系138は、これらの群の拡大像が既に当接している中間像平面134を光学インテグレーター60の光入射ファセット75上に結像する。このようにして、群54−1、54−2の間の暗区域130が対物系58によって光学インテグレーター60上に結像されることはない。
【0132】
10.能動区域及び受動区域
全ての光入射ファセット75上の光照射分布を修正することができるように莫大な個数のマイクロミラー56を設ける代わりに、全部ではなく、一部の光入射ファセット75のみの上の光照射分布を修正するように考えることができる。
【0133】
この手法を第2のミラー54の上面図である
図27に例示している。各々が複数のマイクロミラー56を含む少なくとも1つ、好ましくはいくつかの物体区域110を含む群54−1から54−6が、ミラー平面57内に配置される。この実施形態においても、各群は、デジタルミラーデバイス(DMD)として実現することができる。以下では、物体区域110を能動物体区域と呼ぶ。
【0134】
群54−1から54−6の外側にある区域全体は、群54−1から54−6が受け取られる開口部142が設けられた平面反射面140として構成される。反射面140は、光入射ファセット75上に同じく結像されるが、空間光変調が不可能である受動物体区域の組合せとして形成される。従って、第2のミラーアレイ54全体は、ある一定の部分(すなわち、群54−1から54−6が配置された部分)を個々に制御することができる平面ミラーの効果を有する。
【0135】
この手法は、通常は補正目的で全ての光入射ファセット75上の照射分布を修正する必要があるわけではないことを利用する。例えば、二重極照明設定の場合の極均衡の補正は、一方の極内の照射を低減することしか必要とせず、他方の極内の照射分布はそのままに留まることができる。この理由から、群54−1から54−6は、光軸OAに関して点対称に配置される。次に、あらゆる任意の極配置に関して、極の一方によって照明される群内に含まれる能動物体区域110を用いて視野依存方式で照射を低減することができる。
【0136】
この関連において、能動物体区域を有する群を照明する極内により多くの投影光を集光することが好適である場合がある。次に、この極は、照射分布及び/又は角度照射分布の望ましい視野依存補正を実施するために使用することができる。そのような補正に不可避に関わっている光損失(小さくはあるが)は、極の初期の不均衡な照明を補償する。
【0137】
図27では、上述のことを2つの極27a、27bに対して例示している。第3の群54−3に位置する方の極27aは、受動区域140内にある他方の極27bよりも明るい。
【0138】
11.回折光学要素及びLCD
図28は、照明系12の代替実施形態の
図3と類似の子午断面図である。この照明系では、瞳形成ユニット52は、回折光学要素142と、ズーム光学系144と、1対のアキシコン要素146、148とによって置換される。
【0139】
この実施形態における空間光変調器52は、制御ユニット90によって個々に制御することができる光学活性を有する微小LCDセルの2次元アレイを含むLCDパネルによって形成される。光源11によって生成される投影光が十分に偏光されない場合に、空間光変調器52の前の光路内に追加の偏光子を挿入することができる。
【0140】
当然ながら、例えば、回折光学要素142が第2のミラーアレイ54と共に空間光変調器52として使用されるように、
図3に図示の実施形態と
図28に図示の実施形態とを異なる手法で組み合わせることができる。
【0141】
V.重要な方法段階
ここで、本発明の重要な方法段階を
図29に示す流れ図を参照して要約する。
【0142】
第1の段階S1において、空間光変調器上の物体区域が完全に照明される。
【0143】
第2の段階S2において、物体区域が、光学インテグレーターの光入射ファセット上に結像される。
【0144】
第3の段階S3において、物体区域内の点に関連付けられた全ての光は、光入射ファセット上に入射することが阻止される。