【実施例】
【0047】
以下の実施例においては、別段の記述のないかぎり、特性は、抵抗率が中程度(8〜12Ωcm)の単晶シリコンウェハー基材上に堆積された試料膜から得たものである。当該研究において、CVD堆積は、低圧化学気相成長(LPCVD)水平炉またはATV PEO612炉を用いて実施された。前駆物質は、前駆物質材料のための蒸気圧力に基づいて調整されたライン温度および蒸気引抜きを用いて炉に送出された。この研究のために使用した原子層成長のツールは、加熱した前駆物質の送出のための環境的オーブンが取付けられたR&D設計の水平管形炉である。システムは、室温から700℃まで堆積を実施することができる。全てのプラズマベースの堆積は、TEOSプロセスキットを用い、Advanced Energy 2000無線周波数(RF)発生器の付いた200mmのDXZチャンバ内でApplied Materials Precision 5000システム上で実施された。
【0048】
以下の実施例において、誘電体膜の厚みおよび光学的特性、例えば屈折率は、例えばFilmTek 2000 SEエリプソメータ上など、標準的反射率測定法または偏光解析法測定システムを用いて、および周知のデータフィッティング技術を用いて実施された。
【0049】
膜の化学組成の特徴づけは、マルチチャンネルプレート検出器(MCD)およびAl単色X線源が装備されたPhysical Electronics 5000 Versa Probe XPS Spectrometerを用いて達成される。XPSデータはAlK
αX線励起(25mAおよび15kV)を用いて収集される。低解像度探索スペクトルは、117eVの通過エネルギー、50ミリセカンドのドウエル時間そして1.0eV/ステップで収集される。高解像度領域スペクトルは、23.5eVの通過エネルギー、50msecのドウエル時間、0.1eV/ステップで収集される。分析領域は、45°の取り出し角で100μmである。定量的元素分析は、高解像度領域スペクトルからのピーク面積を測定し、伝達関数修正された原子感度因子を適用することによって、決定された。データ収集にはPHI Summitソフトウェアが使用され、データ分析にはCasa XPSソフトウェアが使用される。エッチング速度は、203nmのSiO
2/Siに対して較正され、およそ120Å/分である。
【0050】
エッチング試験は、緩衝酸化物エッチング(「BOE」)を形成するため、水中の40%NH
4F6部分と水中49%HF水溶液1部分の体積比を有する6:1の緩衝酸化物エッチング溶液中で実施される。例示的誘電体膜を30秒間HF溶液中に入れ、その後脱イオン(DI)水中で洗い流し、乾燥させてから、エッチング中の材料損失を再度測定する。膜が完全にエッチングされるまで、プロセスを反復する。その後、エッチング時間対エッチング済み厚みの勾配からエッチング速度を計算する。膜を、比較用酸化ケイ素膜と共に、エッチング前後の膜表面を横断する3つの異なる点におけるそれらの厚みについて測定する。
【0051】
DTGS KBR検出器およびKBrビームスプリッタが備わったThermo Nicolet Nexus 470システムまたはそれに類するシステムを用いて、ウェハー上でフーリエ変換赤外分光法(FTIR)データを収集した。類似した媒体抵抗率のウェハー上で背景スペクトルを収集して、スペクトルからCO
2と水を削除した。典型的に、4cm
-1の解像度での32回の走査を収集することにより、4000〜400cm
-1の範囲内でデータを得た。全ての膜を一般に基準線補正し、500nmの膜厚みに強度を正規化し、対象のピーク面積および高さを決定した。
【0052】
各試料膜の誘電定数は、ASTM規格D150−98にしたがって決定された。例えばMDC 802 B-150 Mercury Probeを用いて測定したC−V曲線から、誘電定数kを計算する。これは、試料を保持し測定すべき膜上に電気接点を形成するプローブステージ、Keithley 236ソースメータおよびC−V測定用のHP4284A LCR計で構成されている。比較的低い電気抵抗率(0.02ohm−cm未満のシート抵抗)を有するSiウェハーが、C−V測定用の膜を堆積するために使用される。膜に対する電気接点を形成させるために、前記接点モードが使用される。液体金属(水銀)がタンクからウェハーの表面まで薄い管を通して押し出され、2つの導電性ある接点を形成する。接点面積は、水銀を押出した管の直径に基づいて計算される。このとき、誘電定数は、k=キャパシタンス×接点面積/膜厚という公式から計算される。
【0053】
実施例1:ジ−tert−ブトキシシラン(DTBOS)を用いた化学気相成長による酸化ケイ素膜の堆積
前駆物質DTBOSおよび酸素源としての酸素を用いて、例示的酸化ケイ素膜を堆積した。各膜についての堆積条件は表1に提供されている。各膜の特性は、表2に提供されている。
【0054】
【表1】
【0055】
【表2】
【0056】
炭素および窒素などの元素を含まない高均一性、高純度膜である実施例1に由来する例示的膜の1つの典型的XPSが、
図1に示され、異なる元素の組成も表3に列挙されている。表1および表3の両方からわかるように、炭素または窒素のいずれも膜中に検出されていない。
【0057】
【表3】
【0058】
【表4】
【0059】
実施例2:膜の厚み均一性
本明細書中で記述されている方法および組成を用いて形成された窒素を含まない二酸化ケイ素膜は、エリプソメータを用いてその厚みが測定されている。現在利用可能な方法を用いて堆積された窒素二酸化ケイ素膜の低い均一性とは対照的に、本発明で記述している方法を用いて堆積された膜は、基材(またはウェーハ)内部で膜均一性の大幅な改善を示す。前記発明を用いた膜と既存の方法を用いた膜の間の膜厚均一性の比較が、
図2に提供されており、図中、X軸はウェハー基材における測定位置を表わし、y軸は膜の平均厚みからの各点における厚みの偏差を表わす。
図2から、本明細書中で記述されている方法を用いて堆積された膜が、その他の膜に比べてウェハー基材全体にわたってはるかに均一性が高いことがわかる。
薄膜の厚み均一性に関して一般に使用される公式、すなわち
均一性=(最大厚み−最小厚み)/(2
*平均)
*100%
【0060】
本明細書中で記述されている方法を用いて形成された膜の厚み均一性は、表4で提供されている。表4の結果は、本明細書中で記述されている方法からの膜均一性が、既存の方法(前駆物質)を用いて形成された膜よりも10倍超優れていることを示している。
【0061】
【表5】
【0062】
実施例3:Kおよび誘電定数
本明細書中で記述されている方法を用いて形成された酸化ケイ素膜の誘電定数は、
図3に示されたC−Vプロットから導出される。膜の公知の厚みおよび使用された水銀プローブの接触面積について、膜の誘電定数は4.47であることが分かる。
【0063】
実施例4:異なるプロセス条件の下でのジ−tert−ブトキシシラン前駆物質およびテトラエチルオキシシランを用いたプラズマCVDにより堆積された膜の比較
以下の実施例においては、別段の記述のないかぎり、抵抗率が中程度(8〜12Ωcm)の単結晶シリコンウェハー基材上に堆積された試料膜から特性を得た。堆積温度は200、300および400℃であった。
【0064】
表5は、前駆物質つまりジ−tert−ブトキシシラン(DTBOS)および比較用前駆物質テトラエチルオキシシラン(TEOS)を比較するのに使用された3つの異なる加工条件のまとめを提供している。3つの異なる加工条件には、BL−1、BL−2およびBL−3と標識されている。
【0065】
【表6】
【0066】
表6は、BL1条件についてのTEOSとDTBOSのK値、堆積速度およびウェットエッチング速度の比較を提供する。DTBOSの堆積速度は、同じ前駆物質体積流量についてTEOSよりも高い。このことは、DTBOSがPECVD堆積に関してTEOSよりも効率が良い場合があることを示している。さらに、DTBOS堆積膜のWERは、TEOS堆積膜のものと等しいかまたはそれ以上である。このことは、DTBOS前駆物質を用いて堆積されたSiO
2膜の密度が、同等かまたは優れていることを暗示している。
【0067】
【表7】
【0068】
表7は、BL2加工条件を用いたTEOS堆積膜およびDTBOS堆積膜のK値、堆積速度およびウェットエッチング速度の比較を提供する。DTBOSの堆積速度は、同じ前駆物質体積流量についてTEOSよりも高い。このことは、PECVD堆積に関してDTBOS前駆物質の効率の方が高いことを証明している。しかしながら、WERは、TEOR膜のものと等しいかまたはそれ以上である。このことは、DTBOSから形成されたSiO
2膜の密度が同等かまたは優れていることを暗示している。
【0069】
【表8】
【0070】
表8は、BL3加工条件についてのTEOSとDTBOSのK値、堆積速度およびウェットエッチング速度の比較を提供する。DTBOSの堆積速度は、同じ前駆物質体積流量についてTEOSと同等である。しかしながら、WERは、TEOS膜の場合よりも明らかに優れている。このことは、DTBOSから形成されたSiO2膜の密度が低いことを暗示している。同様に、DTBSについてのK値はより低いものであり、水分吸収が少ないことを暗示している。
【0071】
【表9】
【0072】
図4は、表3で記述されている基準線条件および堆積温度の全て(例えばBL−1、BL−2、およびBL−3、ならびに200°、300°および400℃)を用いて堆積された膜のWERの比較を示す。DTBOS膜は、同じKについてWERが低く、酸化物膜の密度がより高く、品質もより高いものであることを暗示している。したがって、DTBOSは、PECVDの堆積について比較的低い温度でTEOSよりも優れた品質の膜を生産することができる。
【0073】
下記の表9は、以上の表5の中で定義されたプロセス条件BL1、BL2およびBL3の下で異なる温度でのTEOSとDTBOSの絶縁破壊電圧(Vbd)の比較を提供している。一般に、絶縁破壊電圧は8〜12MV/cmであり、2つの前駆物質の間で同程度である。
図5、6および7は、200℃および300℃の堆積でのTEOS堆積膜対DTBOS堆積膜についての漏洩電流と電場の関係を表わすプロットを示している。
【0074】
図5は、BL1条件についての200℃および300℃の堆積でのTEOS対DTBOSについての漏洩電流と電場の関係を示すプロットを提供している。DTBOSは、BL1の場合、TEOSに比べて200℃で高いKおよびWERを有することから、膜の漏洩に対する影響も見られる。しかしながら、これは、DTBOSがTEOSよりも低い漏洩性能を示す唯一の条件である。300℃のデータおよび
図6および7に見られるように、DTBOSのSiO
2の漏洩は一般に、TEOSのSiO
2漏洩よりも優れている。
【0075】
図6は、BL2条件についての200℃および300℃の堆積でのTEOS対DTBOSについての漏洩電流と電場の関係を示すプロットを提供している。DTBOSは、より高いD/Rを有するにせよ、DTBOS SiO
2膜の漏洩はTEOSのものよりも低く、優れた電気的品質が実証され、WERデータが裏づけられている。
【0076】
図7は、BL3条件についての200℃および300℃の堆積でのTEOS対DTBOSについての漏洩電流と電場の関係を示すプロットを提供している。BL3全体で、漏洩は、TEOSよりもDTBOSにおいて低い。
【0077】
【表10】
【0078】
図8には、ビス(tert−ブチル)アミノシラン(aka.BTBAS)と比べたDTBOSのダイナミック二次イオン質量分析データ(D−SIMS)が提供されている。BTBASについてのXPSデータから、CVDプロセスが典型的に約10原子%のC(水素を除く)を提供することが公知である。これは、DTBOS膜中の炭素レベルが検出不能である表3に匹敵する。D−SIMSデータは、およそ2ケタ低い炭素含有量を示し、BTBAS XPSデータに対する比較から推論されるこれらの膜中の実際の炭素レベルが0.1原子%未満であり得ることを示唆している。
【0079】
DTBOSからのALD堆積データは、表10中に提供されている。これらの膜についての適切な屈折率によって、酸化ケイ素の堆積が実証されている。
【0080】
【表11】
【0081】
本発明は同様に、tert−ブトキシシラン、イソプロポキシシラン、エトキシシラン、n−ブトキシシラン、イソブトキシシラン、メトキシラン、フェノキシシラン、ジ−tert−ブトキシシラン、ジイソ−プロポキシシラン、ジエトキシシラン、ジ−n−ブトキシシラン、ジイソブトキシシラン、ジメトキシシラン、ジフェノキシシラン、トリ−tert−ブトキシシラン、トリイソ−プロポキシシラン、トリエトキシシラン、トリ−n−ブトキシシラン、トリイソ−ブトキシシラン、トリメトキシシランまたはトリフェノキシシランを収納する、高純度低デッドスペースバルブを有する入口および出口を備えた電解研磨されたステンレス鋼容器を含む、以上で記述した通りの、反応物質を伴うパッケージも含んでいる。
【0082】
本発明の反応物質および方法は、光学デバイス、磁気情報記憶装置、支持用材料または基材上のコーティング、微小電気機械システム(MEMS)、ナノ電気機械システム、薄膜トランジスタ(TFT)、および液晶ディスプレイ(LCD)を製造するために使用可能である。
本発明の実施形態としては、以下の実施形態を挙げることができる。
(付記1)反応チャンバ内に基材の少なくとも1つの表面を提供するステップと、
前記反応チャンバ内に以下の式I、IIおよびIII
【化9】
を有する前駆物質であって、式I、IIおよびIII中のR、R
1およびR
2が各々独立してアルキル基、アリール、アシル基またはそれらの組合せである前駆物質の群から選択される少なくとも1つを含むケイ素前駆物質を導入して誘電体膜を形成する形成ステップと
を含む、基材の少なくとも1つの表面上に誘電体膜を形成するための方法。
(付記2)酸素源、窒素源またはそれらの組合せから選択される少なくとも1つの供給源が前記反応チャンバ内に導入される、付記1に記載の方法。
(付記3)前記形成ステップが、循環化学気相成長、プラズマ化学気相成長または原子層成長から選択される少なくとも1つである、付記1に記載の方法。
(付記4)前記ケイ素前駆物質がジ−tert−ブトキシシランを含む、付記1に記載の方法。
(付記5)前記ケイ素前駆物質がジ−tert−ペントキシシランを含む、付記1に記載の方法。
(付記6)前記酸素源が酸素を含む、付記2に記載の方法。
(付記7)前記酸素源がオゾンを含む、付記2に記載の方法。
(付記8)a.基材をALD反応器内に設置するステップと、
b.該ALD反応器内に以下の式I、IIおよびIII
【化10】
を有する前駆物質であって、式I、IIおよびIII中のR、R
1およびR
2が各々独立してアルキル基、アリール、アシル基またはそれらの組合せである前駆物質の群から選択される少なくとも1つを含むケイ素前駆物質を導入するステップと、
c.前記ALD反応器を気体でパージするステップと、
d.酸素源を前記ALD反応器内に導入するステップと、
e.前記ALD反応器を気体でパージするステップと、
f.所望の厚みの誘電体膜が得られるまでステップb〜dを反復するステップと
を含み、前記誘電体膜がXPSにより測定した場合に約30原子量%以下の窒素を含む、原子層成長プロセスを介してケイ素および酸素を含む誘電体膜を形成する方法。
(付記9)窒素源が前記反応チャンバ内に導入される、付記1に記載の方法。
(付記10)熱CVDプロセスを使用し、前記誘電体膜がXPSにより測定した場合に約30原子量%以下の窒素を含む、付記1に記載の方法。
(付記11)酸素源、窒素源またはそれらの組合せから選択される少なくとも1つの供給源が前記反応チャンバ内に導入される、付記10に記載の方法。
(付記12)Si
aO
bN
cC
dH
eB
fの組成を有し、式中、aが10〜50原子%、bが10〜70原子%、cが0〜30原子%、dが0〜30原子%、eが0〜50原子%、そしてfが0〜30原子%である、付記1に記載の方法から生成された膜。
(付記13)tert−ブトキシシラン、イソプロポキシシラン、エトキシシラン、n−ブトキシシラン、イソブトキシシラン、メトキシラン、フェノキシシラン、ジ−tert−ブトキシシラン、ジイソ−プロポキシシラン、ジエトキシシラン、ジ−n−ブトキシシラン、ジイソブトキシシラン、ジメトキシシラン、ジフェノキシシラン、トリ−tert−ブトキシシラン、トリイソ−プロポキシシラン、トリエトキシシラン、トリ−n−ブトキシシラン、トリイソ−ブトキシシラン、トリメトキシシランまたはトリフェノキシシランを収納する高純度低デッドスペースバルブを有する入口および出口を備えた電解研磨されたステンレス鋼容器。
(付記14)光学デバイス、磁気情報記憶装置、支持用材料または基材上のコーティング、微小電気機械システム(MEMS)、ナノ電気機械システム、薄膜トランジスタ(TFT)および液晶ディスプレイ(LCD)からなる群から選択される、付記1に記載の方法を用いて製造されたデバイス。