(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
本願発明者らは、以下に説明するように、n型窒化ガリウム(GaN)層と、マグネシウム(Mg)がイオン注入されたp型GaN層とにより形成されたpn接合を有し、3.0eV以上のフォトンエネルギーにピークを有するエレクトロルミネセンス(EL)発光を示すGaN積層構造を、世界で初めて作製することに成功した。
【0012】
GaNは、約3.4eVのバンドギャップエネルギーを有する。n型GaN層とp型GaN層とにより良好にpn接合が形成されているとき、電圧を印加してEL発光させると、バンドギャップエネルギーの約3.4eVよりもやや低いフォトンエネルギー、例えば3.0eV以上のフォトンエネルギーにピークを有する発光が観察されるはずである。このような発光は、例えばドナーアクセプターペア(DAP)の再結合によるものである。
【0013】
上記のようなEL発光が確認されれば、良好なp型GaN層が形成されていることの確認ともなる。Mgのイオン注入によりp型GaN層を形成しようとする試みはこれまでにもなされてきた。しかしながら、本願発明者らが作製するまでは、上記のようなEL発光を示すGaN積層構造を実際に作製できた例はなかった。つまり、Mgイオン注入による良好なp型GaN層を実際に形成できた例はなかった。
【0014】
本願発明者らは、このようなp型GaN層を形成できた理由の一つは、Mgがイオン注入されるGaN層(Mgイオン注入GaN層の下地となるGaN層)を、非常に良い結晶性で形成できたことにあるのではないかと考えている。Mgがイオン注入されるGaN層は、成長基板上にエピタキシャル成長された層である。したがって、成長基板として非常に結晶性の良い単結晶GaN自立基板を用いたことにより、このようなp型GaN層を形成できたのではないかと考えることもできる。
【0015】
以下、本発明の実施形態による半導体積層構造として、上記のようなGaN積層構造について説明する。実施形態による半導体積層構造の特徴、例えば成長基板の特徴等を、半導体積層構造の形成工程に沿って説明する。併せて、本実施形態の一例である実験(実施例)の結果について説明する。
図1、
図2(A)、
図3(A)、および
図5(A)は、実施形態による半導体積層構造の形成工程を示す概略断面図である。
【0016】
図1を参照する。成長基板として、GaN基板1を用意する。GaN基板1は、単結晶GaNの自立基板であり、ハイドライド気相エピタキシー(HVPE)を用いた一手法であるボイド形成剥離(VAS)法で形成することができる。GaN基板1は、例えば、直径2インチの大面積のウエハとして製造される。実施例では、直径2インチのウエハから切り出した1cm角の領域を、GaN基板1として用いた。また、実施例では、n型不純物としてシリコン(Si)を2×10
18/cm
3程度含み、電子濃度が2×10
18/cm
3程度のn型導電性を有するGaN基板1を用いた。
【0017】
ある一枚のGaN基板1について、例えばカソードルミネセンス(CL)法により、例えば、3mm角の測定領域中で、1箇所当たり直径500μmの大きさの観察領域を走査して、10箇所程度の測定を行った場合、最小の欠陥密度が例えば3×10
5/cm
2程度であり、最大の欠陥密度が例えば3×10
6/cm
2程度であり、平均的な欠陥密度が例えば1×10
6/cm
2程度であり、最小の欠陥密度に対する最大の欠陥密度の比が例えば高々10倍程度である。
【0018】
このように、GaN基板1は、平均欠陥密度が非常に低く、また、面内での欠陥密度のばらつきが非常に少ない欠陥密度分布を有するという点で、結晶性が非常に良い。なお、GaN基板1上の測定領域をより広げても(例えば20mm角程度の広さとしても)、このような平均欠陥密度の低さ、および、面内での欠陥密度のばらつきの少なさは同程度といえ、測定箇所ごとの欠陥密度は、最大でも例えば3×10
6/cm
2以下といえる。GaN基板1の平均欠陥密度は、基板ごとに(製造ロットごとに)ある程度ばらつき得るが、例えば5×10
5/cm
2程度〜3×10
6/cm
2程度の範囲内に収まり、典型的には2×10
6/cm
2程度である。
【0019】
上述のようなGaN基板1、つまり、平均欠陥密度が非常に低いとともに、面内での欠陥密度のばらつきが非常に少ないGaN基板1を用いたことを理由の一つとして、これまで作製することができなかったGaN積層構造を形成できたのではないかと、本願発明者らは考えている。
【0020】
より具体的には、GaN基板1として、平均欠陥密度が、例えば、2×10
6/cm
2以下であるものを用いることが好ましく、1×10
6/cm
2以下であるものを用いることがより好ましく、5×10
5/cm
2以下であるものを用いることがさらに好ましいと考えている。また、GaN基板1として、面内における最小の欠陥密度に対する最大の欠陥密度の比が、例えば、10倍以下であるものを用いることが好ましく、5倍以下であるものを用いることがより好ましいと考えている。平均欠陥密度が非常に低いとともに、面内での欠陥密度のばらつきが非常に少ないことは、測定される最大の欠陥密度が例えば3×10
6/cm
2以下に抑制されていることによると言うこともできる。
【0021】
GaN基板1上に、GaN層2をエピタキシャル成長させる。GaN層2の成膜方法として例えば有機金属気相エピタキシー(MOVPE)を用いることができる。ガリウム(Ga)原料として例えばトリメチルガリウムを用いることができ、窒素(N)原料として例えばアンモニアを用いることができる。GaN層2はGaN基板1の結晶性を引き継いで成長するので、GaN基板1と同程度に平均欠陥密度が低く、欠陥密度のばらつきが少ない良好な結晶性を有するGaN層2を形成することができる。
【0022】
実施例では、例えば厚さ2000nm〜3000nm(例えば厚さ2500nm)のアンドープのGaN層2を形成した。ただし、実施例のGaN層2は、2次イオン質量分析(SIMS)により、5×10
15/cm
3程度のSiを含んでいることがわかった。Ga原料または反応管に含まれたSiが不純物として取り込まれた可能性がある。実施例のGaN層2は、結果的に、n型不純物としてSiを5×10
15/cm
3程度含み、電子濃度が1×10
15/cm
3程度のn型導電性を有するGaN層として形成された。なお、GaN層2は、必要に応じ、n型不純物を含む原料を成膜時に用いてn型不純物を積極的にドープした層として形成することもできる。
【0023】
図2(A)を参照する。GaN層2の上層部に、p型不純物としてMgイオンを注入して、Mgの注入されたGaN層3を形成する。GaN層2上に例えば酸化シリコン膜や窒化シリコン膜等の注入保護膜4を形成し、注入保護膜4を介してMgイオン注入を行うことができる。注入保護膜4を介したイオン注入により、Mg濃度のピーク位置をGaN層3の表面に近づけることが容易になる。
【0024】
実施例では、GaN層2上に、注入保護膜4として酸化シリコン膜をスパッタ法により厚さ50nm堆積させた。注入保護膜4を介し、Mgイオンを注入エネルギー60keV、ドーズ量1.0×10
14/cm
2で注入して、Mgの注入されたGaN層3を形成した。注入保護膜4は、その後、フッ酸で除去した。
【0025】
図2(B)を参照する。
図2(B)は、実施例におけるMg濃度の深さ方向プロファイルであり、イオン注入のシミュレーションソフトウェアであるSRIMにより計算されたシミュレーション結果である。厚さ50nmの注入保護膜(SiO
2膜)4の表面から深さ80nmの位置で、つまり、GaN層3の表面から深さ30nmの位置で1×10
19/cm
3程度のピークを有するMg濃度分布が形成されていると見積もられる。
【0026】
図3(A)を参照する。Mgイオン注入GaN層3を形成した後、不純物活性化アニールを行う。不純物活性化アニールによりGaN層3がp型導電性に反転し、n型導電性を有するn型GaN層2とp型導電性を有するp型GaN層3とが形成され、pn接合が形成されて、実施形態による半導体積層構造(n型GaN基板1、n型GaN層2、およびp型GaN層3が積層されたGaN積層構造)が形成される。なお、GaN基板1とエピタキシャル成長GaN層2とをまとめて、上述のような良好な結晶性を有しp型GaN層3の下地となるGaN層と捉えることもできる。
【0027】
不純物活性化アニールを、以下、単にアニールと呼ぶこともある。アニールは、例えば、窒素(N
2)雰囲気において、1100℃〜1350℃の範囲の温度で、一定温度が20秒〜30分維持されるような条件で行うことができる。GaN層3上に例えば窒化シリコン膜等のアニール保護膜5を例えば厚さ40nm〜60nm形成し、アニール保護膜5が形成された状態でアニールを行うことができる。アニール保護膜5により、アニールの際の高温に起因したGaN層3の表面の荒れを防ぐことができる。
【0028】
実施例では、GaN層3上に、アニール保護膜5として窒化シリコン膜をスパッタ法により厚さ50nm堆積させた。そして、アニール保護膜5が形成された状態で、N
2雰囲気においてアニールを行った。アニール温度を1200℃、1230℃と変化させた2種の試料を作製した。アニール保護膜5は、その後、フッ酸系溶液で除去した。
【0029】
図3(B)および
図3(C)を参照する。
図3(B)および
図3(C)は、それぞれ、実施例によるMgイオン注入GaN層3の表面のアニール前およびアニール後の原子間力顕微鏡(AFM)像である。ここで図示された試料のアニール温度は1230℃である。GaN層3の二乗平均表面粗さ(RMS)は、アニール前で0.463nmであり、アニール後で0.274nmであり、GaN層3は、アニールの前後とも同程度の高い表面平坦性を有していた。なお、アニール後のRMSの方がやや小さく、表面平坦性が良くなっているように見えるのは、アニール前後で正確に同じ場所を測定できなかったことに起因すると考えられる。
【0030】
図4(A)および
図4(B)を参照する。
図4(A)は、実施例による半導体積層構造のフォトルミネセンス(PL)発光スペクトルであり、
図4(B)は、
図4(A)のフォトンエネルギー3.1eV〜3.6eVの部分を拡大したスペクトルである。
図4(A)および
図4(B)のそれぞれにおいて、横軸はフォトンエネルギーをeV単位で示し、縦軸はPL発光強度を任意単位で示す。PL発光スペクトルは、温度77Kにおいて、波長325nmのヘリウム−カドミウム(He−Cd)レーザーを3mWのパワーで照射して測定した。
【0031】
曲線C
aiが、イオン注入後でアニール前(as implanted)の試料のスペクトルであり、曲線C
1200が、1200℃でアニールされた試料のスペクトルであり、曲線C
1230が、1230℃でアニールされた試料のスペクトルである。1200℃でアニールされた試料および1230℃でアニールされた試料の両方で、3.28eV付近にピークを有する発光が観察された。この発光は、エネルギーの値から、ドナーアクセプターペア(DAP)再結合による発光であると考えられる。なお、MOVPEでMgドープのp型GaN層を成長させた試料についてこれと同様のPL発光スペクトルを確認しており、この発光は、Mgアクセプタ起因の発光であると思われる。
【0032】
1230℃でアニールされた試料では、3.47eV付近にピークを有する発光が明瞭に観察された。この発光は、エネルギーの値、またピークの形状から、アクセプタ束縛エキシトン(ABE)による発光であると考えられる。アニール温度を1200℃から1230℃に上昇させることにより、イオン注入によって生じた欠陥をより回復させ、結晶性をより向上させることができるといえる。なお、DAP−1LO、ABE−1LOと示した発光ピークは、それぞれ、DAP再結合による発光、ABEによる発光のフォノンレプリカによるものと考えられる。
【0033】
図5(A)を参照する。p型GaN層3の表面上にp側電極6pを形成し、n型GaN基板1の裏面上にn側電極6nを形成する。p側電極6pとn側電極6nとを形成することで、電圧印加により、実施形態による半導体積層構造の電流電圧特性およびEL発光特性を測定することができる。
【0034】
実施例では、厚さ20nmのPd層を真空蒸着法により堆積してp側電極6pを形成し、厚さ30nmのTi層と厚さ200nmのAl層を真空蒸着法により堆積してn側電極6nを形成した。n側電極6nはn型GaN基板1の裏面上の全面に形成した。一方、p側電極6pはp型GaN層3の表面上に離散的に複数個形成して、p側電極6pごとに電圧印加できる素子構造を形成した。具体的には、直径3mm、直径1mm、直径400μm、直径200μm、および直径100μmのp側電極6pを形成した。
【0035】
図5(B)を参照する。
図5(B)は、実施例による半導体積層構造の電流電圧特性を示すグラフである。ここで図示された試料のアニール温度は1230℃であり、直径400μmのp側電極6pが形成された素子構造部分に対する測定である。横軸は電圧をV単位で示し、縦軸は電流をA単位で示す。順方向バイアス5V付近で電流が立ち上がる整流性が観察され、pn接合ダイオードが形成されていることがわかった。なお、ホール測定も行ったところ、プラスの値を有するホール係数を得ることができた。
【0036】
図6(A)および
図6(B)を参照する。
図6(A)および
図6(B)は、それぞれ、実施例による半導体積層構造のEL発光を示す写真およびEL発光スペクトルである。ここで図示された試料のアニール温度は1230℃であり、直径400μmのp側電極6pが形成された素子構造部分に対する測定である。
図6(B)の横軸はフォトンエネルギーをeV単位で示し、縦軸はEL発光強度を任意単位で示す。EL発光は室温で観察し、EL発光スペクトルは、微量な光を感度良く測定できるHoriba製LabRAM HR−800で測定した。
【0037】
順方向バイアス印加により、青緑色のEL発光が観察された。EL発光スペクトルには、3.1eV付近のピークと2.4eV付近のピークとが観察された。3.1eV付近のピークは、ドナーとMgアクセプタとの間の再結合(DAP再結合)の発光によるものと考えられ、半値幅(全幅)が0.6eV以下または0.5eV以下と見積もられる。2.4eV付近のピークは、Mgアクセプタと酸素(O)とに関連する発光によるものと考えられる。これらのピーク波長は、それぞれ、紫外、青緑に対応しているため、発光色は青緑色に観察されたと考えられる。なお、3.3eV付近で発光強度が急激に低下しているのは、GaN基板1が光を吸収してしまったためであると考えられる。
【0038】
以上説明したように、実施例による半導体積層構造は、整流性を持つ電流電圧特性を示すとともに、DAP再結合に対応するフォトンエネルギーにピークを有するEL発光を示した。これらのことより、実施例による半導体積層構造はpn接合を有し、Mgイオン注入GaN層3はp型導電性を示していると判断することができる。
【0039】
次に、比較形態として、第1比較例および第2比較例による半導体積層構造について説明する。
【0040】
図7(A)は、第1比較例による半導体積層構造の概略断面図である。サファイア(Al
2O
3)基板11上に、バッファ層12を介し、アンドープのGaN層13が厚さ2000nm形成されている。GaN層13の上層部にMgイオンが注入されて、Mgイオン注入GaN層14が形成されている。
【0041】
Mgイオン注入GaN層14が形成された第1比較例の半導体積層構造に対し、不純物活性化アニールを行った。アニール温度を1200℃、1250℃と変化させた2種の試料を作製した。
【0042】
図7(B)および
図7(C)を参照する。
図7(B)および
図7(C)は、それぞれ、第1比較例によるMgイオン注入GaN層14の表面のアニール前およびアニール後のAFM像である。ここで図示された試料のアニール温度は1250℃である。GaN層14のRMSは、アニール前で1.419nmであり、アニール後で2.286nmであり、GaN層14の表面平坦性は、アニールにより悪化してしまうことがわかった。
【0043】
図8を参照する。
図8は、第1比較例による半導体積層構造のPL発光スペクトルである。測定温度は77Kである。曲線C
aiが、イオン注入後でアニール前(as implanted)の試料のスペクトルであり、曲線C
1200が、1200℃でアニールされた試料のスペクトルであり、曲線C
1250が、1250℃でアニールされた試料のスペクトルである。高い方のアニール温度である1250℃でアニールされた試料においても、アクセプタ束縛エキシトン(ABE)による発光によるピークが観察されなかった。これは、イオン注入による欠陥がアニールによって十分には回復できないことを示している。
【0044】
このように、第1比較例では、アニールを行っても、Mgイオン注入GaN層14の表面平坦性が悪化し、イオン注入による欠陥の回復が行われないことがわかった。なお、アニール後のMgイオン注入GaN層14はかなり高抵抗な層となっていた。
【0045】
第1比較例では、異種基板であるサファイア基板11上にGaN層13をエピタキシャル成長させている。このため、GaN層13の結晶性を良くすることが困難である。例えば、GaN層13の欠陥密度は、1×10
8/cm
2以上のオーダーとなってしまう。これに起因して、Mgイオン注入によるp型GaN層の形成が困難となるものと考えられる。
【0046】
図9は、第2比較例による半導体積層構造のEL発光スペクトルである。このEL発光スペクトルは、E. V. Kalinina et al., Electrical and optical properties of Mg ion implanted GaN p-n junctions. , HITEN 99.(非特許文献1)に記載されているものである。この文献では、異種基板である炭化シリコン(SiC)基板上に形成されたGaN層にMgイオンを注入することにより、p型GaN層を形成することが試みられている。
【0047】
図9のスペクトルはブロードであり、発光色は白色とされている。
図9のスペクトルでは、Mgアクセプタ起因の発光によるピークが観察されていない。
【0048】
第1比較例および第2比較例より、異種基板上に成長させたGaN層にMgイオンを注入して良好なp型GaN層を形成することは困難であるといえる。Mgイオン注入による良好なp型GaN層の形成には、Mgイオンが注入されるGaN層を結晶性良く成長させるために、少なくとも、単結晶GaNの自立基板を用いることが好ましい。
【0049】
上述のように、本願発明者らは、実施例として説明した実験において、非常に良好な結晶性を持つ単結晶GaN自立基板を用いて、Mgイオン注入GaN層の下地となるエピタキシャル成長GaN層を非常に良好な結晶性で成長させることにより、n型GaN層と、Mgがイオン注入されたp型GaN層とにより形成されたpn接合を有し、GaNのバンドギャップエネルギーである約3.4eVよりもやや低いフォトンエネルギー、例えば3.0eV以上のフォトンエネルギーにピークを有するEL発光を示すGaN積層構造を作製することができた。
【0050】
なお、上記実施例では、Mgイオン注入によるp型GaN層の形成を確認するため、発光ダイオードを作製し、EL発光を観察した。しかし、Mgイオン注入によるp型GaN層の用途は、発光ダイオードに限定されない。例えば、パワートランジスタ等のトランジスタに応用することもできる。
【0051】
近年、発光ダイオードやパワートランジスタ等の半導体素子は大型化する趨勢があり、例えば0.5cm角以上や1cm角以上等の大型の素子を形成できることが望まれている。実施形態で説明したGaN基板1は、面内での欠陥密度のばらつきが少ない。このため、大型(例えば1mm角以上の大きさ)の素子を形成するのに好適という利点も有する。面内での欠陥密度のばらつきが大きく、欠陥密度の非常に高い領域が存在すると、素子全体としての性能を高めることが難しい。例えば、発光効率が低下したり、逆耐圧が低下したりしてしまう。
【0052】
以上、実施形態に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。