特許第6365637号(P6365637)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DIC株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6365637
(24)【登録日】2018年7月13日
(45)【発行日】2018年8月1日
(54)【発明の名称】多層成形体及びそれを用いた燃料用部品
(51)【国際特許分類】
   C08J 5/00 20060101AFI20180723BHJP
   B32B 27/28 20060101ALI20180723BHJP
   B29C 47/06 20060101ALI20180723BHJP
   C08L 81/02 20060101ALI20180723BHJP
   C08G 75/0231 20160101ALI20180723BHJP
   F16L 11/04 20060101ALI20180723BHJP
   B29K 81/00 20060101ALN20180723BHJP
【FI】
   C08J5/00CEZ
   B32B27/28
   B29C47/06
   C08L81/02
   C08G75/0231
   F16L11/04
   B29K81:00
【請求項の数】13
【全頁数】26
(21)【出願番号】特願2016-226744(P2016-226744)
(22)【出願日】2016年11月22日
(62)【分割の表示】特願2015-534309(P2015-534309)の分割
【原出願日】2014年8月28日
(65)【公開番号】特開2017-52285(P2017-52285A)
(43)【公開日】2017年3月16日
【審査請求日】2017年7月26日
(31)【優先権主張番号】特願2013-179655(P2013-179655)
(32)【優先日】2013年8月30日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100177471
【弁理士】
【氏名又は名称】小川 眞治
(74)【代理人】
【識別番号】100163290
【弁理士】
【氏名又は名称】岩本 明洋
(74)【代理人】
【識別番号】100149445
【弁理士】
【氏名又は名称】大野 孝幸
(74)【代理人】
【識別番号】100159293
【弁理士】
【氏名又は名称】根岸 真
(72)【発明者】
【氏名】芳野 泰之
(72)【発明者】
【氏名】渡辺 創
(72)【発明者】
【氏名】檜森 俊男
【審査官】 大村 博一
(56)【参考文献】
【文献】 特開2011−020401(JP,A)
【文献】 特表2013−522387(JP,A)
【文献】 特表2013−522385(JP,A)
【文献】 特表2010−515781(JP,A)
【文献】 特表平04−506228(JP,A)
【文献】 特表2015−524014(JP,A)
【文献】 特許第6233415(JP,B2)
【文献】 特許第6237773(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 5/00−5/02;5/12−5/22
B29C 47/00−47/96
B32B 1/00−43/00
C08K 3/00−13/08
C08L 1/00−101/14
C08G 75/00−75/32
C08G 79/00−79/14
F16L 9/00−11/18
(57)【特許請求の範囲】
【請求項1】
ポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂及び熱可塑性エラストマーを必須成分とするポリアリーレンスルフィド樹脂組成物と、アミノ基、アミド基、水酸基、カルボキシル基、酸無水物基、イソシアネート基及びエポキシ基からなる群より選ばれる1種以上の官能基を有する熱可塑性樹脂と、を共押出成形して得られる多層構造を有する多層成形体に用いる前記ポリアリーレンスルフィド樹脂組成物であって、
前記ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、前記ジヨード芳香族化合物、前記単体硫黄及び前記重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、ポリアリーレンスルフィド樹脂組成物
【請求項2】
前記ポリアリーレンスルフィド樹脂が、前記重合禁止剤に由来するヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を有する、請求項1に記載のポリアリーレンスルフィド樹脂組成物
【請求項3】
前記ポリアリーレンスルフィド樹脂が、
主鎖中に下記一般式(20)
【化1】
で表されるジスルフィド結合を有するポリアリーレンスルフィド樹脂と、該ポリアリーレンスルフィド樹脂に対し0.01〜10,000ppmの範囲となる割合でヨウ素原子を含む混合物である、請求項1記載のポリアリーレンスルフィド樹脂組成物。
【請求項4】
主鎖中に下記一般式(20)
【化2】
で表されるジスルフィド結合を有するポリアリーレンスルフィド樹脂が、
末端に下記一般式(1−1)
【化3】
(式中、Yはヒドロキシ基又はアミノ基である。)で表される一価の基、又は下記一般式(2−1)
【化4】
で表される一価の基を有する、請求項3記載のポリアリーレンスルフィド樹脂組成物。
【請求項5】
主鎖中に下記一般式(20)
【化2】
で表されるジスルフィド結合を有するポリアリーレンスルフィド樹脂が、
末端に下記一般式(a)
【化5】
で表される一価の基、下記一般式(b)
【化6】
で表される一価の基、又は下記一般式(c)
【化7】
(ただし、一般式(a)〜(c)中のXは、水素原子又はアルカリ金属原子である。一般式(b)中、R10は炭素原子数1〜6のアルキル基を表す。一般式(c)中、R11は水素原子又は炭素原子数1〜3のアルキル基を表し、R12は炭素原子数1〜5のアルキル基を表す。)〕で表される一価の基を有する、請求項3記載のポリアリーレンスルフィド樹脂組成物。
【請求項6】
前記ポリアリーレンスルフィド樹脂が、300℃における0.95〜1.75の非ニュートニアン指数、及び、0.80〜1.70のMw/Mtopを有し、
前記Mw及びMtopはそれぞれゲル浸透クロマトグラフィーにより測定される重量平均分子量及びピーク分子量である、請求項1に記載のポリアリーレンスルフィド樹脂組成物
【請求項7】
前記熱可塑性樹脂が脂肪族系ポリアミドである、請求項1に記載のポリアリーレンスルフィド樹脂組成物
【請求項8】
多層成形体が燃料用部品である、請求項1〜のいずれか一項に記載のポリアリーレンスルフィド樹脂組成物
【請求項9】
ポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂及び熱可塑性エラストマーを必須成分とするポリアリーレンスルフィド樹脂組成物と、アミノ基、アミド基、水酸基、カルボキシル基、酸無水物基、イソシアネート基及びエポキシ基からなる群より選ばれる1種以上の官能基を有する熱可塑性樹脂と、を共押出成形して得られる多層構造を有する多層成形体に用いる前記ポリアリーレンスルフィド樹脂組成物の製造方法であって、
前記ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、前記ジヨード芳香族化合物、前記単体硫黄及び前記重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ること
ポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂及び熱可塑性エラストマーを必須成分として溶融混練する、ポリアリーレンスルフィド樹脂組成物の製造方法
【請求項10】
前記ポリアリーレンスルフィド樹脂が、前記重合禁止剤に由来するヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を有する、請求項9に記載の製造方法。
【請求項11】
前記ポリアリーレンスルフィド樹脂が、300℃における0.95〜1.75の非ニュートニアン指数、及び、0.80〜1.70のMw/Mtopを有し、
前記Mw及びMtopはそれぞれゲル浸透クロマトグラフィーにより測定される重量平均分子量及びピーク分子量である、請求項9に記載の製造方法。
【請求項12】
前記重合禁止剤が、下記一般式(1)又は下記一般式(2):
【化8】
(式中、Yはヒドロキシ基またはアミノ基である。)で表される化合物である、請求項9に記載の多層成形体の製造方法。
【請求項13】
前記重合禁止剤が、下記一般式(3)、(4)または(5)
【化9】
【化10】
【化11】
〔式中、一般式(3)中、R及びRはそれぞれ独立に、水素原子、又は、下記一般式(a)、(b)若しくは(c)で表される一価の基を表し、R又はRの少なくともいずれか一方は一般式(a)、(b)又は(c)で表される一価の基である。一般式(4)中、Zは、ヨウ素原子又はメルカプト基を表し、Rは、下記一般式(a)、(b)又は(c)で表される一価を表す。一般式(5)中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。
【化12】
【化13】
【化14】
(ただし、一般式(a)〜(c)中のXは、水素原子又はアルカリ金属原子である。一般式(b)中、R10は炭素原子数1〜6のアルキル基を表す。一般式(c)中、R11は水素原子又は炭素原子数1〜3のアルキル基を表し、R12は炭素原子数1〜5のアルキル基を表す。)〕で表される化合物を含む、請求項9に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料等の有機物の流体搬送に用いられる配管用部材、容器、チューブに適する多層成形体に関する。
【背景技術】
【0002】
近年、溶剤、燃料、液化ガス、その他各種のポリマー原料、中間体、製品等の流動性を有する有機物の搬送に用いられる配管用部材、容器、チューブ製品は、金属材料に変わりプラスチック化が進められてきており、例えば、車両用の燃料配管部材や容器には、ガソリンなどの燃料に対するバリアー性能が高いポリアミド樹脂が用いられている。
【0003】
しかしながら、急速に普及しつつあるアルコール含有ガソリンに対しては、ポリアミド樹脂のバリアー性は決して十分なものではなく、アルコール含有ガソリンに対するバリアー性が比較的高いポリアミド12であっても、大気中への燃料拡散防止の各種法規制に対応可能な高いバリアー性を得られない状況にある。
【0004】
一方、アルコール含有ガソリンに対する非常に高いバリアー性を有する樹脂材料としてポリフェニレンスルフィド樹脂が注目されている。しかしながら、ポリフェニレンスルフィド樹脂は優れた耐熱性、耐薬品性を有しているものの、耐衝撃性が十分でなく車両用の燃料チューブや燃料タンクへの適用が困難である。そこで、車両用の燃料チューブや燃料タンクを製造する方法として、ポリフェニレンスルフィド樹脂層、接着層及びポリエチレン層の3層の構造体とすることで、ポリフェニレンスルフィド樹脂のバリアー性を保持しながら、耐衝撃性を付与した成形容器が提案されている(例えば、特許文献1及び2参照。)。
【0005】
しかしながら、ポリフェニレンスルフィド樹脂は他の樹脂成分との接着性が低いため、前記多層構造体は層間での剥離が生じ易く、バリアー性が顕著に低下するという問題を有している。特に、高温環境となるエンジンルーム内で用いる部材に使用される場合には温度上昇にともなうポリエチレン層の著しい軟化によって変形を生じる等の不具合も生じることがある。
【0006】
また、前記ポリフェニレンスルフィド樹脂を用いた多層構造体におけるポリエチレン層の軟化の問題を解決する方法として、ポリフェニレンスルフィドとエポキシ基含有ポリオレフィンとの混合物からなる層、ポリオレフィン系接着層、ポリアミドからなる層を積層させた多層構造体が提案されている(例えば、特許文献3参照。)。しかしながら、この多層構造体はポリオレフィン系の接着層を使用しているため、やはり、高温環境下で使用される場合は層間の剥離強度が不足する傾向にある。
【0007】
また、ポリフェニレンスルフィド樹脂100重量部に対し、ポリアミド及びアミド結合、エステル結合、ウレタン結合、カルボキシル基、酸無水物基及びエポキシ基の中から選ばれる1種以上の結合又は官能基を有する熱可塑性樹脂の少なくとも1種を10〜150重量部配合してなるポリフェニレンスルフィド系樹脂層と、ポリアミドの層とを接着層を介さずに多層化した多層構造体が提案されている(例えば、特許文献4参照。)。しかしながら、この多層構造体は、ポリアミド樹脂層との接着性を得るために、ポリフェニレンスルフィド樹脂に多量のポリアミド及び変性オレフィン系樹脂を含有させる必要があり、ポリアリーレンスルフィド樹脂が本来有するバリアー性が損なわれることがある。
【0008】
さらに、ポリアリーレンスルフィド樹脂に多価イソシアネート化合物を配合した樹脂成分を、特定の官能基を有する熱可塑性樹脂と共押出することにより、ポリアリーレンスルフィド樹脂の有する性能を低下させることなく層間の密着性を向上させた多層成形体が提案されている(例えば、特許文献5参照。)。しかしながら、溶融混練時に多価イソシアネート化合物が自己縮合又は分解することにより、層間密着性が低下する場合があり、燃料配管部材等に対して要求されるレベルの密着性を保持し難い傾向にある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平5−193060号公報
【特許文献2】特開平5−193061号公報
【特許文献3】特開平11−156970号公報
【特許文献4】特開平10−138372号公報
【特許文献5】特開2008−110561号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
一方、従来の方法で合成されるポリアリーレンスルフィド樹脂は、成形加工の際の加熱により発生するガスの量が比較的多く、成形加工時に異臭が発生し作業環境が低下することや、このガスが層間に付着することで多層成形体が剥離してしまうことがある。そのため、ガス発生を抑制することは、成形用材料として実用上非常に重要である。
【0011】
本発明が解決しようとする課題は、加熱による発生ガス量を抑制でき、燃料等の有機物の流体搬送に用いられる配管用部材、容器、チューブ等の用途において、ポリアリーレンスルフィド樹脂本来の有機物の流体に対する優れたバリアー性を損なうことなく、他の樹脂成分と優れた密着性を発現する多層成形体、及び、それを用いた燃料用部品を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは種々の検討を行った結果、ジヨード芳香族化合物と単体硫黄と重合禁止剤とを溶融重合させることで得られるポリアリーレンスルフィド樹脂と、芳香族系エポキシ樹脂と熱可塑性エラストマーとを含有する樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0013】
すなわち、本発明は、ポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂及び熱可塑性エラストマーを必須成分とするポリアリーレンスルフィド樹脂組成物と、アミノ基、アミド基、水酸基、カルボキシル基、酸無水物基、イソシアネート基及びエポキシ基からなる群より選ばれる1種以上の官能基を有する熱可塑性樹脂と、を共押出成形して得られる多層構造を有する多層成形体であって、ポリアリーレンスルフィド樹脂が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることのできるものである、多層成形体、及びそれを用いた燃料用部品を提供する。
【発明の効果】
【0014】
本発明によれば、加熱による発生ガス量を抑制でき、燃料等の有機物の流体搬送に用いられる配管用部材、容器、チューブ等の用途において、ポリアリーレンスルフィド樹脂本来の有機物の流体に対する優れたバリアー性を損なうことなく、他の樹脂成分と優れた密着性を発現する多層成形体を提供することができる。本発明の多層成形体は、ガソリン、軽油、アルコール含有ガソリン、アルコール燃料等の燃料を搬送するために用いられる配管用部材、容器、チューブ等の燃料用部品に最適である。
【発明を実施するための形態】
【0015】
以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
【0016】
本実施形態に係る多層成形体は、ポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂及び熱可塑性エラストマーを必須成分とするポリアリーレンスルフィド樹脂組成物と、アミノ基、アミド基、水酸基、カルボキシル基、酸無水物基、イソシアネート基及びエポキシ基からなる群より選ばれる1種以上の官能基を有する熱可塑性樹脂(以下、「熱可塑性樹脂」と略記する。)、を共押出成形して得られる多層構造を有する。
【0017】
本実施形態に用いられるポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応させることを含む方法により得ることができる。このような方法によれば、フィリップス法をはじめとする従来法に比べ、比較的高分子量の重合体としてポリアリーレンスルフィド樹脂を得ることができる。
【0018】
ジヨード芳香族化合物は、芳香族環と、芳香族環に直接結合した2個のヨウ素原子とを有する。ジヨード芳香族化合物としては、ジヨードベンゼン、ジヨードトルエン、ジヨードキシレン、ジヨードナフタレン、ジヨードビフェニル、ジヨードベンゾフェノン、ジヨードジフェニルエーテル及びジヨードジフェニルスルフォン等が挙げられるが、これらに限定されない。2つのヨウ素原子の置換位置は特に限定されないが、好ましくは2つの置換位置が分子内で出来る限り遠い位置にあることが望ましい。好ましい置換位置は、パラ位、及び4,4’−位である。
【0019】
ジヨード芳香族化合物の芳香族環は、フェニル基、ヨウ素原子以外のハロゲン原子、ヒドロキシ基、ニトロ基、アミノ基、炭素原子数1〜6のアルコキシ基、カルボキシ基、カルボキシレート、アリールスルホンおよびアリールケトンから選ばれる少なくとも1種の置換基によって置換されていてもよい。ただし、ポリアリーレンスルフィド樹脂の結晶化度及び耐熱性等の観点から、未置換のジヨード芳香族化合物に対する置換されたジヨード芳香族化合物の割合は、好ましくは0.0001〜5質量%の範囲であり、より好ましくは0.001〜1質量%の範囲である。
【0020】
単体硫黄は、硫黄原子のみによって構成される物質(S、S、S、S等)を意味し、その形態は限定されない。具体的には、局法医薬品として市販されている単体硫黄を用いてもよいし、汎用的に入手することができる、S及びS等を含む混合物を用いてもよい。単体硫黄の純度も特に限定されない。単体硫黄は、室温(23℃)で固体であれば、粒形状又は粉末状であってもよい。単体硫黄の粒径は、特に限定されないが、好ましくは0.001〜10mmの範囲であり、より好ましくは0.01〜5mmの範囲であり、更に好ましくは0.01〜3mmの範囲である。
【0021】
重合禁止剤は、ポリアリーレンスルフィド樹脂の重合反応において当該重合反応を禁止又は停止する化合物であれば、特に制限なく用いることができる。重合禁止剤は、ポリアリーレンスルフィド樹脂の主鎖の末端にヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を導入し得る化合物を含むことが好ましい。すなわち、重合禁止剤としては、ヒドロキシ基、アミノ基、カルボキシル基及びカルボキシル基の塩からなる群より選ばれる少なくとも一種の基を1又は2以上有す化合物が好ましい。また、重合禁止剤が上記官能基を有していてもよいし、重合の停止反応等によって、上記官能基を生成してもよい。
【0022】
ヒドロキシ基又はアミノ基を有する重合禁止剤としては、例えば、下記式(1)又は(2)で表される化合物が重合禁止剤として用いられ得る。
【0023】
【化1】
【0024】
一般式(1)で表される化合物によれば、下記式(1−1)で表される一価の基が主鎖の末端基として導入される。式(1−1)中のYは、重合禁止剤に由来するヒドロキシ基、アミノ基等である。
【0025】
【化2】
【0026】
一般式(2)で表される化合物によれば、下記式(2−1)で表される一価の基が主鎖の末端基として導入される。一般式(1)で表される化合物に由来するヒドロキシ基が、例えば、式(2)中のカルボニル基の炭素原子と硫黄ラジカルと結合することによりポリアリーレンスルフィド樹脂中に導入され得る。
【0027】
【化3】
【0028】
式(1−1)又は(2−1)で表される基は、ポリアリーレンスルフィド樹脂の主鎖中に原料(単体硫黄)に由来して存在するジスルフィド結合が溶融温度下でラジカル開裂して発生した硫黄ラジカルと、一般式(1)で表される化合物又は一般式(2)で表される化合物とが結合することによって、ポリアリーレンスルフィド樹脂中に導入されると考えられる。これら特定構造の構成単位の存在は、一般式(1)又は(2)で表される化合物を用いた溶融重合により得られたポリアリーレンスルフィド樹脂に特徴的である。
【0029】
一般式(1)で表される化合物としては、例えば、2−ヨードフェノール、2−アミノアニリンなどが挙げられる。一般式(2)で表される化合物としては、2−ヨードベンゾフェノンが挙げられる。
【0030】
カルボキシル基を有する重合禁止剤としては、例えば、下記一般式(3)、(4)又は(5)で表される化合物から選ばれる1種以上の化合物が用いられ得る。
【0031】
【化4】
【0032】
【化5】
【0033】
【化6】
【0034】
一般式(3)中、R及びRはそれぞれ独立に、水素原子、又は、下記一般式(a)、(b)若しくは(c)で表される一価の基を表し、R又はRの少なくともいずれか一方は一般式(a)、(b)又は(c)で表される一価の基である。一般式(4)中、Zは、ヨウ素原子又はメルカプト基を表し、Rは、下記一般式(a)、(b)又は(c)で表される一価を表す。一般式(5)中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。
【0035】
【化7】
【0036】
【化8】
【0037】
【化9】
【0038】
一般式(a)〜(c)中のXは、水素原子又はアルカリ金属原子であるが、反応性が良好となる点から水素原子が好ましい。アルカリ金属原子としては、ナトリウム、リチウム、カリウム、ルビジウム、及びセシウムなどが挙げられるが、ナトリウムが好ましい。一般式(b)中、R10は炭素原子数1〜6のアルキル基を表す。一般式(c)中、R11は水素原子又は炭素原子数1〜3のアルキル基を表し、R12は炭素原子数1〜5のアルキル基を表す。
【0039】
一般式(3)、(4)又は(5)で表される化合物によれば、下記式(6)又は(7)で表される一価の基が主鎖の末端基として導入される。これら特定構造の末端の構成単位の存在は、一般式(3)、(4)又は(5)で表される化合物を用いた溶融重合により得られたポリアリーレンスルフィド樹脂に特徴的である。
【0040】
【化10】

(式中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。)
【0041】
【化11】

(式中、Rは、一般式(a)、(b)又は(c)で表される一価の基を表す。)
【0042】
重合禁止剤として、カルボキシル基等の官能基を有していない化合物等を使用してもよい。このような化合物としては、例えば、ジフェニルジスルフィド、モノヨードベンゼン、チオフェノール、2,2’−ジベンゾチアゾリルジスルフィド、2−メルカプトベンゾチアゾール、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、2−(モルホリノチオ)ベンゾチアゾール及びN,N’−ジシクロヘキシル−1,3−ベンゾチアゾール−2−スルフェンアミドから選ばれる少なくとも1種の化合物を用いることができる。
【0043】
本実施形態に係るポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤と、必要に応じて触媒と含む混合物を加熱して得られる溶融混合物中で溶融重合を行うことによって生成する。溶融混合物中のジヨード芳香族化合物の割合は、単体硫黄1モルに対して、好ましくは0.5〜2モルの範囲であり、より好ましくは0.8〜1.2モルの範囲である。また、混合物中の重合禁止剤の割合は、固体硫黄1モルに対して、好ましくは0.0001〜0.1モルの範囲であり、より好ましくは0.0005〜0.05モルの範囲である。
【0044】
重合禁止剤を添加する時期は、特に制限されないが、ジヨード芳香族化合物、単体硫黄及び必要に応じて添加される触媒を含む混合物を加熱して、混合物の温度が好ましくは200℃〜320℃の範囲、より好ましくは250〜320℃の範囲となった時点で重合禁止剤を添加することができる。
【0045】
溶融混合物にニトロ化合物を触媒として添加して、重合速度を調節することができる。このニトロ化合物としては、通常、各種ニトロベンゼン誘導体を用いることができる。ニトロベンゼン誘導体としては、例えば1,3−ジヨード−4−ニトロベンゼン、1−ヨード−4−ニトロベンゼン、2,6−ジヨード−4−ニトロフェノール及び2,6−ジヨード−4−ニトロアミンが挙げられる。触媒の量は、通常、触媒として添加される量であればよく、例えば単体硫黄100質量部に対して0.01〜20質量部の範囲であることが好ましい。
【0046】
溶融重合の条件は、重合反応が適切に進行するように、適宜調整される。溶融重合の温度は、好ましくは、175℃以上、生成するポリアリーレンスルフィド樹脂の融点+100℃以下の範囲、より好ましくは180〜350℃の範囲である。溶融重合は、絶対圧が好ましくは1[cPa]〜100[kPa]の範囲、より好ましくは13[cPa]〜60[kPa]の範囲で行われる。溶融重合の条件は、一定である必要は無い。例えば、重合初期は温度を好ましくは175〜270℃の範囲、より好ましくは180〜250℃の範囲とし、かつ、絶対圧を6.7〜100[kPa]の範囲とし、その後、連続的に又は階段状に昇温及び減圧させながら重合を行い、重合後期は、温度を好ましくは270℃以上、生成するポリアリーレンスルフィド樹脂の融点+100℃以下の範囲、より好ましくは300〜350℃の範囲とし、かつ、絶対圧を1[cPa]〜6[kPa]の範囲として重合を行うことができる。本明細書において、樹脂の融点は、示差走査熱量計(パーキンエルマー製DSC装置 Pyris Diamond)を用いてJIS K 7121に準拠して測定される値を意味する。
【0047】
溶融重合は、酸化架橋反応を防ぎつつ、高い重合度を得る観点から、好ましくは、非酸化性雰囲気下で行う。非酸化性雰囲気において、気相の酸素濃度は好ましくは5体積%未満の範囲、より好ましくは2体積%未満の範囲であり、更に好ましくは気相が酸素を実質的に含有しない。非酸化性雰囲気は、好ましくは、窒素、ヘリウム及びアルゴン等の不活性ガス雰囲気である。
【0048】
溶融重合は、例えば、加熱装置、減圧装置及び撹拌装置を備える溶融混練機を用いて行うことができる。溶融混錬機としては、例えば、バンバリーミキサー、ニーダー、連続混練機、単軸押出機及び二軸押出機が挙げられる。
【0049】
溶融重合のための溶融混合物は、溶媒を実質的に含有しないことが好ましい。より具体的には、溶融混合物に含まれる溶媒の量が、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤と、必要に応じて触媒との合計100質量部に対して、好ましくは10質量部以下の範囲、より好ましくは5質量部以下の範囲、さらに好ましくは1質量部以下の範囲である。溶媒の量は、0質量部以上、0.01質量部以上の範囲、又は0.1質量部以上の範囲であってもよい。
【0050】
溶融重合後の溶融混合物(反応生成物)を冷却して固体状態の混合物を得た後、減圧下、又は非酸化性雰囲気の大気圧下で、混合物を加熱して重合反応を更に進行させてもよい。これによりさらに分子量を増大させることができるだけでなく、生成したヨウ素分子が昇華されて除去されるため、ポリアリーレンスルフィド樹脂中のヨウ素原子濃度を低く抑えることができる。好ましくは100〜260℃の範囲、より好ましくは130〜250℃の範囲、更に好ましくは150〜230℃の範囲の温度まで冷却することで、固体状態の混合物を得ることができる。固体状態への冷却後の加熱は、溶融重合と同様の温度及び圧力条件下で行うことができる。
【0051】
溶融重合工程により得られたポリアリーレンスルフィド樹脂を含む反応生成物は、そのまま直接、溶融混練機に投入する等の方法により樹脂組成物を製造するためのこともできるが、当該反応生成物に当該反応生成物が溶解する溶媒を加えて溶解物を調製し、当該溶解物の状態で反応装置から反応生成物を取り出すことが、生産性に優れるだけでなくさらに反応性も良好となるため好ましい。当該反応生成物が溶解する溶媒の添加は、溶融重合後に行うことが好ましいが、溶融重合の反応後期に行ってもよく、また、上記のとおり溶融混合物(反応生成物)を冷却して固体状態の混合物を得た後、加圧下、減圧下、又は非酸化性雰囲気の大気圧下で、混合物を加熱して重合反応を更に進行させた後であってもよい。当該溶解物を調製する工程は、非酸化性雰囲気下で行ってもよい。また、加熱溶解の温度としては、反応生成物が溶解する溶媒の融点以上の範囲であればよく、好ましくは200〜350℃の範囲、より好ましくは210〜250℃の範囲であり、加圧下で行うことが好ましい。
【0052】
前記溶解物を調製するために用いる、前記反応生成物が溶解する溶媒の配合割合は、ポリアリーレンスルフィド樹脂を含む反応生成物100質量部に対して、好ましくは90〜1000質量部の範囲、より好ましくは200〜400質量部の範囲である。
【0053】
反応生成物が溶解する溶媒としては、例えば、フィリップス法等の溶液重合において重合反応溶媒として用いられる溶媒を用いることができる。好ましい溶媒の例としては、N−メチル−2−ピロリドン(以下、NMPと略記)、N−シクロヘキシル−2−ピロリドン、2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン酸、ε−カプロラクタム、N−メチル−ε−カプロラクタム等の脂肪族環状アミド化合物、ヘキサメチルリン酸トリアミド(HMPA)、テトラメチル尿素(TMU)、ジメチルホルムアミド(DMF)、及びジメチルアセトアミド(DMA)等のアミド化合物、ポリエチレングリコールジアルキルエーテル(重合度は2000以下で、炭素原子数1〜20のアルキル基を有するもの)等のエーテル化ポリエチレングリコール化合物、並びに、テトラメチレンスルホキシド、及びジメチルスルホキシド(DMSO)等のスルホキシド化合物が挙げられる。その他の使用可能な溶媒の例として、ベンゾフェノン、ジフェニルエーテル、ジフェニルスルフィド、4,4’−ジブロモビフェニル、1−フェニルナフタレン、2,5−ジフェニル−1,3,4−オキサジアゾール、2,5−ジフェニルオキサゾール、トリフェニルメタノール、N,N−ジフェニルホルムアミド、ベンジル、アントラセン、4−ベンゾイルビフェニル、ジベンゾイルメタン、2−ビフェニルカルボン酸、ジベンゾチオフェン、ペンタクロロフエノール、1−ベンジル−2−ピロリジオン、9−フルオレノン、2−ベンゾイルナフタレン、1−ブロモナフタレン、1,3−ジフェノキシベンゼン、フルオレン、1−フェニル−2−ピロリジノン、1−メトキシナフタレン、1−エトキシナフタレン、1,3−ジフェニルアセトン、1,4−ジベンゾイルプタン、フェナントレン、4−ベンゾイルビフェニル、1,1−ジフェニルアセトン、o,o’−ビフェノール、2,6−ジフェニルフェノール、トリフェニレン、2−フェニルフェノール、チアントレン、3−フェノキシベンジルアルコール、4−フェニルフェノール、9,10−ジクロロアントラセン、トリフェニルメタン、4,4’−ジメトキシベンゾフェノン、9,10−ジフェニルアントラセン、フルオランテン、ジフェニルフタレート、ジフェニルカルボネート、2,6−ジメトキシナフタレン、2,7−ジメトキシナフタレン、4−ブロモジフェニルエーテル、ピレン、9,9’−ビ−フルオレン、4,4’−イソプロピルリデン−ジフェノール、イプシロン−カプロラクタム、N−シクロヘキシル−2−ピロリドン、ジフェニルイソフタレート、ジフェニルーターフタレート及び1−クロロナフタレンからなる群から選ばれる1種以上の溶媒が挙げられる。
【0054】
反応装置から取り出された当該溶解物は、後処理を行った後、前記他の成分と溶融混練して樹脂組成物を調製することが、反応性がより良好となるため好ましい。溶解物の後処理の方法としては、特に制限されるものではないが、例えば、以下の方法が挙げられる。
(1)当該溶解物を、そのまま、又は酸若しくは塩基を加えた後、減圧下又は常圧化で溶媒を留去し、次いで溶媒留去後の固形物を水、当該溶解物に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン及びアルコール類などから選ばれる溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法。
(2)当該溶解物に水、アセトン、メチルエチルケトン、アルコール、エーテル、ハロゲン化炭化水素、芳香族炭化水素及び脂肪族炭化水素などの溶媒(当該溶解物の溶媒に可溶であり、且つ少なくともポリアリーレンスルフィド樹脂に対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィド樹脂及び無機塩等を含む固体状生成物を沈降させ、固体状生成物を濾別、洗浄及び乾燥する方法。
(3)当該溶解物に、当該溶解物に用いた溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン及びアルコールなどから選ばれる溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥をする方法。
【0055】
なお、上記(1)〜(3)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中又は窒素のような不活性ガス雰囲気中で行なってもよい。酸素濃度が5〜30体積%の範囲の酸化性雰囲気中又は減圧条件下で熱処理を行い、ポリアリーレンスルフィド樹脂を酸化架橋させることもできる。
【0056】
ポリアリーレンスルフィド樹脂が溶融重合により生成する反応を、以下に例示する。
【0057】
【化12】
【0058】
反応式(1)〜(5)は、例えば一般式(a)、(b)又は(c)で表される基を含む置換基Rを有するジフェニルジスルフィドを重合禁止剤として用いた場合の、ポリフェニレンスルフィドが生成する反応の例である。反応式(1)は、重合禁止剤中の−S−S−結合が、溶融温度下でラジカル開裂する反応である。反応式(2)は、反応式(1)で発生した硫黄ラジカルが成長中の主鎖の末端ヨウ素原子の隣接炭素原子を攻撃し、ヨウ素原子が脱離することで、重合が停止するとともに、主鎖の末端に置換基Rが導入される反応である。反応式(3)は、ポリアリーレンスルフィド樹脂の主鎖中に原料(単体硫黄)に由来して存在するジスルフィド結合が溶融温度下でラジカル開裂する反応である。反応式(4)は、反応式(3)で発生した硫黄ラジカルと、反応式(1)で発生した硫黄ラジカルとの再結合によって、重合が停止するとともに、置換基Rが主鎖の末端に導入される反応である。脱離したヨウ素原子は遊離状態(ヨウ素ラジカル)にあるか、又は、反応式(5)のようにヨウ素ラジカル同士が再結合することで、ヨウ素分子が生成する。
【0059】
溶融重合により得られるポリアリーレンスルフィド樹脂を含む反応生成物は、原料に由来するヨウ素原子を含有する。そのため、ポリアリーレンスルフィド樹脂は、通常、ヨウ素原子を含む混合物の状態で、紡糸用樹脂組成物の調製などのために用いられる。該混合物におけるヨウ素原子の濃度は、例えば、ポリアリーレンスルフィド樹脂に対して0.01〜10000ppmの範囲であり、好ましくは10〜5000ppmの範囲である。ヨウ素分子の昇華性を利用して、ヨウ素原子濃度を低く抑えることも可能であり、その場合には、900ppm以下の範囲、好ましくは100ppm以下の範囲、さらには10ppm以下の範囲とすることも可能である。さらにヨウ素原子を検出限界以下に除去することも可能ではあるものの、生産性を考えると実用的ではない。検出限界は、例えば0.01ppm程度である。溶融重合により得られる本実施形態のポリアリーレンスルフィド樹脂又はこれを含む反応生成物は、ヨウ素原子を含んでいる点で、例えば、フィリップス法等のジクロロ芳香族化合物の有機極性溶媒中での溶液重合法により得られたポリアリーレンスルフィドと明確に区別され得る。
【0060】
上記反応式からも理解されるように、溶融重合により得られるポリアリーレンスルフィド樹脂は、ジヨード芳香族化合物に由来する芳香族環及びこれに直接結合した硫黄原子からなるアリーレンスルフィド単位から主として構成される主鎖と、該主鎖の末端に結合した所定の置換基Rとを含む。所定の置換基Rは、主鎖の末端の芳香族環に、直接、又は重合禁止剤に由来する部分構造を介して結合している。
【0061】
一実施形態に係るポリアリーレンスルフィド樹脂としてのポリフェニレンスルフィド樹脂は、例えば、下記一般式(10):
【0062】
【化13】

で表される繰り返し単位(アリーレンスルフィド単位)を含む主鎖を有する。式(10)で表される繰り返し単位は、パラ位で結合する下記式(10a):
【0063】
【化14】

で表される繰り返し単位、及び、メタ位で結合する下記式(10b):
【0064】
【化15】

で表される繰り返し単位であることがより好ましい。これらの中でも、式(10a)で表されるパラ位で結合した繰り返し単位が、樹脂の耐熱性及び結晶性の面で好ましい。
【0065】
一実施形態に係るポリフェニレンスルフィド樹脂は、下記一般式(11):
【0066】
【化16】

(式中、R20及びR21は、それぞれ独立に水素原子、炭素原子数1〜4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、又はエトキシ基を表す。)で表される、芳香族環に結合した側鎖としての置換基を有する繰り返し単位を含み得る。ただし、結晶化度及び耐熱性の低下の観点から、ポリフェニレンスルフィド樹脂は、一般式(11)の繰り返し単位を実質的に含まないことが好ましい。より具体的には、式(11)で表される繰り返し単位の割合は、式(10)で表される繰り返し単位と式(11)で表される繰り返し単位との合計に対して、好ましくは2質量%以下、より好ましくは0.2質量%以下である。
【0067】
本実施形態のポリアリーレンスルフィド樹脂は、上記アリーレンスルフィド単位から主として構成されるが、通常、原料の単体硫黄に由来する、下記式(20):
【0068】
【化17】

で表されるジスルフィド結合に係る構成単位も主鎖中に含む。耐熱性、機械的強度の点から、式(20)で表される構成単位の割合は、アリーレンスルフィド単位と、式(20)で表される構成部位との合計に対して、好ましくは2.9質量%以下の範囲、より好ましくは1.2質量%以下の範囲である。
【0069】
本実施形態に係るポリアリーレンスルフィド樹脂のMw/Mtopは、好ましくは0.80〜1.70の範囲であり、より好ましくは0.90〜1.30の範囲である。Mw/Mtopをこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、外観仕上がりが良好な多層成形体を作製することができる。本明細書において、Mwはゲル浸透クロマトグラフィーにより測定される重量平均分子量のことを示し、Mtopは同測定により得られるクロマトグラムの検出強度が最大となる点の平均分子量(ピーク分子量)を示す。Mw/Mtopは、測定対象の分子量の分布を示し、通常、この値が1に近いと分子量の分布が狭いことを示し、この値が大きくなるにつれて、分子量の分布が広いことを示す。なお、ゲル浸透クロマトグラフィーの測定条件は、本明細書の実施例と同一の測定条件とする。ただし、Mw、Mw/Mtopの値に実質的な影響を及ぼさない範囲で、測定条件を変更することは可能である。
【0070】
本実施形態に係るポリアリーレンスルフィド樹脂の重量平均分子量は、本発明の効果を損なわなければ特に限定されるものではないが、その下限は、機械的強度に優れる点から28,000以上であることが好ましく、さらに30,000以上の範囲であることがより好ましい。一方、上限は、より良好なキャビティーバランスを付与することができる点から100,000以下の範囲であることが好ましく、さらに60,000以下の範囲であることがより好ましく、さらに55,000以下の範囲であることが最も好ましい。さらに、機械的強度に優れつつ、かつ、良好なキャビティーバランスを付与できる観点から、28,000〜60,000の範囲のポリアリーレンスルフィド樹脂、より好ましくは30,000〜55,000の範囲のポリアリーレンスルフィド樹脂と共に、重量平均分子量が60,000超100,000以下の範囲にあるポリアリーレンスルフィド樹脂を使用してもよい。
【0071】
ポリアリーレンスルフィド樹脂の非ニュートニアン指数は、好ましくは0.95〜1.75の範囲であり、より好ましくは1.00〜1.70の範囲である。非ニュートニアン指数をこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、多層成形体の外観仕上がりが良好となる。本明細書において、非ニュートニアン指数は温度300℃の条件下におけるせん断速度とせん断応力との下記関係式を満たす指数をいう。非ニュートニアン指数は、測定対象の分子量、又は直鎖、分岐、架橋といった分子構造に関する指標となりえ、通常、この値が1に近いと樹脂の分子構造が直鎖状であることを示し、この値が大きくなるにつれて、分岐や架橋構造が多く含まれることを示す。
D=α×S
(上記式中、Dはせん断速度を表し、Sはせん断応力を表し、αは定数を表し、nは非ニュートニアン指数を表す。)
【0072】
上述の特定範囲のMw/Mtop及び非ニュートニアン指数を有するポリアリーレンスルフィド樹脂は、例えば、ジヨード芳香族化合物と、単体硫黄と、重合禁止剤とを、ジヨード芳香族化合物、単体硫黄及び重合禁止剤を含有する溶融混合物中で反応(溶液重合)させる方法において、かかるポリアリーレンスルフィド樹脂をある程度高分子量化させることにより得ることが可能である。
【0073】
ポリアリーレンスルフィド樹脂の融点は、好ましくは250〜300℃の範囲、より好ましくは265〜300℃の範囲である。ポリアリーレンスルフィド樹脂の300℃における溶融粘度(V6)は、好ましくは1〜2000[Pa・s]の範囲、より好ましくは5〜1700[Pa・s]の範囲である。ここで、溶融粘度(V6)は、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比(オリフィス長/オリフィス径)が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を意味する。
【0074】
本実施形態に用いられる熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、弗素系エラストマー及びシリコーン系エラストマーが挙げられる。
【0075】
熱可塑性エラストマーは、式(1)で表される基と反応し得る官能基を有することが好ましい。これにより、接着性及び耐衝撃性等の点で特に優れた樹脂組成物を得ることができる。係る官能基としては、エポキシ基、カルボキシ基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1〜8のアルキル基を表す。)で表される基が挙げられる。係る官能基を有する熱可塑性エラストマーは、例えば、α−オレフィンと官能基を有するビニル重合性化合物との共重合により得ることができる。α−オレフィンは、例えば、エチレン、プロピレン及びブテン−1等の炭素原子数2〜8のα−オレフィン類が挙げられる。官能基を有するビニル重合性化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β−不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4〜10のα,β−不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、エポキシ基、カルボキシ基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1〜8のアルキル基を表す。)で表される基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体及びエチレン−ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。
【0076】
ポリアリーレンスルフィド樹脂組成物中の熱可塑性エラストマーの配合比率は、10〜20質量%であることが好ましく、12〜18質量%であることがより好ましく、16〜18質量%であることが特に好ましい。熱可塑性エラストマーの配合比率がこの範囲であれば、燃料バリアー性と密着性とのバランスに優れる。
【0077】
熱可塑性エラストマーの含有量は、その種類、用途により異なるため一概に規定することはできないが、例えば、ポリアリーレンスルフィド樹脂100質量部に対して好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、更に好ましくは5〜45質量部の範囲である。熱可塑性エラストマーの含有量がこれらの範囲にあることにより、成形品の耐熱性、靭性の確保の点でより一層優れた効果が得られる。
【0078】
本実施形態に用いられる芳香族系エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、及びビフェニルノボラック型エポキシ樹脂が挙げられる。これらの芳香族系エポキシ樹脂は、単独で又は2種以上を組み合わせて用いることができる。これら芳香族系エポキシ樹脂の中でも特に、他の樹脂成分との密着性に優れる点から、ノボラック型エポキシ樹脂が好ましく、クレゾールノボラック型エポキシ樹脂がより好ましい。
【0079】
芳香族系エポキシ樹脂は、ハロゲン基、水酸基等を有していてもよく、単独又は2種以上の混合物として使用してもよい。
【0080】
ポリアリーレンスルフィド樹脂組成物中の芳香族系エポキシ樹脂の配合比率は、0.1〜5質量%であることが好ましく、0.5〜4質量%であることがより好ましく、1〜3質量%であることが特に好ましい。芳香族系エポキシ樹脂の配合比率がこの範囲であれば、ポリアリーレンスルフィド樹脂組成物の溶融安定性が良好となり、熱可塑性樹脂と共押出した際の、該熱可塑性樹脂との密着性が良好となる。
【0081】
本実施形態に係るポリアリーレンスルフィド樹脂組成物には、上述したポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂及び熱可塑性エラストマーに加え、本発明の趣旨を逸脱しない範囲で、無機系又は有機系の各種強化材、充填材、潤滑剤、安定剤等を配合することができる。これらの配合量はポリアリーレンスルフィド樹脂組成物中に5質量%以下であることが好ましい。
【0082】
ポリアリーレンスルフィド樹脂組成物を製造する方法は、ポリアリーレンスルフィド樹脂、芳香族系エポキシ樹脂、熱可塑性エラストマー、及びその他の配合成分を予めヘンシェルミキサー又はタンブラー等で混合した後、1軸又は2軸押出混練機に供給して250℃〜350℃で混練し、造粒しペレット化することにより得る方法が挙げられる。特に、混練機は、混練用のニーディングディスクを備えた同方向回転の2軸押出混練機を用いることが組成物の均一性が良好となる点から好ましい。
【0083】
ポリアリーレンスルフィド樹脂組成物と共押出する熱可塑性樹脂としては、具体的には、分子末端に水酸基を有するポリカーボネート樹脂、水酸基やカルボキシル基を有するポリエステル樹脂、水酸基やイソシアネート基を有するポリウレタン樹脂、エポキシ基、カルボキシル基又は酸無水物基をペンダント状に有する変性ポリオレフィン、ポリアミド樹脂等が挙げられる。
【0084】
ポリカーボネート樹脂として、具体的には、二官能性フェノール化合物の高分子炭酸エステルが挙げられる。該二官能性フェノール化合物としては、例えば、ビス(4−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、4,4−ビス(ヒドロキシフェニル)ヘプタン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、ビス(4−ヒドロキシフェニル)エーテル、ビス(3,5−ジクロロ−4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルホン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(3,5−ジブロモ−4−ヒドロキシフェニル)スルホキシド等のビスフェノール類;p,p’−ジヒドロキシビフェニル、3,3’−ジクロロ−4,4’−ジヒドロキシビフェニル等のジヒドロキシビフェニル類;レゾルシノール、ハイドロキノン、1,4−ジヒドロキシ−2,5−ジクロロベンゼン、1,4−ジヒドロキシ−3−メチルベンゼン等のジヒドキシベンゼン類が挙げられる。
【0085】
ポリカーボネート樹脂を製造するために、二官能性フェノール化合物と反応させるカーボネート化剤としては、例えば、臭化カルボニル、塩化カルボニル等のハロゲン化カルボニル、ジフェニルカーボネート、ジ(クロロフェニル)カーボネート、ジ(トリルカーボネート、ジナフチルカーボネート等のカーボネートエステル;ハイドロキノンビスクロロホルメート、エチレングリコールハロホルメート等のハロホルメートが挙げられる。
【0086】
ポリエステル樹脂は、芳香族ジカルボン酸と脂肪族ジオールとから得られる芳香族ポリエステル樹脂であることが好ましく、特に、ジカルボン酸成分の60モル%以上がテレフタル酸であるジカルボン酸と脂肪族ジオールとから得られる芳香族ポリエステルが好ましい。テレフタル酸以外のジカルボン酸成分としては、例えば、アゼライン酸、セバシン酸、アジピン酸、ドデカンジカルボン酸等が挙げられる。一方、脂肪族ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチレングリコール、ヘキサメチレングリコール、シクロヘキセンジメタノール等が挙げられる。
【0087】
ポリエステル樹脂の具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート、ポリシクロヘキセンジメチレンテレフタレート等が挙げられる。これらの中でも、特にポリエチレンテレフタレート及びポリブチレンテレフタレートが、ポリアリーレンスルフィド樹脂組成物との密着性の点から好ましい。
【0088】
ポリウレタン樹脂とは、ポリイソシアネートとジオールとから得られるものである。ポリイソシアネートとしては、例えば、2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、メタキシレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート等が挙げられる。ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチレングリコール、ヘキサメチレングリコール、シクロヘキセンジメタノール等が挙げられる。
【0089】
さらに、エポキシ基、カルボキシル基又は酸無水物基をペンダント状に有する変性ポリオレフィンは、ポリオレフィンを主鎖とし、その側鎖にエポキシ基、カルボキシル基、又は酸無水物基をペンダント状に有するものである。
【0090】
エポキシ基を含有するポリオレフィンとして、具体的には、アクリル酸グリシジル、メタクリル酸グリシジル等のグリシジル(メタ)アクリレートと、α−オレフィンとの共重合体が挙げられ、カルボキシル基、又は酸無水物基を含有するポリオレフィンとしては、ポリオレフィン樹脂にマレイン酸、コハク酸、フタル酸又はこれらの酸無水物を反応させたものが挙げられる。
【0091】
α−オレフィンとしては、例えば、エチレン、プロピレン、ブテン−1、4−メチルペンテン−1、ヘキセン1、デセン−1、オクテン−1等が挙げられる。
【0092】
ポリアミド樹脂は、アミノ酸化合物、ラクタム化合物の重合体、又はジアミン化合物とジカルボン酸化合物との重縮合体が挙げられる。アミノ酸化合物としては、例えば、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸等が挙げられる。ラクタム化合物はとしては、例えば、ε−アミノカプロラクタム、ω−ラウロラクタム等が挙げられる。
【0093】
ジアミン化合物とジカルボン酸化合物との重縮合体に用いられるジアミン化合物は、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン等の脂肪族ジアミン;1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジン等の脂環式ジアミン;メタキシレンジアミン、パラキシリレンジアミン等の芳香族ジアミンなどが挙げられる。
【0094】
一方、ジカルボン酸化合物は、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の芳香族ジカルボン酸が挙げられる。
【0095】
これらの中でも、特に、ガソリン等の燃料に対するバリアー性及び耐衝撃性に優れる点から、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリドデカンアミド(ポリアミド12)、ポリウンデカンアミド(ポリアミド11)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリキシリレンアジパミド(ポリアミドXD6)が好ましく、特に、ポリアミド6、ポリアミド66、ポリアミド12が好ましい。
【0096】
これらポリアミド樹脂は、その重合度が1%の濃硫酸溶液中、25℃で測定した相対粘度で1.5〜7.0の範囲、特に2.0〜6.5の範囲のものが耐衝撃性に優れる点から好ましい。
【0097】
上記した熱可塑性樹脂の中でも、特に燃料チューブ等の燃料配管部材用途における耐衝撃性や燃料バリアー性に優れる点からポリアミド樹脂が好ましい。
【0098】
本実施形態に係る多層積層体は、ポリアリーレンスルフィド樹脂組成物と、熱可塑性樹脂とを共押出成形して得られるものである。ここで、共押出成形する方法としては、燃料チューブなどのチューブ状成形体を得る場合には、ポリアリーレンスルフィド樹脂組成物及び熱可塑性樹脂を、押出機内に投入し、溶融混練後、溶融状態で接触させることができるダイを用いて積層チューブに成形する方法が挙げられる。ここで、押出機は、一軸又は二軸の押出機であって、ダイ部において各々のシリンダーで可塑化された樹脂を1つの多層チューブに成形できるチューブ用ダイを具備するものが好ましい。なお、ポリアリーレンスルフィド樹脂組成物を溶融混練する際のシリンダー内の温度は280〜320℃であることが好ましく、熱可塑性樹脂を溶融混練する際のシリンダー内の温度は230〜270℃であることが好ましい。
【0099】
チューブ成形体を得る場合、その層構成は、内層にポリアリーレンスルフィド樹脂組成物からなる(A)層(以下、「(A)層」と略記する。)と、外層に熱可塑性樹脂からなる(B)層(以下、「(B)層」と略記する。)とを有する2層構造であってもよいし、さらに、(B)層の外側に(A)層を設けた3層構造、さらにこの(A)層の外側に(A)層を設けた4層構造であってもよい。本実施形態では、特に、耐衝撃性及び燃料バリアー性のバランスが良好となる点から2層構造であることが好ましい。
【0100】
本実施形態に係る多層積層体における一層あたりの厚さは、その用途によって異なるが、例えば、燃料チューブに用いる場合、チューブ状成形体の全厚が0.8〜1.2mmであることが好ましく、(A)層の一層の厚さと、(B)層の一層の厚さとの比率が、(A)層/(B)層=10/90〜40/60であることがバリアー性と耐衝撃性とのバランスの点から好ましい。
【0101】
本実施形態に係る多層積層体として、燃料タンク、容器等の成形体を得るには、ポリアリーレンスルフィド樹脂組成物と、熱可塑性樹脂とを多層シート状に共押出し、ロール延伸法、テンター延伸法、チューブラー延伸法、延伸ブロー法等の他、深絞成形、真空成形等の成形法により賦形することによって製造することができる。また、燃料タンク、容器等の用途においては、燃料等との接液面側を(A)層、外側を(B)層にすることが燃料バリアー性の点から好ましい。
【0102】
本実施形態に係る多層成形体は、燃料等の有機物の流体搬送の際に用いられる配管用部材、容器、燃料チューブに適するものであるが、具体的な用途としては、例えば、パイプ、ライニング管、袋ナット類、管継ぎ手類(エルボー、ヘッダー、チーズ、レデューサ、ジョイント、カプラー等)、各種バルブ、流量計、ガスケット(シール、パッキン類)等の燃料を搬送するための配管及び配管に付属する各種の部品;燃料ポンプ、キャニスター等のハウジング;燃料タンクなどが挙げられる。また、本実施形態に係る多層成形体は、他の材料との複合化、接着、カシメ等により他材料と合わせてよい。
【実施例】
【0103】
以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
【0104】
1.ポリフェニレンスルフィド樹脂(PPS樹脂)
1−1.PPS−1〜5の合成
(合成例1)
p−ジヨードベンゼン(東京化成株式会社、p−ジヨードベンゼン純度98.0%以上)300.0g、固体硫黄(関東化学株式会社製、硫黄(粉末))27.00g、4,4’−ジチオビス安息香酸(和光純薬工業株式会社製、4,4’−ジチオビス安息香酸、Technical Grade)2.0gを180℃に窒素雰囲気下で加熱し、これらを溶解及び混合した。次に220℃に昇温し、絶対圧26.6kPaまで減圧した。系内が320℃で絶対圧133Paとなるように、段階的に温度と圧力変化させて、得られた溶融混合物を加熱しながら、8時間、溶融重合を行った。反応終了後、NMP200gを加えて、220℃で加熱撹拌し、得られた溶解物をろ過した。ろ過後の溶解物にNMP320gを加え、ケーキ洗浄ろ過を行った。得られたNMPを含むケーキにイオン交換水1Lを加え、オートクレーブ中で200℃10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。得られた含水ケーキにイオン交換水1Lを加えて10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。この操作をもう一度繰り返した後、ケーキを120℃で4時間乾燥し、PPS樹脂91gを得た。
【0105】
(合成例2)
「4,4’−ジチオビス安息香酸」の替りに「2−ヨードアニリン(東京化成株式会社製)」を用いたこと以外は合成例1と同様にして、PPS樹脂91gを得た。
【0106】
(合成例3)
「4,4’−ジチオビス安息香酸」の替りに「ジフェニルジスルフィド(住友精化株式会社 DPDS)」を用いたこと以外は合成例1と同様にしてPPS樹脂91gを得た。
【0107】
(合成例4)
p−ジヨードベンゼン(東京化成株式会社製、p−ジヨードベンゼン純度98.0%以上)300.0g、固体硫黄(関東化学株式会社製、硫黄(粉末))29.15g及び4−ヨードビフェニル(東京化成株式会社製)1.48gを180℃に窒素雰囲気下で加熱し、これらを溶解及び混合した。次に220℃に昇温し、絶対圧46.7kPaまで減圧し、系内が320℃で絶対圧133Paとなるように、段階的に温度と圧力変化させて、得られた溶融混合物を加熱しながら、8時間、溶融重合を行った。反応終了後、NMP200gを加えて、220℃で加熱撹拌し、得られた溶解物をろ過した。ろ過後の溶解物にNMP320gを加え、ケーキ洗浄ろ過を行った。得られたNMPを含むケーキにイオン交換水1Lを加え、オートクレーブ中で200℃10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。得られた含水ケーキにイオン交換水1Lを加えて10分間攪拌した。次いでケーキをろ過し、ろ過後のケーキに70℃のイオン交換水1Lを加えケーキ洗浄を行った。この操作をもう一度繰り返した後、ケーキを120℃で4時間乾燥し、PPS樹脂91gを得た。
【0108】
(比較合成例)
オートクレーブにNMP600g及び硫化ナトリウム5水塩336.3g(2.0mol)を仕込み、窒素雰囲気下、200℃まで昇温することにより水−NMP混合物を留去した。ついでこの系にp−ジクロロベンゼン292.53gと2,5−ジクロロアニリン1.62gをNMP230gに溶かした溶液を添加し、220℃で5時間さらに240℃で2時間窒素雰囲気下で反応させた。反応容器を冷却後、内容物を取り出し、一部をサンプリングし、未反応2,5−ジクロロアニリンをガスクロマトグラフで定量した。また残りのスラリは熱水で数回洗浄し、ポリマーケーキを濾別した。このケーキを80℃減圧乾燥し、粉末状のPPS樹脂を得た。赤外吸収スペクトルを測定したところ、3380cm−1付近にアミノ基に由来すると見られる吸収スペクトルが観測された。
【0109】
1−2.溶融粘度
PPS樹脂を島津製作所製フローテスター、CFT−500Cを用い、300℃、荷重:1.96×10Pa、L/D=10/1にて、6分間保持した後に溶融粘度を測定した。
【0110】
1−3.非ニュートニアン指数
PPS樹脂をキャピラリーレオメーターにて、温度300℃の条件下、直径1mm、長さ40mmのダイスを用いて100〜1000(sec−1)の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。
【0111】
1−4.Mw及びMw/Mtop(分子量分布)
PPS樹脂の重量平均分子量及びピーク分子量を、ゲル浸透クロマトグラフィーを用いて、下記の測定条件により測定した。得られたMw及びMtopからMw/Mtopを算出した。6種類の単分散ポリスチレンを校正に用いた。
装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC−7000」)
カラム:UT−805L(昭和電工株式会社製)
カラム温度:210℃
溶媒:1−クロロナフタレン
測定方法:UV検出器(360nm)
【0112】
合成したPPS−1〜5の特性をまとめて表1に示す。
【0113】
【表1】
【0114】
2.ポリフェニレンスルフィド樹脂組成物(PPSコンパウンド)
2−1.原料
PPS樹脂組成物を調製するため、以下の材料を準備した。
(芳香族系エポキシ樹脂)
・エポキシ樹脂:クレゾールノボラック型エポキシ樹脂(DIC株式会社製、「エピクロン N−695」、エポキシ当量214g/eq、軟化点94℃)
(熱可塑性エラストマー)
・ELA−1: 酸変性エチレン−ブテン共重合体(三井化学株式会社製「タフマー MH−7020)
・ELA−2: 未変性エチレン−ブテン共重合体(三井化学株式会社製「タフマー A−4085」)
【0115】
2−2.コンパウンドの作製
表2に記載する配合組成で各原料をタンブラーを用いて均一に混合した後、2軸混練押出機(東芝機械株式会社製、「TEM−35B」)を用いて300℃で溶融混練して、ペレット状のコンパウンドを得た。
【0116】
3.評価
3−1.ガス透過係数測定用試験片の作製
上記で調製したポリアリーレンスルフィド樹脂組成物を射出成形機により成形して、縦50mm×横100mm×厚さ2mmのプレートを作製した。次いで、このプレートをメルトプレスにより薄く加工し、厚さ0.3mmのフィルムを作製した。このフィルムをガス透過係数測定用試験片とした。
【0117】
3−2.燃料バリアー性
上記で作製したフィルムについて、フューエルC/エタノール=90/10(体積%)、フューエルC;トルエン/イソオクタン=50/50(体積%))の40℃におけるガス透過係数(単位:mol・m/m2・s・Pa)をJIS K7126 A法に準拠し、測定装置にガス透過率・透湿度測定装置(GTRテック株式会社製、「GTR−30VAD」)を用い、GC検出部に株式会社島津製作所製「GC−14A」を用いて差圧方式のGC検出で測定した。また、測定で得られたガス透過係数の値から、下記の基準で燃料バリアー性を評価した。
◎:ガス透過係数が1.0×10−15mol・m/m・s・Pa未満。
○:ガス透過係数が1.0×10−15mol・m/m・s・Pa以上。
【0118】
3−3.2層チューブの作製
2つの可塑化シリンダー(内径20mmφ、一軸押出しスクリュー)を有し、ダイ部分で各々のシリンダーで可塑化された樹脂を1つの2層チューブに合一化できるチューブ用ダイを有する2層チューブ作製装置を用いて、外層側となる可塑化シリンダーにポリアミド12(エムスケミー・ジャパン株式会社製「グリルアミドL25W40」;ガス透過係数5.7×10−14mol・m/m2・s・Pa)を投入し、内層側となる可塑化シリンダーに上記で調製したポリアリーレンスルフィド樹脂組成物を投入して、外層側の温度250℃、内層側の温度300℃でチューブを押出し、巻き取り速度を調整して、外径8mmφ、内径6mmφの2層チューブを作製した。なお、これらの2層チューブは内層の厚さは0.3mm、外層の厚さは0.8mmであった。
【0119】
3−4.密着性
上記で作製した2層チューブを用いて、長さ方向にチューブを切り開いてシート状とし、10mm幅に切りそろえて、ISO−11339に従い、ピール強度(単位kN/m)を測定した。また、測定で得られたピール強度の値から、下記の基準で密着性を評価した。
○:ピール強度が2.0kN/m以上。
△:ピール強度が1.0kN/m以上で2.0kN/m未満。
×:ピール強度が1.0kN/m未満。
【0120】
3−5.発生ガス量
ガスクロマトグラフ質量分析装置を用いて、PPS樹脂単体及びPPSコンパウンドについて、所定量のサンプルを325℃で15分間加熱し、そのときの発生ガス量を質量%として定量した。
【0121】
【表2】
【0122】
表2に示される結果から明らかなように、実施例で作製した多層成形体は、加熱によるガスの発生を抑制できると共に、高い燃料バリアー性を有し、多層成形体の層間の密着性にも優れる。