【実施例】
【0040】
以下、本発明の固体高分子形燃料電池用の担体炭素材料及び触媒について、実施例及び比較例に基づいて説明する。
なお、以下の実施例及び比較例において、細孔の細孔容積及び細孔面積の測定及び平均粒子半径の測定は下記の方法で行った。
【0041】
〔細孔容積及び細孔面積の測定〕
液体窒素温度における窒素ガスの吸着等温線から、解析により、本発明の細孔径を求めた。具体的には、マイクロトラック・ベル社製のBELSORPminiを用いた。装置に付属の解析ソフトにより、BJH法によりメソ孔の分布を算出した。その数値表から、本発明の半径2nm以上50nm以下の細孔容積V
A、半径2nm以上50nm以下の細孔面積S
2-50、半径5nm以上25nm以下の細孔容積V
5-25、及び半径2nm以上5nm以下の細孔容積V
2-5を算出した。
【0042】
〔平均粒子半径の測定〕
担体炭素材料の粒度分布の測定には、島津製作所社製のレーザー回折式粒度分布測定装置(SALD-3000S)を用いた。その装置に付属の粒度分布の解析ソフトによる平均粒子径(対数表示で求めた粒子径に対する頻度に基づき計算した平均値)を本発明の平均粒子半径とした。
【0043】
1.担体炭素材料の調製
〔方法A:アルミナ粒子を鋳型とした担体炭素材料の調製〕
粒径(直径)が10nm、20nm、及び50nmのガンマ型アルミナ粒子〔SIサイエンス社製4N nano alumina(gamma)〕を用い、これら各ガンマ型アルミナ粒子に対して、ポリビニルアルコール粉末(完全けん化型、平均重合度1000)を重量比1:2の割合で混合し、不活性ガス雰囲気中600℃及び2時間の条件で保持した後、更に昇温して900℃で1時間保持して焼成した。その後、得られたアルミナ-炭素複合物を10質量%-水酸化ナトリウム水溶液中60℃で5時間以上処理し、アルミナを溶解して除去した。更に、濾過と純水への再分散とを3回繰り返して洗浄し、濾過して得られた固体を90℃で4時間乾燥し炭素材料を得た。
【0044】
このようにして得られた各炭素材料について、遊星ボールミル(フリッチュ・ジャパン社製プレミアムラインP7)を用い、回転数50〜200rpm及び10分間の処理条件で粉砕し、粒径(直径)10nmの原料を用いて得られた担体炭素材料A10と、20nmの原料を用いて得られた担体炭素材料A20と、50nmの原料を用いて得られた担体炭素材料A50とを得た。
更に、粒径(直径)10nmの原料を用いて得られた炭素材料を用い、粉砕条件を変更して4種類の担体炭素材料(A10S、A10SS、A10L、A10LL)を作成した。
【0045】
更に、粒径(直径)が10nmと20nmの上記ガンマ型アルミナ粒子を質量混合比2:1、1:1、又は1:2の割合で配合し、乳鉢で充分に混合して得られた各混合原料を用い、前述と同じ条件で炭素材料の調製を行い、上記と同様の条件で粉砕し、質量混合比2:1の混合原料を用いて得られた担体炭素材料A21と、質量混合比1:1の混合原料を用いて得られた担体炭素材料A11と、質量混合比1:2の混合原料を用いて得られた担体炭素材料A12とを得た。
【0046】
同様に、粒径(直径)が10nmと50nmの上記ガンマ型アルミナ粒子を質量混合比1:1の割合で配合し、乳鉢で充分に混合して得られた混合原料と、粒径(直径)が20nmと50nmの上記ガンマ型アルミナ粒子を質量混合比1:1の割合で配合し充分に混合して得られた混合原料とを用い、前述と同じ条件で炭素材料の調製を行い、上記と同様の条件で粉砕し、粒径(直径)10nmと50nmのガンマ型アルミナ粒子を用いて得られた担体炭素材料AA11と、粒径(直径)20nmと50nmのガンマ型アルミナ粒子を用いて得られた担体炭素材料AB11とを得た。
【0047】
以上のようにして得られた各担体炭素材料について、更に細孔を大きくする目的で以下の賦活処理を行い、それぞれ賦活処理後の担体炭素材料を得た。
〔賦活処理C〕
上で得られた各担体炭素材料をアルミナボート上に2〜3g秤量し、横型管状電気炉内にセットし、窒素ガスを100ml/分で流通しながら1100℃まで昇温させ、その後に二酸化炭素を100ml/分の速度で流通させながら処理時間1時間(-C1)又は処理時間3時間(-C3)の賦活処理を実施し、賦活処理後の各担体炭素材料を調製した。なお、このようにして得られた賦活処理後の各担体炭素材料については、例えば、担体炭素材料A10に1時間(-C1)の賦活処理を施して得られた賦活処理後の担体炭素材料をA10-C1と表記し、また、担体炭素材料A10に3時間(-C3)の賦活処理を施して得られた賦活処理後の担体炭素材料をA10-C3と表記するように、各担体炭素材料の記号の末尾に「-C1」又は「-C3」を付加して表す。
【0048】
〔賦活処理K〕
賦活処理として、賦活剤としてアルカリを用いたいわゆるアルカリ賦活についても検討した。このアルカリ賦活においては、上で得られた各担体炭素材料約2gとKOH粉末5〜10gとを乳鉢で混合し、得られた混合粉をニッケル製円筒容器に詰め、不活性ガス雰囲気中450℃で、処理時間1時間(-K1)又は処理時間3時間(-K3)の賦活処理を行い、その後、グローブボックス中で冷却後のニッケル円筒容器内にエタノールを入れ、アルカリ金属を溶解させて濾過し、得られた固体を純水で洗浄した後、90℃で4時間真空乾燥を行って賦活処理後の各担体炭素材料を調製した。得られた賦活処理後の各担体炭素材料については、賦活処理Cの場合と同様に、各担体炭素材料の記号の末尾に「-K1」又は「-K3」を付加して表す。
【0049】
〔方法B:グルコン酸Mgの焼成による担体炭素材料の調製〕
グルコン酸マグネシウムn水和物(C
12H
22MgO
14・nH
2O)を石英管ボートに充填し、横型管状電気炉中にセットした。毎分10℃の昇温速度で500℃まで昇温し、この温度で2時間保持し、その後900℃まで昇温し、更にこの温度で1時間保持し、グルコン酸マグネシウムn水和物の焼成を行った。焼成中は管状炉内に200ml/minのアルゴンガスを流通させ、焼成中に生成する揮発成分を除去した。この焼成工程で得られた炭素-マグネシウム複合物から希硫酸によりマグネシウム化合物を溶解・除去し、純水で洗浄し、濾過して乾燥し、担体炭素材料Bを得た。
【0050】
上記で得られた担体炭素材料Bについて、上記の賦活処理C又は賦活処理Kを行い、それぞれ賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、末尾に「-C1」、「-C3」、「-K1」、又は「-K3」を付してそれぞれ担体炭素材料B-C1、担体炭素材料B-C3、担体炭素材料B-K1、担体炭素材料B-K3と表示した。
【0051】
〔方法C:メソポーラスシリカを鋳型とした担体炭素材料の調製〕
メソポーラスなアルミネートシリカ(アルドリッチ社製MCM41;アルミニウム3%)とスクロース(C
12H
22O
11)とを混合し、これに濃硫酸を加え、200℃で2時間保持し、その後1200℃で1時間保持して焼成し、得られたシリカ-炭素複合物をフッ化水素で洗浄し、担体炭素材料Cを得た。
【0052】
次に、二酸化炭素の流通速度を30ml/minとしたこと以外は、上記の賦活処理Cに従って上記の担体炭素材料Cを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-C1」又は「-C3」を付して担体炭素材料C-C1、担体炭素材料C-C3と表示した。
また同様に、不活性ガス雰囲気中500℃に加熱したこと以外は、上記の賦活処理Kに従って上記の担体炭素材料Cを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-K1」又は「-K3」を付して担体炭素材料C-K1、担体炭素材料C-K3と表示した。
【0053】
〔方法D:ゼオライトを鋳型とした担体炭素材料の調製〕
ゼオライトを鋳型とした多孔質炭素材料は、京谷らの文献(炭素、2008年No.235、p307-316)に準じて作製した。鋳型として粉末Na-Y型ゼオライト(東ソー社製HZS-320NAA)を用い、下記の手順に従って数Åの3次元周期構造規則性を有する多孔質炭素材料を合成した。
予め150℃で乾燥したNa-Y型ゼオライトの粉末を石英製反応管に入れ、これにゼオライトが浸る程度にフルフリルアルコールを加え、撹拌しながら含浸させた。その後、150℃に加熱してゼオライトの空孔中に含浸させたフルフリルアルコールを重合させ、更に900℃の熱処理を行って空孔中の重合物を炭化させ、炭素-ゼオライト複合体を合成した。次に、得られた炭素-ゼオライト複合物をフッ化水素酸及び塩酸で処理し、ゼオライトを溶解し除去して多孔質炭素材料からなる担体炭素材料Dを得た。
【0054】
また、二酸化炭素の流通速度を30ml/minとしたこと以外は、上記の賦活処理Cに従って上記の担体炭素材料Dを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-C1」又は「-C3」を付して担体炭素材料D-C1、担体炭素材料D-C3と表示した。
更に、不活性ガス雰囲気中500℃に加熱したこと以外は、上記の賦活処理Kに従って上記の担体炭素材料Dを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-K1」又は「-K3」を付して担体炭素材料D-K1、担体炭素材料D-K3と表示した。
【0055】
〔その他の炭素材料:カーボンブラック、活性炭、MCND〕
カーボンブラックの例として、現在固体高分子型燃料電池の触媒担体として標準的に用いられているケッチェンブラック(ライオン社製EC300)を用いた。この材料を担体炭素材料Eとした。
活性炭の例として、クラレケミカル社製の「YP80F」を用い、粉砕機を用いて平均粒子半径1.2μmに調整した。この材料を担体炭素材料Fとした。
多孔質化していない炭素材料の例として、アセチレンブラック(AB;電気化学工業社製、デンカブラック粉状)を用いた。この材料を担体炭素材料Gとした。
特許文献3の実施例1に記載された方法に準じて炭素材料(MCND)を製造した。この材料を担体炭素材料Hとした。
【0056】
上で準備した各種の炭素材料について、それぞれ半径2nm以上50nm以下の細孔容積V
A(ml/g)、半径2nm以上50nm以下の細孔面積S
2-50(m
2/g)、半径5nm以上25nm以下の細孔容積V
5-25(ml/g)、半径2nm以上5nm以下の細孔容積V
2-5(ml/g)、及び平均粒子半径(μm)を測定し、また、比率(V
5-25/V
A)及び比率(V
2-5/V
A)を算出し、各担体炭素材料の細孔構造を調べた。
結果を表1及び表2に示す。
【0057】
〔燃料電池の調製とその電池性能の評価〕
1.触媒及び触媒塗布インクの作製
表1及び表2に示す各担体炭素材料について、塩化白金酸、水、及びエタノールを所定比率で配合した混合溶液中に分散させ、その後脱気処理して混合溶液中に担体炭素材料が分散した分散液を調製した。次に、この分散液中に沈殿剤(還元剤)としてアンモニア水をゆっくり滴下し、1時間撹拌した。アンモニア水を用いて得られた沈殿物の洗浄と瀘過を行った。得られた固形分をHeガス雰囲気中350℃及び3時間の条件で焼成し、白金
担持量50質量%の白金担持炭素材料(Pt触媒)を得た。
【0058】
次に、上記Pt触媒をArガス雰囲気下で容器に取り、これに電解質材料としてDupont社製の電解質樹脂〔登録商標:ナフィオン(Nafion)〕を加えて軽く撹拌した後、超音波で白金担持炭素材料を解砕した。更に、撹拌下にエタノールを加え、Pt触媒とパースルホン酸系イオン交換樹脂との合計固形分濃度が1質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒塗布インクを調製した。
【0059】
2.触媒層の調製
その後、上記のようにして作製した所定量の触媒塗布インク中に、攪拌下にエタノールを加えて白金濃度を0.5質量%に調整した後、触媒金属成分(白金)の触媒層単位面積当りの質量(以下、触媒金属成分の目付量という。)が0.2mg/cm
2となるようにスプレー条件を調節し、上記触媒塗布インクをテフロン(登録商標)シート上にスプレー塗布し、次いでArガス雰囲気中120℃及び60分間の条件で乾燥処理を行い、触媒層を作製した。
【0060】
3.MEAの作製
作製した上記の触媒層を用いて、以下の方法でMEA(膜電極複合体)を作製した。ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また
、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。次に、切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが生じないように、この電解質膜を挟み込み、120℃、100kg/cm
2及び10分間の条件でプレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層-電解質膜接合体を調製した。
【0061】
次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが生じないように、上記触媒層-電解質膜接合体を挟み込み、120℃、50kg/cm
2及び10分間の条件でプレスしてMEAを作製した。
【0062】
なお、作製された各MEAにおける触媒金属成分(白金)、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。また、アノードには、炭素材料A-60-1400を共通して用い発電特性の評価結果からカソード触媒層の性能のみを評価できるようにした。
【0063】
4.燃料電池の評価試験
作製した各MEAについて、それぞれセルに組み込み、燃料電池測定装置を用いて以下の手順で燃料電池としての性能評価を行った。
供給ガスとして、カソードに空気を、また、アノードに純水素を、利用率がそれぞれ40%と70%となるように供給した。この際に、それぞれのガス圧については、セル下流に設けられた背圧弁で0.1MPaに圧力調整し、設定した。
【0064】
燃料電池としての性能評価については、フラッディング現象が発生し易い高加湿のガスを用い、大電流発電時の出力特性を評価した。具体的には、セル温度を80℃に設定し、また、供給する空気と純水素については、それぞれ85℃と80℃に保温された蒸留水中でバブリングを行って加湿した。この条件により、水蒸気が飽和した状態で空気と水素とがセルに送り込まれる。
上記の条件において、用いられた担体炭素材料の影響が顕著に表れる、即ち、ガス拡散抵抗が大きくなる領域の1200mA/cm
2におけるセル電圧を測定して評価した。
表1及び表2中に、上述の方法で評価した各担体炭素材料のセル電圧を高加湿時の「出力電圧(V)」として示す。
【0065】
【表1】
【0066】
【表2】
【0067】
5.燃料電池の評価結果
(1) 方法Aで調製された担体炭素材料
A10は細孔容積V
Aが小さ過ぎ、かつ、半径5nmの粒子を鋳型とするために細孔容積V
2-5が相対的に大きくなり、反対に細孔容積V
5-25が小さくなって、粒子内部のガス拡散細孔が小さく、高加湿条件下の大電流発電時に所望の出力電圧(0.60V以上)が発現しなかった。また、A20とA50は、細孔容積V
Aが小さ過ぎ、鋳型の粒子径が5nm以上のため細孔容積V
2-5が小さく、Pt微粒子の分散が悪く、かつ、反応ガスである酸素の粒子内拡散が悪くて所望の出力電圧が達成されなかった。
【0068】
〔賦活処理Cの効果〕
CO
2で1時間賦活処理したA10-C1とA20-C1は、賦活により細孔容積V
Aが増大し、かつ、細孔容積V
2-5と細孔容積V
5-25のバランスがよくなり、また、細孔面積S
2-50も十分に大きく、いずれも高加湿条件下の大電流発電時に良好な出力電圧を示した。他方、A50-C1は、細孔容積V
Aは増大したが、細孔容積V
2-5の増加が少なく、所望の出力電圧を達成しなかった。 また、CO
2で3時間賦活処理したA10-C3、A20-C3及びA50-C3は、共に賦活処理により細孔容積V
Aが増大し、かつ、細孔容積V
2-5と細孔容積V
5-25のバランスがよくなり、また、細孔面積S
2-50も十分に大きく、いずれも高加湿条件下の大電流発電時に良好な出力電圧を示した。ただ、A50-C3は細孔容積V
5-25の絶対値が若干小さく、出力電圧が他よりも少し劣る結果となった。
【0069】
A21、A11、及びA12は、いずれも、細孔面積S
2-50が300m
2/g未満であり、高加湿条件下の大電流発電時における出力電圧が低かった。その中でもA11とA12は、細孔容積V
2-5と細孔容積V
5-25のバランスがよく、細孔面積S
2-50を大きくする賦活処理をすれば、良好な発電特性を発揮するものと期待される。
また、上記の3種類の担体炭素材料を、CO
2で1時間又は3時間賦活処理して得られたA21-C1、A11-C1、A12-C1、A21-C3、A11-C3、及びA12-C3は、いずれも高加湿条件下の大電流発電時において良好な発電特性を発揮した。
【0070】
更に、AA11及びAB11は、何れも細孔容積V
2-5と細孔容積V
5-25のバランスがよいが、総容量である細孔容積V
Aが少なく、高加湿条件下の大電流発電時における出力電圧が低かった。AA11及びAB11に対してCO
2賦活処理を行って得られたAA11-C3とAB11-C3は、共に高加湿条件下の大電流発電時における出力特性が良好であった。
【0071】
〔賦活処理Kの効果〕
A10、A20、A50、A21、A11、及びA12に対して、KOHで1時間又は3時間の賦活処理を行って得られた担体炭素材料において、鋳型の粒子径が50nm直径のA50の場合には、1時間の処理では細孔径の小さい細孔容積V
2-5を作ることができなかったが、3時間の処理では細孔容積V
2-5と細孔容積V
5-25のバランスがよくて細孔面積S
2-50が大きい所望の細孔構造になり、また、鋳型の粒子径が10nm直径又は20nm直径の担体炭素材料の場合には、何れも所望の細孔構造となり、高加湿条件下の大電流発電時に良好な発電特性を示した。
【0072】
〔平均粒子半径の効果〕
A10S-C3、A10SS-C3、A10L-C3、及びA10LL-C3は、何れも細孔構造(細孔容積V
A、比率V
2-5/V
A、比率V
5-25/V
A、細孔容積V
5-25、及び細孔面積S
2-50)に優れており、特にA10S-C3とA10L-C3は、平均粒子半径がそれぞれ0.63μmと4.2μmであって、高加湿条件下の大電流発電時に良好な発電特性を示した。
【0073】
(2) 方法Bで調製された担体炭素材料
方法Bで得られた担体炭素材料Bは、細孔容積V
Aには優れているが、細孔容積V
2-5の比率が高くて相対的に細孔容積V
5-25の比率が低くなり、加湿条件下の大電流発電時における出力電圧が低かった。一方、担体炭素材料Bを原料として、賦活処理C又は賦活処理Kを実施して得られた担体炭素材料は、何れも細孔構造(細孔容積V
A、比率V
2-5/V
A、比率V
5-25/V
A、細孔容積V
5-25、及び細孔面積S
2-50)に優れており、高加湿条件下の大電流発電時に良好な発電特性を発揮した。
【0074】
(3) 方法Cで調製された担体炭素材料
方法Cで調製された担体炭素材料Cは、細孔容積V
Aには優れているが、細孔容積V
2-5の比率が高くて相対的に細孔容積V
5-25の比率が低くなり、高加湿条件下の大電流発電時における出力電圧が低かった。一方、担体炭素材料Cを原料として、賦活処理C又は賦活処理Kを実施して得られた担体炭素材料は、いずれも細孔構造(細孔容積V
A、比率V
2-5/V
A、比率V
5-25/V
A、細孔容積V
5-25、及び細孔面積S
2-50)に優れており、高加湿条件下の大電流発電時に良好な発電特性を発揮した。
【0075】
(4) 方法Dで調製された担体炭素材料
方法Dで調製された担体炭素材料Dは、ほとんど全ての細孔が半径1nm以下であり、半径2nm以上の細孔が実質的に存在せず、触媒担体として用いた際の高加湿条件下の大電流発電時における発電特性に劣るものであった。一方、担体炭素材料Dに対して、1時間の賦活処理Cを行って得られた担体炭素材料D-C1は、2nm以上の細孔形成が不十分で高加湿条件下の大電流発電時における出力電圧が低かったが、3時間の賦活処理Cを行って得られた担体炭素材料D-C3は、高加湿条件下の大電流発電時に良好な発電特性を示した。
【0076】
(4) その他の炭素材料
カーボンブラックの例として用いた担体炭素材料E、活性炭の例として用いた担体炭素材料F、多孔質化していない炭素材料の例として用いた担体炭素材料G、MCNDの例として用いた担体炭素材料Hは、何れも細孔構造(細孔容積V
A、比率V
2-5/V
A、比率V
5-25/V
A、細孔容積V
5-25、及び細孔面積S
2-50)において劣るものであり、高加湿条件下の大電流発電時に所望の出力電圧を達成しなかった。