(58)【調査した分野】(Int.Cl.,DB名)
上記スラリー中を通過させて該スラリーを塗布した上記焼結磁石体に空気を噴射して余滴を除去した後、上記乾燥処理を行う請求項1又は2記載の希土類磁石の製造方法。
上記粉末を塗着させた焼結磁石体に対し、当該焼結磁石体の焼結温度以下の温度で、真空又は不活性ガス中で熱処理を施す請求項1〜4のいずれか1項に記載の希土類磁石の製造方法。
上記塗工槽と上記乾燥手段との間に配設され、上記固定ビームの磁石体保持部を順次移動して搬送される上記焼結磁石体に空気を噴射して、該焼結磁石体表面のスラリーの余滴を除去する余滴除去手段を具備する請求項7記載の希土類化合物の塗布装置。
上記塗工槽及び上記乾燥手段を具備したモジュールを複数直列に配置し、上記固定ビームと可動ビームとで構成された搬送手段で上記焼結磁石体をこれら複数のモジュールを通過させることにより、上記スラリー塗布から乾燥までの粉末塗布プロセスを複数回繰り返すように構成された請求項7〜10のいずれか1項に記載の希土類化合物の塗布装置。
上記各磁石体保持部が、上記固定ビームに形成された凹部からなり、この凹部に複数の突起を形成して、上記焼結磁石体がこれら突起上に載置された状態で凹部に保持されるように構成した請求項7〜11のいずれか1項に記載の希土類化合物の塗布装置。
上記固定ビームが、複数の搬送レールが搬送方向に沿って平行に並設されたものであり、これら複数の搬送レールに跨って形成された磁石体保持部に上記焼結磁石体が保持される請求項7〜12のいずれか1項に記載の希土類化合物の塗布装置。
上記可動ビームが、鉤状に屈曲した磁石体支持部を有する一対の支持竿を複数具備してなり、これら支持竿を上下動及び固定ビームに沿って前後動させて、上記固定ビームの磁石体保持部に載置された上記焼結磁石体を持ち上げ、前方に移動させて次の磁石体保持部に載置する動作を繰り返すように構成された請求項13記載の希土類化合物の塗布装置。
上記固定ビームの磁石体保持部及び上記可動ビームの磁石体支持部のいずれか一方又は両方に、搬送方向に対して直交する水平方向に上記焼結磁石体がずれるのを防止するストッパーを設けた請求項13又は14記載の希土類化合物の塗布装置。
上記固定ビームと可動ビームとで構成される複数の搬送経路を平行に並設し、複数列で搬送される上記焼結磁石体に対して、上記スラリー塗布から乾燥までの粉末塗布プロセスを同時に行うように構成した請求項7〜15のいずれか1項に記載の希土類化合物の塗布装置。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、上記事情に鑑みなされたもので、R
1−Fe−B系組成(R
1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に、R
2の酸化物、フッ化物、酸フッ化物、水酸化物又は水素化物(R
2はY及びScを含む希土類元素から選ばれる1種又は2種以上)から選ばれる1種又は2種以上を含有する粉末を溶媒に分散したスラリーを塗布し乾燥させて、上記粉末を上記焼結磁石体表面に塗着させ、これを熱処理して上記R
2を焼結磁石体に吸収させ希土類永久磁石を製造する際に、粉末を均一かつ確実に塗布することができ、更にスラリーの無駄な浪費を減少させることができ、しかも機械的故障の発生を効果的に防止することができる希土類磁石の製造方法、及びこの希土類磁石の製造方法に好適に用いられる希土類化合物の塗布装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、上記目的を達成するため、下記請求項1〜6の希土類磁石の製造方法を提供する。
請求項1:
R
1−Fe−B系組成(R
1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に、R
2の酸化物、フッ化物、酸フッ化物、水酸化物又は水素化物(R
2はY及びScを含む希土類元素から選ばれる1種又は2種以上)から選ばれる1種又は2種以上を含有する粉末を溶媒に分散したスラリーを塗布し乾燥させて、上記粉末を上記焼結磁石体表面に塗着させ、これを熱処理して上記R
2を焼結磁石体に吸収させる希土類永久磁石の製造方法において、
上記焼結磁石体が載置される多数の磁石体保持部が等間隔ずつ離間して連設された固定ビームを、その一部が上記スラリー中を通過するように配設し、この固定ビームに沿って配設された可動ビームで上記磁石体保持部に載置された上記焼結磁石体を持ち上げ、前方に移動させて次の磁石体保持部に載置する動作を繰り返して複数の上記焼結磁石体を上記固定ビームに沿って連続的に搬送し、その搬送途中で各焼結磁石体を上記スラリー中を通過させて該スラリーを各焼結磁石体に塗布し、更に該焼結磁石体を搬送しながら乾燥させて、複数の焼結磁石体に上記粉末を連続的に塗布することを特徴とする希土類磁石の製造方法。
請求項2:
上記焼結磁石体を上記スラリー中を通過させて該スラリーを塗布し、これを乾燥させる塗布プロセスを複数回繰り返す請求項1記載の希土類磁石の製造方法。
請求項3:
上記スラリー中を通過させて該スラリーを塗布した上記焼結磁石体に空気を噴射して余滴を除去した後、上記乾燥処理を行う請求項1又は2記載の希土類磁石の製造方法。
請求項4:
上記乾燥処理が、上記スラリーを構成する溶媒の沸点(T
B)の±50℃以内の温度の空気を希土類磁石に噴射することにより行われる請求項1〜3のいずれか1項に記載の希土類磁石の製造方法。
請求項5:
上記粉末を塗着させた焼結磁石体に対し、当該焼結磁石体の焼結温度以下の温度で、真空又は不活性ガス中で熱処理を施す請求項1〜4のいずれか1項に記載の希土類磁石の製造方法。
請求項6:
上記熱処理後、更に低温で時効処理を施す請求項1〜5のいずれか1項に記載の希土類磁石の製造方法。
【0010】
また本発明は、上記目的を達成するため、下記請求項7〜16の希土類化合物の塗布装置を提供する。
請求項7:
R
1−Fe−B系組成(R
1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に、R
2の酸化物、フッ化物、酸フッ化物、水酸化物又は水素化物(R
2はY及びScを含む希土類元素から選ばれる1種又は2種以上)から選ばれる1種又は2種以上を含有する粉末を溶媒に分散したスラリーを塗布し乾燥させて、上記粉末を上記焼結磁石体表面に塗着させ、これを熱処理して上記R
2を焼結磁石体に吸収させて、希土類永久磁石を製造する際に、上記粉末を上記焼結磁石体に塗布する塗布装置であり、
内部に上記スラリーを収容した塗工槽と、
上記焼結磁石体が載置される多数の磁石体保持部が等間隔ずつ離間して連設されており、一部が上記塗工槽に収容されたスラリー中を通過するように配設された固定ビームと、
該固定ビームに沿って配設され、上記各磁石体保持部に載置された上記焼結磁石体を持ち上げ、前方に移動させて次の磁石体保持部に載置する動作を繰り返えす可動ビームと、
上記固定ビームの上記磁石体保持部に保持された焼結磁石体を乾燥させる乾燥手段とを具備してなり、
上記固定ビームの磁石体保持部に上記焼結磁石体を載置し、上記可動ビームで該磁石体保持部に載置された上記焼結磁石体を持ち上げ、前方に移動させて次の磁石体保持部に載置する動作を繰り返して複数の上記焼結磁石体を上記固定ビームに沿って連続的に搬送し、その搬送途中で各焼結磁石体を上記塗工槽に収容されたスラリー中を通過させて該スラリーを各焼結磁石体に塗布し、更に該焼結磁石体を搬送しながら上記乾燥手段で乾燥させることにより上記スラリーの溶媒を除去して上記
粉末を上記焼結磁石体表面に固着させる希土類化合物の塗布装置。
請求項8:
上記塗工槽と上記乾燥手段との間に配設され、上記固定ビームの磁石体保持部を順次移動して搬送される上記焼結磁石体に空気を噴射して、該焼結磁石体表面のスラリーの余滴を除去する余滴除去手段を具備する請求項7記載の希土類化合物の塗布装置。
請求項9:
上記乾燥手段が配設された乾燥ゾー
ンをチャンバーで覆い、該チャンバー内の空気を吸引して集塵することにより、焼結磁石体表面から除去された希土類化合物の粉末を回収する集塵手段を具備する請求項7又は8記載の希土類化合物の塗布装置。
請求項10:
上記乾燥手段が配設された乾燥ゾーンと上記余滴除去手段が配設された余滴除去ゾーンの両方をチャンバーで覆い、該チャンバー内の空気を吸引して集塵することにより、焼結磁石体表面から除去された希土類化合物の粉末を回収する集塵手段を具備する請求項8記載の希土類化合物の塗布装置。
請求項
11:
上記塗工槽及び上記乾燥手段を具備したモジュールを複数直列に配置し、上記固定ビームと可動ビームとで構成された搬送手段で上記焼結磁石体をこれら複数のモジュールを通過させることにより、上記スラリー塗布から乾燥までの粉末塗布プロセスを複数回繰り返すように構成された請求項7〜
10のいずれか1項に記載の希土類化合物の塗布装置。
請求項
12:
上記各磁石体保持部が、上記固定ビームに形成された凹部からなり、この凹部に複数の突起を形成して、上記焼結磁石体がこれら突起上に載置された状態で凹部に保持されるように構成した請求項7〜
11のいずれか1項に記載の希土類化合物の塗布装置。
請求項
13:
上記固定ビームが、複数の搬送レールが搬送方向に沿って平行に並設されたものであり、これら複数の搬送レールに跨って形成された磁石体保持部に上記焼結磁石体が保持される請求項7〜
12のいずれか1項に記載の希土類化合物の塗布装置。
請求項
14:
上記可動ビームが、鉤状に屈曲した磁石体支持部を有する一対の支持竿を複数具備してなり、これら支持竿を上下動及び固定ビームに沿って前後動させて、上記固定ビームの磁石体保持部に載置された上記焼結磁石体を持ち上げ、前方に移動させて次の磁石体保持部に載置する動作を繰り返すように構成された請求項
13記載の希土類化合物の塗布装置。
請求項
15:
上記固定ビームの磁石体保持部及び上記可動ビームの磁石体支持部のいずれか一方又は両方に、搬送方向に対して直交する水平方向に上記焼結磁石体がずれるのを防止するストッパーを設けた請求項
13又は14記載の希土類化合物の塗布装置。
請求項
16:
上記固定ビームと可動ビームとで構成される複数の搬送経路を平行に並設し、複数列で搬送される上記焼結磁石体に対して、上記スラリー塗布から乾燥までの粉末塗布プロセスを同時に行うように構成した請求項7〜
15のいずれか1項に記載の希土類化合物の塗布装置。
【0011】
即ち、上記本発明の製造方法及び塗布装置は、上記固定ビームに等間隔ずつ離間して連設された磁石体保持部に上記焼結磁石体を保持し、この焼結磁石体を上記可動ビームで一つ前の保持部へと移動させながら搬送する、所謂ウォーキングビーム方式で上記焼結磁石体を搬送し、その搬送中に、上記スラリー中を通過させて該スラリーを浸漬塗布し、必要に応じて余滴を除去した後、乾燥させてスラリーの溶媒を除去することにより、複数の焼結磁石体に上記希土類化合物の粉末を連続的に塗布するものである。
【発明の効果】
【0012】
本発明によれば、焼結磁石体を上記ウォーキングビーム方式により搬送して、スラリーへの浸漬、乾燥を行うように構成されているため、各焼結磁石体は、上記固定ビームに等間隔ずつ離間して連設された磁石体保持部に安定的に保持された状態で浸漬処理や乾燥処理が行われる。これにより、上記スラリー中を通過させることによるスラリーの塗布中でも上記焼結磁石体の動きを確実に抑制して殆ど固定された状態で浸漬処理を行うことができるので、焼結磁石体同士の接触が確実に防止され、接触による未塗工部分が発生することを確実に防止して、スラリーを均一かつ確実に塗布することができる。
【0013】
また、焼結磁石体の搬送運動は上記可動ビームの動作により行われ、この可動ビームは、後述する実施例のように、金属線等の線材で形成することができ、しかも焼結磁石体浸漬のためにスラリー中に入液する可動ビームは数本のみとすることができる。このため、塗工槽内に収容された上記スラリーが搬送動作によって塗工槽の外へ持ち出される量を少なくすることができ、スラリーの無駄な浪費を可及的に抑制することができ、またスラリー及び粉末の付着、固着による搬送系の機械的故障を少なくできる。更に、後述する実施例のように、スラリー中に入液する可動ビームを乾燥ゾーンに進入しないように設定することもでき、スラリーや粉末の付着や固着を極めて効果的に防止することができる。
【0014】
更に、本発明の製造方法及び塗布装置によれば、以下の効果が得られる。
1)
図10に示されたようなコンベア方式の場合、ネットコンベアcが塗工槽11内のスラリー1中に入液する部分とスラリー1から退出する部分をスロープ状の傾斜部とする必要があり、これが塗工槽11を大型化させる一因となるが、本発明の場合、後述する実施例のように、このような配慮の必要が無く、処理能力に応じた必要容量の塗工槽を設ければよく、塗工槽や該塗工槽内のスラリーを撹拌するスラリーの循環系を小さくすることができる。
2)後述する実施例のように、余滴除去や乾燥工程では、コンベア方式に見られるようなネットベルト等のコンベアベルトによる送風に対する遮蔽物が無いため、乾燥速度を上げることができ、これにより余滴ゾーンを含む乾燥エリアを小さく設計することができる。
3)塗工槽ゾーンと乾燥ゾーンとが上記1),2)の理由で小さくできるので、装置全体を小さく設計することができ、この装置からなるモジュールを複数台配置する際にはレイアウトの自由度を広げることができる。
【発明を実施するための形態】
【0016】
本発明の希土類磁石の製造方法は、上記のとおり、R
1−Fe−B系組成(R
1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に、R
2の酸化物、フッ化物、酸フッ化物、水酸化物又は水素化物(R
2はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含有する粉末を塗布し熱処理してR
2を焼結磁石体に吸収させて希土類磁石を製造するものである。
【0017】
上記R
1−Fe−B系焼結磁石体は、公知の方法で得られたものを用いることができ、例えば常法に従ってR
1、Fe、Bを含有する母合金を粗粉砕、微粉砕、成形、焼結させることにより得ることができる。なお、R
1は上記のとおり、Y及びScを含む希土類元素から選ばれる1種又は2種以上で、具体的にはY、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられる。
【0018】
本発明では、このR
1−Fe−B系焼結磁石体を、必要に応じて研削等によって所定形状に成形し、表面にR
2の酸化物、フッ化物、酸フッ化物、水酸化物、水素化物の1種又は2種以上を含有する粉末を塗布し、熱処理して焼結磁石体に吸収拡散(粒界拡散)させ、希土類磁石を得る。
【0019】
上記R
2は、上記のように、Y及びScを含む希土類元素から選ばれる1種又は2種以上であり、上記R
1と同様にY、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが例示される。この場合、特に制限されるのではないが、R
2中の1又は複数に合計で10原子%以上、より好ましくは20原子%以上、特に40原子%以上のDy又はTbを含むことが好ましい。このようにR
2に10原子%以上のDy及び/又はTbが含まれ、かつR
2におけるNdとPrの合計濃度が前記R
1におけるNdとPrの合計濃度より低いことが本発明の目的からより好ましい。
【0020】
本発明において上記粉末の塗布は、該粉末を溶媒に分散したスラリーを調製し、このスラリーを焼結磁石体表面に塗布して乾燥させることにより行われる。この場合、粉末の粒径は、特に制限されるものではなく、吸収拡散(粒界拡散)に用いられる希土類化合物粉末として一般的な粒度とすることができ、具体的には、平均粒子径100μm以下が好ましく、より好ましくは10μm以下である。その下限は特に制限されないが1nm以上が好ましい。この平均粒子径は、例えばレーザー回折法などによる粒度分布測定装置等を用いて質量平均値D
50(即ち、累積質量が50%となるときの粒子径又はメジアン径)などとして求めることができる。なお、粉末を分散させる溶媒は水でも有機溶媒でもよく、有機溶媒としては、特に制限はないが、エタノール、アセトン、メタノール、イソプロピルアルコール等が例示され、これらの中ではエタノールが好適に使用される。
【0021】
上記スラリー中の粉末の分散量に特に制限はないが、本発明においては、良好かつ効率的に粉末を塗着させるために分散量が質量分率1%以上、特に10%以上、更には20%以上のスラリーとすることが好ましい。なお、分散量が多すぎても均一な分散液が得られないなどの不都合が生じるため、上限は質量分率70%以下、特に60%以下、更には50%以下とすることが好ましい。
【0022】
本発明では、上記スラリーを焼結磁石体に塗布し乾燥させて粉末を焼結磁石体表面に塗布する方法として、固定ビームと可動ビームを用い所謂ウォーキングビーム方式で上記焼結磁石体を搬送し、その搬送途中で上記スラリー中を通過させてスラリーを塗布し、乾燥させる方法を採用する。具体的には、
図1〜9に示した塗布装置を用いて粉末の塗布操作を行うことができる。
【0023】
即ち、
図1〜4は、本発明の一実施例にかかる希土類化合物の塗布装置、及びその動作を示す概略図であり、この塗布装置は、固定ビーム2及び可動ビーム3を具備した所謂ウォーキングビーム方式の搬送装置で上記焼結磁石体m1〜m8(これらを纏めて、又はそれぞれを参照符号「m」で示す場合がある)を搬送し、塗工槽11収容された上記スラリー1を通過させてスラリー1塗布し、余滴除去ゾーン41でスラリーの余滴を除去した後、乾燥ゾーン42で乾燥させてスラリー1中の溶媒を除去することにより、上記希土類化合物の粉末を焼結磁石体mに塗布するものである。
【0024】
上記塗工槽11には、所定量の上記スラリー1が収容されるようになっている。この塗工槽11には、特に制限されるものではないが、適宜な配管及びポンプを用いてスラリーの循環機構を付設し、スラリーを循環させて撹拌するようにしてもよい。
【0025】
上記固定ビーム2は、
図5〜7に示したように、一対の搬送レール21,21を水平に並設したものである。これら搬送レール21,21は薄い長板を幅方向を上下にして平行に配置固定したものであり、両搬送レール21,21の上縁部には凹状の切欠き22が等間隔ずつ離間して連設されている。形成されたこれら切欠き22は両搬送レール21,21の互いに対応した同位置に形成されており、両搬送レール21,21の互いに対向した一対の切欠き22,22により磁石体保持部22が構成され、この磁石体保持部22に上記焼結磁石体mが両搬送レール21,21に跨った状態で保持されるようになっている。なお、本例では一対の切欠き22,22で構成された磁石体保持部も参照符号は22で表す。このように、本例の装置では、一対の搬送レール21,21からなる固定ビーム2の上縁部に、等間隔ずつ離間して凹状の磁石体保持部22が複数連設されている。
【0026】
ここで、この磁石体保持部22には、特に図示していないが、複数の突起を形成して上記焼結磁石体mをこの複数の小突起上に載置して保持するように構成することが好ましく、これにより固定ビーム2と焼結磁石体mとが面接触することを防止し両者の接触をより小さくして、より均一なスラリー塗布を行うことができる。また、特に制限されるものではないが、
図8に示したように、両搬送レール21の外側の上記磁石体保持部22に対応した位置に、長L字状に折曲した板状のストッパー23,23を取り付け、このストッパー23の先端部で焼結磁石体mの両端を係止して、該焼結磁石体mが搬送方向に対して直交する水平方向にずれるのを防止するようにしてもよい。
【0027】
なお、この磁石体保持部22の寸法は、焼結磁石体mの寸法に応じて、着脱が確実かつ容易に行われるように適宜設定すればよい。例えば、磁石体保持部22の幅は焼結磁石体mの幅よりも2mm以上大きくすることが好ましく、また高さは焼結磁石体mの厚さの1%以上、特に10%以上、更には20%以上とすることが好ましい。更に、磁石体保持部22を構成する両切欠き22,22の間隔、即ち両搬送レール21,21の間隔は、焼結磁石体mの長さの20%以上、特に50〜80%とすることが好ましい。また、両搬送レール21,21を後述する可動ビーム3の両支持竿31,31の内側に配置する場合には、焼結磁石体mの両端から長さ寸法の10%の位置(例えば長さ100mmであれば両端からそれぞれ10mmの位置)よりも内側を両搬送レール21,21で支持するように配置することが好ましい。両搬送レール21,21の位置がこれよりも外側であると、可動ビーム3により焼結磁石体mを支持する位置が焼結磁石体mの両端に近すぎる位置となるので、搬送時に焼結磁石体mを落下させるリスクが高くなる。
【0028】
この固定ビーム2は、
図1〜4に示されているように、水平に配置され、上記塗工槽11内のスラリー1、後述する余滴除去ゾーン41及び乾燥ゾーン42を順次通過するようになっている。この場合、上記塗工槽11内に配置された部分は、他の部分と切り離された別体に形成され、塗工槽11内において他の部分と同一の軌道に沿って水平に配置され、磁石体保持部22が等間隔ずつ離間して途切れることなく塗工槽11内を通って連設された状態となっている。そして、この塗工槽11内における固定ビーム2は、該塗工槽11内に収容された上記スラリー中に浸漬された状態となっている。
【0029】
上記可動ビーム3は、
図5〜7に示されているように、先端部(下端部)に鉤状に屈曲した磁石体支持部32が形成された一対の支持竿31で構成されたものであり、この一対の支持竿31,31が、固定ビーム2の磁石体保持部22に対応して等間隔ずつ離間した状態で、上記固定ビーム2に沿ってその上方に複数個連設されたものである。この可動ビーム3は、
図6,7に示されているように、両支持竿31,31の磁石体支持部32,32で焼結磁石体mを支持するようになっており、両支持竿31,31の間隔は、焼結磁石体mを両磁石体支持部32,32間に安定的に支持することができ、かつ両磁石体支持部32,32が上記固定ビーム2の両搬送レール21,21の内側又は外側(本例では内側)を上下に通過し得る幅とすることができる。
【0030】
この可動ビーム3は、上記固定ビーム2の上方で、図示しない駆動機構により上下動及び前後動するようになっており、後述する動作に従って、焼結磁石体mを固定ビーム2の上記磁石体保持部22から持ち上げ、一つ先の磁石体保持部22へと移動させるようになっている。その移動動作の詳細は後述する。
【0031】
この可動ビーム3には、特に制限されるものではないが、
図9に示したように、両磁石体支持部32,32の外側に、L字状に折曲した棒状のストッパー33,33を取り付け、このストッパー23の先端部で焼結磁石体mの両端を係止して、該焼結磁石体mが搬送方向に対して直交する水平方向にずれるのを防止するようにしてもよい。なお、このストッパー33,33を設けた場合には、両支持竿31,31の間隔を、両磁石体支持部32,32が上記固定ビーム2の両搬送レール21,21の外側を上下に通過し得る幅とする必要がある。
【0032】
この塗布装置では、上記固定ビーム2及び可動ビーム3を用いて複数の上記焼結磁石体mを、後述する搬送動作に従って連続的に搬送するものである。その搬送速度は、処理対象の焼結磁石体mの形態(大きさ,形状)や装置に求められる処理能力に応じて適宜設定され、特に制限されるものではないが、特に200〜2000mm/min、更には400〜1200mm/minとすることが好ましく、搬送速度が200mm/min未満では工業的に十分な処理能力を達成することが難しく、一方2000mm/minを超えると、後述する余滴除去ゾーン及び乾燥ゾーンでの処理で乾燥不良が発生しやすくなり、確実な乾燥を行うためにブロワーを大型化したり台数を増やしたりする必要が生じ、余滴除去ゾーンや乾燥ゾーンの規模が大きくなってしまうなどの不都合を生じる場合がある。
【0033】
なお、上記固定ビーム2及び可動ビーム3とで構成される複数の搬送経路を平行に並設し、複数列で搬送される上記焼結磁石体mに対して、後述するスラリー塗布から乾燥までの粉末塗布プロセスを同時に行うように構成することもでき、これにより処理能力を大幅に増大させることができる。
【0034】
図1〜4中の41は焼結磁石体mの表面からスラリー1の余滴を除去する余滴除去ゾーン、
図1〜4中の42は焼結磁石体mを乾燥させスラリー1の溶媒を除去して上記希土類化合物粉末の塗膜を形成する乾燥ゾーンであり、上記固定ビーム2及び可動ビーム3により所謂ウォーキングビーム方式により搬送される焼結磁石体mが、この余滴除去ゾーン41及び乾燥ゾーン42を順次通過して上記余滴除去及び乾燥操作が施されるようになっている。
【0035】
上記余滴除去ゾーン41及び乾燥ゾーン42にはそれぞれ、上記可動ビーム3の磁石体支持部32に支持されて前方へと送られている状態及び上記固定ビーム2の磁石体保持部22に保持された状態の焼結磁石体mに、空気を噴射する空気噴射ノズルを配設してなる余滴除去手段(図示せず)及び乾燥手段(図示せず)が設けられており、搬送される上記状態の焼結磁石体mに余滴除去手段のノズルから空気を噴射して余滴を除去した後、乾燥手段のノズルから温熱風を噴射して乾燥を行うようになっている。
【0036】
この場合、乾燥手段による温熱風の温度は、特に制限されるものではないが、上記スラリー1を構成する溶媒の沸点(T
B)の±50℃の範囲で、乾燥時間(搬送速度や乾燥ゾーンの長さ)、焼結磁石体の大きさや形状、スラリーの濃度や塗布量などに応じて適宜調整すればよい。例えば、スラリーの溶媒として水を用いた場合には40℃〜150℃、好ましくは60℃〜100℃の範囲で温熱風の温度を調節すればよい。なお、場合によっては乾燥を速めるために、上記余滴除去手段により噴射する空気も同様の温熱空気とすることができる。
【0037】
また、上記余滴除去手段や乾燥手段のノズルから噴射する空気や温熱風の風量は、焼結磁石体mの搬送速度、余滴除去ゾーン41や乾燥ゾーン42の長さ、焼結磁石体mの大きさや形状、スラリーの濃度や塗布量などに応じて適宜調節され、特に制限されるものではないが、通常は300〜2500L/minの範囲内、特に500〜1800L/minの範囲内で調節することが好ましい。
【0038】
なお、上記余滴除去ゾーン(余滴除去手段)41は、必ずしも必須の構成ではなく場合によっては省略することも可能であり、乾燥ゾーン(乾燥手段)42で乾燥と同時に余滴除去を行うこともできるが、焼結磁石体mの表面に余滴が存在したまま乾燥が行われると粉末の塗布ムラとなりやすいため、余滴除去ゾーン(余滴除去手段)41で確実に余滴を除去した後に乾燥を行うことが好ましい。
【0039】
図1〜4中の43は、上記余滴除去ゾーン41及び乾燥ゾーン42を覆うチャンバーであり、このようなチャンバー43で余滴除去ゾーン41や乾燥ゾーン42を覆い、該チャンバー43内を図示しない集塵機により吸引して集塵することにより、余滴除去や乾燥の際に焼結磁石体mの表面から除去された希土類化合物の粉末を回収する集塵手段(図示せず)を設けることが好ましく、これにより貴重な希土類元素を含む希土類化合物を無駄にすることなく、希土類化合物粉末の塗布を行うことができる。また、このような集塵手段を設けることにより、乾燥時間を速めることができ、更に塗工槽11及び配管,ポンプなどからなるスラリー塗布部に温熱風が回り込むことを可及的に防止して、温熱風によりスラリー溶媒が蒸発することを効果的に防止することができる。なお、集塵機(図示せず)は湿式でも乾式でもよいが、上記作用効果を確実に達成するためには、上記余滴除去手段41及び乾燥手段42のノズルからの吹き出し風量よりも大きい吸込能力を持つ集塵機を選定することが好ましい。
【0040】
次に、この塗布装置を用いて、上記焼結磁石体mの表面に上記R
2の酸化物、フッ化物、酸フッ化物、水酸化物又は水素化物(R
2はY及びScを含む希土類元素から選ばれる1種又は2種以上)から選ばれる1種又は2種以上を含有する粉末(希土類化合物の粉末)を塗布する場合の動作について、
図1〜4を参照して説明する。
【0041】
まず、この粉末を溶媒に分散させた上記スラリー1を上記塗工槽11に収容し、必要に応じて、上述した循環機構などによりスラリー1を撹拌し、該スラリー1中に上記粉末が均一に分散した状態とする。ここで、上記スラリーの温度は、特に制限されるものではないが、通常は10℃〜40℃とすればよい。また、塗工槽11内のスラリー1の液量は、装置に要求される処理能力等に応じて適宜設定されるが、特に0.5L以上、更には1L以上とすることが好ましく、スラリー1の液量が少な過ぎると循環の流速が速くなり過ぎたり、均一な分散状態を維持することが困難になる場合がある。なお、スラリー1の循環速度はスラリー1の液量に応じて適宜設定されるが、通常は1〜10L/min、特に4〜8L/minとすることが好ましい。
【0042】
この状態で、上記固定ビーム2の搬送方向上流側(
図1〜4では左側)の磁石体保持部22に上記焼結磁石体mを連続的に載置して供給すると共に、上記可動ビーム
3を稼働させてその焼結磁石体mを順次先の磁石体保持部22へと移動させることによ
り焼結磁石体
mを搬送する。この固定ビーム2と可動ビーム3とによる搬送動作は以下に説明するとおりである。なお以下の説明では、上記固定ビーム2の各磁石体保持部22に既に焼結磁石体m(m1〜m8)が収容された状態で搬送動作を説明する。
【0043】
まず、
図1(A)を初期状態とすると、この状態では、上記各可動ビーム3は固定ビーム2の上方で各磁石体保持部22の間に位置している(
図5の状態)。この状態から各可動ビーム3を降下させて(
図1(B)の矢印参照)、
図1(B)に示されているように、各可動ビーム3の磁石体支持部32が各磁石体保持部22間において各磁石体保持部22の下側に位置した状態とする。
【0044】
次いで、
図1(B)に矢印で示したように、各可動ビーム3を前方(搬送方向下流側:
図1〜4では右側)へと移動させ、
図2(C)に示されているように、各磁石体支持部32が各磁石体保持部32に保持された各焼結磁石体m1〜m8の直下に位置させ(
図6の状態)、この状態で各可動ビーム3を上動させる(
図2(C)の矢印参照)。これにより、
図2(D)に示されているように、各焼結磁石体m1〜m8が可動ビーム3の磁石体支持部32に支持されて持ち上げられ、固定ビーム2から所定間隔離間した上方で可動ビーム2に保持された状態となる(
図7の状態)。
【0045】
このように各焼結磁石体m1〜m8が持ち上げられた状態で、
図2(D)に矢印で示したように、各可動ビーム3を前方へと移動させて、
図3(E)に示されているように、各焼結磁石体m1〜m8を1つ先の磁石体保持部22の直上に位置させる。このとき塗工槽11よりも搬送方向上流側に位置していた焼結磁石体m1は上記塗工槽11の上に移動し、塗工槽11内のスラリー1中に浸漬されていた焼結磁石体m3はスラリー1から引き上げられて塗工槽11の搬送方向下流側へと移動し、スラリー1から引き上げられた状態にあった焼結磁石体m4は上記余滴除去ゾーン41に移動し、余滴除去ゾーン41で余滴の除去が行われていた焼結磁石体m6は乾燥ゾーン42に移動し、乾燥ゾーン42で乾燥処理が施されていた焼結磁石体m8は乾燥ゾーン42から取り出され搬送方向下流側へと移動する。
【0046】
そして、
図3(E)に矢印で示したように各可動ビーム3を降下させ、
図3(F)に示されているように、各焼結磁石体m1〜m8を1つ先の各磁石体保持部22に載置して保持させ、更に各可動ビーム3は各磁石体支持部32が各磁石体保持部22から下側に所定間隔離間した位置まで降下する。これにより、上記焼結磁石体m1は塗工槽1内に配置されスラリー1中に浸漬された状態の磁石体保持部22に載置保持されて上記スラリー1中に浸漬された状態となり、上記焼結磁石体m4は上記余滴除去ゾーン41内の磁石体保持部22に載置保持されて余滴の除去が行われ、上記焼結磁石体m6は乾燥ゾーン42内の磁石体保持部22に載置保持されて乾燥処理が行われ、上記焼結磁石体m8は全塗工処理が終了して搬送方向最下流部の磁石体保持部22に載置保持される。
【0047】
次いで、
図3(F)に矢印で示したように各可動ビーム3を後方(搬送方向上流側:
図1〜4では左側)へと移動させ、
図4(G)に示されているように、各可動ビーム3が各磁石体保持部32間に位置した状態とし、この状態で各可動ビーム3を上動させ(
図4(G)の矢印参照)、
図4(H)に示されているように、各可動ビーム3が固定ビーム2の上方に所定間隔離間した状態とする。これにより、上記スラリー1中に浸漬した状態となっていた可動ビーム3の磁石体支持部32が、上記塗工槽11の上端面から上方へと引き上げられた状態となる。
【0048】
この状態から、
図4(H)に矢印で示したように各可動ビーム3を後方(搬送方向上流側、
図1〜4では左側)へと移動させて、
図1(A)に示された初期状態に戻すと共に、搬送方向最下流の磁石体保持部22から塗工処理が完了した焼結磁石体m8を回収し、また焼結磁石体m1が前方に搬送されて空になった搬送方向最上流の磁石体保持部22に未処理の焼結磁石体m9を載置供給する。そして、上述した
図1〜
図4に示された(A)〜(H)の動作を繰り返して上記焼結磁石体mを固定ビーム2に沿って搬送し、その搬送途中で各焼結磁石体mを上記スラリー1中を通過させて該スラリー1を各焼結磁石体mに塗布し、更に該焼結磁石体mを搬送しながら、上記余滴除去ゾーン41で余滴を除去し、上記乾燥ゾーン42で乾燥させて、複数の焼結磁石体mに上記粉末を連続的に塗布するものである。
【0049】
本発明では、このようにして希土類化合物の粉末が塗布され固定ビーム2の磁石体保持部22から回収した焼結磁石体mを熱処理して、該希土類化合物中の上記R
2を焼結磁石体に吸収拡散させることにより、希土類永久磁石を得るものである。
【0050】
ここで、上記塗布装置を用いた希土類化合物の塗布操作を複数回繰り返して希土類化合物の粉末を重ね塗りすることにより、より厚い塗膜を得ることができると共に、塗膜の均一性をより向上させることもできる。塗布操作の繰り返しは、1台の装置に複数回通して上記塗布操作を繰り返せばよいが、上記塗布装置を1モジュールとし、求める塗膜の厚さなどに応じて、例えば2〜10モジュールを直列に配置し、上述したスラリー塗布から乾燥までの粉末塗布プロセスをモジュールの台数分繰り返すようにしてもよい。この場合、各モジュール間の連絡は連絡用の可動ビームやその他のロボット等を用いて焼結磁石体mを次のモジュールの固定ビーム2へと移せばよい。また、上記固定ビーム2と可動ビーム3とを具備してなるウォーキングビーム方式の搬送機構を各モジュール間を貫く共通設備とし、この上記固定ビーム2と可動ビーム3で上記焼結磁石体mをこれら複数のモジュールを通過させることにより、上記粉末塗布プロセスを複数回繰り返すようにしてもよい。
【0051】
スラリー塗布から乾燥までの粉末塗布プロセスを複数回繰り返すことにより、薄く重ね塗りを行って所望の厚さの塗膜とすることができ、薄く重ね塗りすることにより乾燥時間を短縮して時間的効率を向上させることが可能となる。また、1台の装置で塗布操作を繰り返したり、各モジュールの固定ビーム2間で焼結磁石体mの移し替えを行うようにした場合には、移し替えの度に固定ビーム2や可動ビーム3との接点の位置がずれることになることと、薄く多層塗りすることとの効果が相まって得られる塗膜の均一性が更に向上する。
【0052】
このように、上記塗布装置を用いて希土類化合物の粉末の塗布が行われる本発明の製造方法によれば、焼結磁石体mを上記ウォーキングビーム方式により搬送して、スラリー1への浸漬、余滴除去、乾燥を順次行うように構成されているため、各焼結磁石体mは、上記固定ビーム2に等間隔ずつ離間して連設された磁石体保持部22に安定的に保持された状態で浸漬処理や余滴除去及び乾燥処理が行われる。これにより、上記スラリー1中を通過させることによるスラリー塗布中でも上記焼結磁石体mの動きを確実に抑制して殆ど固定された状態で浸漬処理を行うことができるので、焼結磁石体m同士の接触が確実に防止され、接触による未塗工部分が発生することを確実に防止して、スラリーを均一かつ確実に塗布することができる。
【0053】
また、焼結磁石体mの搬送運動は上記可動ビーム3の動作により行われ、この可動ビーム3は、金属線等の線材で形成することができ、しかも焼結磁石体浸漬のためにスラリー中に入液する可動ビームは数本のみ(
図1〜4の3本)とすることができる。このため、塗工槽11内に収容された上記スラリー1が搬送動作によって塗工槽11の外へ持ち出される量を極めて少なくすることができ、スラリー1の無駄な浪費を可及的に抑制することができ、またスラリー1及び粉末の付着、固着による搬送系の機械的故障を少なくすることができる。更に、スラリー1中に入液する3本の可動ビーム3は余滴除去ゾーン41や乾燥ゾーン42に進入することがなく、スラリー1や粉末の付着や固着を極めて効果的に防止することができる。
【0054】
更に、上記塗布装置及び該装置を用いた希土類磁石の製造方法によれば、以下の効果が得られる。
1)
図10に示されたようなコンベア方式のように、搬送経路にスロープ状の傾斜部を設けてスラリーへの入出を行う必要が無いので、塗工槽11は処理能力に応じた必要容量とすればよく、該塗工槽11及び必要に応じて設けられる配管やポンプなどから構成されるスラリーの循環系を小さく設計することができる。
2)余滴除去や乾燥工程では、コンベア方式に見られるようなネットベルト等のコンベアベルトによる送風に対する遮蔽物が無いため、乾燥速度を上げることができ、これにより余滴ゾーン41を含む乾燥エリアを小さく設計することができる。
3)塗工槽ゾーンと乾燥ゾーンとが上記1),2)の理由で小さくできるので、装置全体を小さく設計することができ、この装置からなるモジュールを複数台配置する際にはレイアウトの自由度を広げることができる。
【0055】
上述のように、本発明では、このように粉末が均一塗布された焼結磁石体を熱処理して上記R
2で示された希土類元素を吸収拡散させることにより、保磁力が良好に増大された磁気特性に優れた希土類磁石を効率的に製造することができるものである。
【0056】
上記R
2で示される希土類元素を吸収拡散させる上記熱処理は、公知の方法に従って行えばよい。また、上記熱処理後、適宜な条件で時効処理を施したり、更に実用形状に研削するなど、必要に応じて公知の後処理を施すこともできる。
【実施例】
【0057】
以下、本発明のより具体的な態様について実施例をもって詳述するが、本発明はこれに限定されるものではない。
【0058】
[実施例1〜3]
Ndが14.5原子%、Cuが0.2原子%、Bが6.2原子%、Alが1.0原子%、Siが1.0原子%、Feが残部からなる薄板状の合金を、純度99質量%以上のNd、Al、Fe、Cuメタル、純度99.99質量%のSi、フェロボロンを用いてAr雰囲気中で高周波溶解した後、銅製単ロールに注湯するいわゆるストリップキャスト法により薄板状の合金とした。得られた合金を室温にて0.11MPaの水素化に曝して水素を吸蔵させた後、真空排気を行ないながら500℃まで加熱して部分的に水素を放出させ、冷却してから篩いにかけて、50メッシュ以下の粗粉末とした。
【0059】
上記粗粉末を、高圧窒素ガスを用いたジェットミルで粉末の重量中位粒径5μmに微粉砕した。得られたこの混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm
2の圧力でブロック状に成形した。この成形体をAr雰囲気の焼結炉内に投入し、1060℃で2時間焼結して磁石ブロックを得た。この磁石ブロックをダイヤモンドカッタ−を用いて全面研削加工した後、アルカリ溶液、純水、硝酸、純水の順で洗浄し乾燥させて、50mm×20mm×5mm(磁気異方性化した方向)のブロック状磁石体を得た。
【0060】
次いで、フッ化ディスプロシウムの粉末を質量分率40%で水と混合し、フッ化ディスプロシウムの粉末をよく分散させてスラリーを調製し、
図1〜7に示された上記塗布装置を用いて、このスラリーを上記磁石体に塗布し乾燥させて、フッ化ディスプロシウム粉末からなる塗膜を形成した。塗布条件は、下記のとおりである。
【0061】
塗布条件
塗工槽11の容量: 1L
スラリーの循環流量: 6L/min
搬送速度: 700mm/min
除滴及び乾燥時の風量: 1000L/min
乾燥時の温熱風の温度: 80℃
粉末塗布に供した磁石体の数:100個
【0062】
100個の磁石体を処理する間に塗工槽外へこぼれ出たスラリーを採取し、乾燥後、重量を測定して、これを塗工槽から持ち出されたスラリー量とした。また、塗布後に上記ブロック状磁石体が互いに面接触した個数も確認した。結果を表1に示す。
【0063】
この表面にフッ化ディスプロシウム粉末の薄膜を形成した磁石体をAr雰囲気中、900℃で5時間熱処理して吸収処理を施し、更に500℃で1時間時効処理して急冷することにより希土類磁石を得た。いずれの磁石も良好な磁気特性を有していた。
【0064】
[比較例]
実施例と同様にして、50mm×20mm×5mm(磁気異方性化した方向)のブロック状磁石を用意した。また、平均粉末粒径0.2μmのフッ化ディスプロシウムを質量分率40%で水と混合し、よく分散させてスラリーを調製し、
図10に示された従来の塗布装置の塗工槽tへ収容した。この従来の塗布装置を用い、ネットコンベアcによる搬送速度、乾燥ゾーンdでの余滴除去及び乾燥条件等を調節して実施例1と同等の塗布条件となるように調整し、フッ化ディスプロシウムの塗布を行った。なお、ネットコンベアcに用いられているネットベルトの仕様は下記のとおりである。
【0065】
<ネットベルトの仕様>
種類:コンベアベルト
形態:三角螺旋型
スパイラルピッチ:8.0mm
ロッド・ピッチ:10.2mm
ロッドの線径:1.5mm
スパイラルの線径:1.2mm
【0066】
実施例と同様にして塗工槽から持ち出されたスラリー量を測定した。また、塗布後にブロック状磁石体同士が互いに面接触した状態で乾燥ゾーン3から出てきた個数も確認した。結果を表1に示す。なお、上記スラリー量は実施例1の持ち出し量を1として指数化した。
【0067】
この表面にフッ化ディスプロシウム粉末の薄膜を形成した磁石体は、実施例と同様にして、Ar雰囲気中、900℃で5時間熱処理して吸収処理を施し、更に500℃で1時間時効処理して急冷することにより希土類磁石を得た。
【0068】
【表1】
【0069】
表1のとおり、塗工槽から持ち出されたスラリー量を比較すると、実施例で用いたウォーキングビーム方式で磁石体を搬送しながら塗布操作を行う塗布装置の方が、ネットコンベア式の搬送手段を用いた比較例に比べて約76%も少ないことが分かる。また、表1のとおり、塗布後に上記ブロック状磁石体が互いに面接触して出てきた個数は、本発明(実施例)のウォーキングビーム方式では皆無であり、良好に粉末の塗布が行われることが確認された。