特許第6413903号(P6413903)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友金属鉱山株式会社の特許一覧
<>
  • 特許6413903-単結晶の製造方法 図000002
  • 特許6413903-単結晶の製造方法 図000003
  • 特許6413903-単結晶の製造方法 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6413903
(24)【登録日】2018年10月12日
(45)【発行日】2018年10月31日
(54)【発明の名称】単結晶の製造方法
(51)【国際特許分類】
   C30B 15/28 20060101AFI20181022BHJP
【FI】
   C30B15/28
【請求項の数】2
【全頁数】16
(21)【出願番号】特願2015-79535(P2015-79535)
(22)【出願日】2015年4月8日
(65)【公開番号】特開2016-199417(P2016-199417A)
(43)【公開日】2016年12月1日
【審査請求日】2017年5月25日
(73)【特許権者】
【識別番号】000183303
【氏名又は名称】住友金属鉱山株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】東風谷 敏男
(72)【発明者】
【氏名】村下 憲治
(72)【発明者】
【氏名】小見 利行
【審査官】 今井 淳一
(56)【参考文献】
【文献】 特開平06−271390(JP,A)
【文献】 特開2011−079693(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 15/28
(57)【特許請求の範囲】
【請求項1】
坩堝内に充填した単結晶用原料を、前記坩堝の側面と対向するように配置された側面ヒータと、前記坩堝の底面と対向するように配置された底面ヒータとにより加熱、溶融して原料融液とする原料融液形成工程と、
前記原料融液に種結晶を接触させた後、前記種結晶を回転させながら引上げ、単結晶を育成する単結晶育成工程と、を有しており、
前記単結晶育成工程は、
育成している単結晶の単位時間当たりの重量変化ΔWを測定、算出する重量変化算出ステップと、
前記育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数よりも大きいかを判定する判定ステップと、
前記判定ステップにおいて前記育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数よりも大きいと判定した場合に、前記種結晶の回転、および前記種結晶の引上げを中止し、かつ前記側面ヒータおよび前記底面ヒータのうち、前記底面ヒータの出力のみを上げ、前記坩堝の底面の温度を昇温する底付き解消ステップと、を有する単結晶の製造方法。
【請求項2】
前記判定ステップにおいて、前記育成している単結晶の単位時間当たりの重量変化ΔWが前記予め定めた定数を下回っていると判定した場合に、単結晶の育成を継続して実施する請求項1に記載の単結晶の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、単結晶の製造方法に関する。
【背景技術】
【0002】
従来から各種単結晶が半導体装置等の材料に用いられている。単結晶として、例えば酸化アルミニウム単結晶は、青色LEDや白色LEDを作製する際のエピタキシャル成長用結晶基板として多く利用されている。これらのLEDは、省エネルギーの観点で照明分野への普及が拡大することが予想されており多方面から注目されている。
【0003】
単結晶として良質で大型の単結晶を製造する方法には、チョクラルスキー法(Czochralski−Method)、キロプロス法(Kyropoulus−Method)などがあり工業的に用いられている。特にチョクラルスキー法は汎用性があり、技術的完成度が高いことから最も広く用いられている。
【0004】
チョクラルスキー法によって単結晶を製造するには、まず坩堝に単結晶用原料を入れて、坩堝を加熱し原料を溶融する。そして、単結晶用原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引上げて単結晶を成長させる。
【0005】
しかし、単結晶をチョクラルスキー法で代表される引上げ法で結晶成長させると、坩堝底部で固化した原料が成長中の単結晶とぶつかる現象や、坩堝底面近傍まで成長した結晶と坩堝底面とが固着する現象が生じる場合があった(以下、これらの現象をあわせて「底付き現象」とも記載する)。
【0006】
底付き現象が生じると、育成した単結晶に余計な力が加わることで種結晶が破断し、育成した結晶が坩堝内に落下する場合がある。そして、育成した単結晶が坩堝内に落下すると、冷却の過程で育成した単結晶が坩堝内に残留する原料融液とともに固化するため坩堝内から取出すことが不可能となるという問題があった。また、育成した単結晶と坩堝の底面とが固着した場合、底付き現象の進行の程度によっては、単結晶の育成終了後、冷却開始前に原料融液と育成した単結晶とを切り離そうとしても、坩堝と、育成した単結晶とが一体となり、切り離せなくなるという問題があった。
【0007】
底付き現象の発生を抑制する方法として、例えば特許文献1には、るつぼの周囲に配置されるヒータと、るつぼ内の原料融液から引き上げられた単結晶の外周面を包囲するシールドとを備え、るつぼ、ヒータ、シールドのうち少なくとも2つを独立して昇降可能な構成とした単結晶引上装置を用いた単結晶引上方法が開示されている。
【0008】
また、特許文献2には、ルツボを収容するサセプタを加熱するヒータとサセプタを回転させる回転機構とを少なくとも具備し、回転機構は、サセプタを支持するリング状支持部材と、リング状支持部材を回転自在に保持するリング状架台と、リング状支持部材を回転駆動するための回転軸とを具備し、ヒータがサセプタの底面に対して鉛直方向下方の位置でかつ底面の略全体と対向するように配設されている半導体単結晶の製造装置を用いた半導体単結晶の製造方法が開示されている。
【0009】
しかし、特許文献1、2に開示された方法は既存の単結晶育成装置を用いて実施することはできず、装置に底付き防止のために新たな駆動設備等を設ける必要があり、装置変更によるコストアップになる問題があった。また、特許文献1、2に開示された方法は底付き現象の発生を抑制することに着目したものであり、底付き現象が発生した場合でも単結晶の結晶育成を中止することなく単結晶を製造できる単結晶の製造方法については開示されていなかった。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2004−262723号公報
【特許文献2】特開2011−079693号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
そこで、本発明の一側面では、上記従来技術が有する問題に鑑み、底付き現象が発生した場合でも単結晶の結晶育成を中止することなく、容易に高品質な単結晶を製造できる単結晶の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するため本発明の一態様によれば、坩堝内に充填した単結晶用原料を、前記坩堝の側面と対向するように配置された側面ヒータと、前記坩堝の底面と対向するように配置された底面ヒータとにより加熱、溶融して原料融液とする原料融液形成工程と、
前記原料融液に種結晶を接触させた後、前記種結晶を回転させながら引上げ、単結晶を育成する単結晶育成工程と、を有しており、
前記単結晶育成工程は、
育成している単結晶の単位時間当たりの重量変化ΔWを測定、算出する重量変化算出ステップと、
前記育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数よりも大きいかを判定する判定ステップと、
前記判定ステップにおいて前記育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数よりも大きいと判定した場合に、前記種結晶の回転、および前記種結晶の引上げを中止し、かつ前記側面ヒータおよび前記底面ヒータのうち、前記底面ヒータの出力のみを上げ、前記坩堝の底面の温度を昇温する底付き解消ステップと、を有する単結晶の製造方法を提供することができる。
【発明の効果】
【0013】
本発明の一態様によれば、底付き現象が発生した場合でも単結晶の結晶育成を中止することなく、容易に高品質な単結晶を製造できる単結晶の製造方法を提供することができる。
【図面の簡単な説明】
【0014】
図1】単結晶育成装置の構成例の説明図。
図2】底付き現象の説明図。
図3】単結晶育成工程におけるΔWの変化例の説明図。
【発明を実施するための形態】
【0015】
以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
【0016】
本実施形態の単結晶の製造方法の一構成例について以下に説明する。
【0017】
本実施形態の単結晶の製造方法は、以下の工程を有することができる。
【0018】
坩堝内に充填した単結晶用原料を、坩堝の側面と対向するように配置された側面ヒータと、坩堝の底面と対向するように配置された底面ヒータとにより加熱、溶融して原料融液とする原料融液形成工程。
【0019】
原料融液に種結晶を接触させた後、種結晶を回転させながら引上げ、単結晶を育成する単結晶育成工程。
【0020】
そして、単結晶育成工程は、以下のステップを有することができる。
【0021】
育成している単結晶の単位時間当たりの重量変化ΔWを測定、算出する重量変化算出ステップ。
【0022】
育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を超えたかを判定する判定ステップ。
【0023】
判定ステップにおいて育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を超えたと判定した場合に、種結晶の回転、および種結晶の引上げを中止し、かつ側面ヒータおよび底面ヒータのうち、底面ヒータの出力のみを上げ、坩堝の底面の温度を昇温する底付き解消ステップ。
【0024】
以下、本実施形態の単結晶の製造方法について具体的に説明する。
1.単結晶育成装置
本実施形態の単結晶の製造方法において、好適に使用できる単結晶育成装置の一例を図1に示す。図1は、単結晶育成装置10内に設置した坩堝11の中心軸を通る面における断面図を模式的に示したものである。
【0025】
単結晶育成装置10内には単結晶用原料を入れるための坩堝11が備えられており、坩堝11は上下動が可能な坩堝軸12の上に載置できる。
【0026】
坩堝11の材質は、用いる単結晶用原料の種類に応じて任意に選択することができ、特に限定されるものではない。例えば、単結晶用原料として酸化アルミニウムを用いる場合、坩堝11は酸化アルミニウムの融点以上の温度について耐熱性を有するイリジウム製、モリブデン製、タングステン製又はモリブデン−タングステン合金製の坩堝を好適に用いることができる。なお、坩堝11のサイズについても特に限定されるものではなく、育成する単結晶のサイズ等に応じて所望のサイズのものを用いることができる。
【0027】
坩堝11の側面には、坩堝11内に充填した単結晶用原料を融解するため加熱体である側面ヒータ13を配置できる。また、坩堝11の下方にも坩堝11内に充填した単結晶用原料を融解するための加熱体である円盤状の底面ヒータ14を、坩堝軸12が貫通する形で配置できる。
【0028】
側面ヒータ13の周囲、及び底面ヒータ14の下方には、断熱材15を配置できる。断熱材15は、単結晶育成装置10のチャンバー16の内面に沿って設けることができる。
【0029】
また、坩堝11の上方には上下動可能な引上げ軸17を配置できる。引上げ軸17は断熱材15を貫通する形で設けることができる。
【0030】
なお、引上げ軸17は原料融液側の先端部に種結晶を固定できるように構成できる。種結晶としては、純度が高い結晶を用いることが好ましく、育成する単結晶製品の用途や、育成する単結晶の種類等に応じて種結晶の製造方法は適宜選択することができる。例えば、酸化アルミニウム結晶であれば、チョクラルスキー法(Cz法)、キロプロス法、HEM(Heat Exchanger Method)などの製造方法によって得られたものを好ましく用いることができる。
【0031】
坩堝軸12及び引上げ軸17を上下動及び回転させるために、それぞれ駆動用モータ18、19を設けておくことができる。また、育成している単結晶20の結晶重量を計測するために引上げ軸17には重量測定部21を設けておくこともできる。
【0032】
さらに、側面ヒータ13、底面ヒータ14、駆動用モータ18、19、及び重量測定部21はそれぞれ制御手段22に接続しておくことが好ましい。
【0033】
制御手段22は例えば適当な時間間隔で育成している単結晶20の結晶重量を重量測定部21により測定し、育成している単結晶20の単位時間当たりの重量変化ΔWを算出できる。そして、ΔWから底付き現象を検知した場合に底面ヒータ14及び駆動用モータ19等に動作信号を伝え、底付き現象解消のために必要な処理を実施することができる。
【0034】
単結晶育成装置10には、上述の部材以外にも必要に応じて任意の部材を設けることができる。例えば、チャンバー16内の雰囲気を制御するための各種手段を設けることができる。チャンバー16内の雰囲気を制御するための手段としては例えば、チャンバー16内を減圧する手段、チャンバー16内に窒素やアルゴンなどの不活性ガス等の気体を供給する手段、またチャンバー16内の減圧度をモニターする手段等を設けることができる。
【0035】
また、チャンバー16内の任意の場所、部材について温度を測定するための温度測定手段や、引上げ軸17の先端に配置した種結晶や、原料融液23の状態等を観察するための観察窓等を設けることもできる。
2.単結晶の製造方法
次に、図1に示した単結晶育成装置10を用いて単結晶を育成する場合を例に、本実施形態の単結晶の製造方法の一構成例について説明を行う。
【0036】
既述のように、本実施形態の単結晶の製造方法は以下の工程を有することができる。
【0037】
坩堝11内に充填した単結晶用原料を、坩堝11の側面と対向するように配置された側面ヒータ13と、坩堝11の底面と対向するように配置された底面ヒータ14とにより加熱、溶融して原料融液23とする原料融液形成工程。
【0038】
原料融液23に種結晶を接触させた後、種結晶を回転させながら引上げ、単結晶を育成する単結晶育成工程。
【0039】
各工程について説明する。
(1)原料融液形成工程
原料融液形成工程では、坩堝11内に単結晶用原料を入れた後、側面ヒータ13および底面ヒータ14により坩堝11を加熱して単結晶用原料を溶融し、原料融液23を形成できる。
【0040】
単結晶用原料としては、特に限定されるものではなく、育成する単結晶の種類に応じて選択することができる。ただし、本実施形態の単結晶の製造方法は、底付き現象が生じた場合に、高品質の単結晶を得ることが従来困難であった酸化物単結晶の製造に特に好適に適用することができる。このため、単結晶用原料としては例えば酸化アルミニウム粉末やタンタル酸リチウム粉末、あるいは酸化ニオブ粉末をはじめ各種酸化物粉末を好適に用いることができる。
【0041】
中でも、本実施形態の単結晶の製造方法においてはサファイア単結晶をより好適に製造することができる。そして、サファイア単結晶を製造する際には単結晶用原料として酸化アルミニウム粉末を用いることができる。
【0042】
酸化アルミニウム粉末は、実質的にAlとOの2元素からなる酸化アルミニウムであるが、目的とする酸化アルミニウム単結晶の種類に合わせて、AlとOのほかに、Ti、Cr、Si、Ca、Mgなどを含んでいてもよい。ただし、このうちSi、Ca、Mgなどは、焼結助剤の成分として不可避的に含まれうるが、その含有量は極力少ないことが望ましい。特に、Siは10重量ppm以下であることが望ましい。
【0043】
また、酸化アルミニウム粉末の粒径や密度は特に制限されないが、取り扱い上、例えば粒径は10mm以下であることが好ましく、5mm以下であることがより好ましい。
【0044】
また、サファイア原料の密度は、α−アルミナの理論密度4g/cmに近いものが原料充填時に有利である。そのため、使用するサファイア原料の密度は2g/cm以上であることが好ましく、3g/cm以上であることがより好ましい。
【0045】
そして、坩堝11に単結晶用原料を入れて、側面ヒータ13および底面ヒータ14により坩堝11を加熱することで単結晶用原料を溶融させ、原料融液23を形成できる。
【0046】
単結晶用原料が融点に達するまでの加熱速度は、特に制限されるわけではないが、原料が不均一に融解する事で発生する突沸現象の発生を抑制するため、急速に加熱せずに長時間かけて徐々に加熱するほうがよい。そのため、例えば10時間以上、特に12時間以上かけて融点まで徐々に加熱することが望ましい。
【0047】
そして、単結晶用原料が融解した後も、単結晶育成工程を開始する前に炉内温度を単結晶用原料の融点よりも10℃〜20℃高い温度で加熱を継続することが好ましい。係る温度域で加熱を継続する時間は特に限定されるものではないが、例えば3時間以上継続することが好ましく、5時間以上継続することがより好ましい。このときの温度測定方法は特に限定されるものではないが、例えば側面ヒータ13の外周にある断熱材15に差し込まれた図示しない熱電対を用いて行うことができる。
【0048】
原料融液形成工程において、チャンバー16内の雰囲気は特に限定されるものではなく、チャンバー16内の構成物の材料や、育成する単結晶の種類等に応じて任意に選択することができる。
【0049】
ただし、チャンバー16内に酸素を導入すると、チャンバー16内の構成物の材質によっては酸化等する場合がある。特に側面ヒータ13や底面ヒータ14が酸化し、急速に劣化する恐れがある。このため、原料融液形成工程におけるチャンバー16内の雰囲気は、酸素をほとんど含まない低酸素濃度雰囲気とすることが望ましい。具体的には例えば、チャンバー16内は不活性ガス雰囲気、または減圧雰囲気(真空雰囲気)とすることができる。
(2)単結晶育成工程
単結晶育成工程では、上述の原料融液形成工程で原料が溶融して形成した原料融液23に種結晶を接触させた後、種結晶を回転させながら引上げ、単結晶を育成することができる。
【0050】
種結晶を原料融液に接触させた後、引上げる際の条件は特に限定されるものではなく、常法に従い回転数や引上げ速度を調整してネック部および肩部を形成し、引き続き直胴部を形成できる。
【0051】
種結晶を引上げる際、放射温度計などを用いて育成した単結晶と原料融液との界面近傍における原料融液表面の温度を測定し、加熱体(側面ヒータ13、底面ヒータ14)の出力や、引上げ速度等を制御することが好ましい。
【0052】
育成する単結晶の結晶形状の調節は、育成している単結晶20の結晶重量を測定し、直径や育成速度などを計算によって導き出し、引上げ軸17の回転速度や引上げ速度を調整して行うことができる。種結晶は例えば、0.2rpm〜20rpmで回転させるとよい。また、育成している単結晶の結晶重量を適当な時間間隔で測定し、育成している単結晶の単位時間当たりの重量変化ΔWをフィードバックして原料融液23の融液温度をコントロールできる。
【0053】
ところで、既述のように単結晶をCz法等の引上げ法で単結晶育成を行う際、坩堝11の底部で固化した原料が育成している単結晶とぶつかる現象や、坩堝11の底面近傍まで成長した結晶と坩堝底面とが固着したことにより発生する現象である底付き現象が生じる場合があった。
【0054】
ここで、底付き現象について図2(a)、図2(b)を用いて説明する。図2(a)、図2(b)は坩堝11の中心軸を通る面における断面図を示しており、底付き現象が発生した際の坩堝11内の状態を模式的に示している。なお、図2(a)、図2(b)では、坩堝11、育成している単結晶20、及び原料融液23以外については記載を省略している。
【0055】
底付き現象として例えば、図2(a)に示すように原料融液23の下方へ、育成している単結晶20の結晶成長が促進されたことにより育成している単結晶20が坩堝11の底面11aに到達し固着する場合が挙げられる。また、図2(b)に示すように、坩堝11の底面11aで原料融液23の一部が固化して固化物231を形成し、固化物231と育成した単結晶20とが接触し、その後両者が一体化することで、育成した単結晶20と坩堝11の底面11aとが固着する場合が挙げられる。
【0056】
本発明の発明者らは、底付き現象が発生した場合でも結晶育成を中止することなく、容易に高品質な単結晶を製造できる単結晶の製造方法の検討に当たって、まず底付き現象の発生を検知する方法について検討した。そして、単結晶をチョクラルスキー法で代表される引上げ法で結晶成長させた場合に、育成している単結晶の単位時間当たりの重量変化ΔWが変動することがしばしば見られた点に着目した。
【0057】
本発明の発明者らの検討によると、育成している単結晶の単位時間当たりの重量変化ΔWが変動する理由として以下の2つの場合が挙げられる。
【0058】
図2(a)に示したように、育成している単結晶20が坩堝11の底面11aに固着する底付き現象が発生し、育成している単結晶20の重量に加えて坩堝11の重量が加算されることでΔWは底付き現象発生前と比較して大きくなる場合。
【0059】
また、図2(b)に示したように坩堝11の底面11aで原料融液23の一部が固化した固化物231と、育成した単結晶20とがぶつかり、育成した単結晶20は坩堝11の底面11aから突き上げる力を受け、ΔWは底付き現象発生前と比較して小さくなる場合。
【0060】
このように底付き現象が生じた場合には、育成している単結晶20の単位時間当たりの重量変化ΔWが変化する。このため、単結晶育成工程中に継続的に、育成している単結晶20の単位時間当たりの重量変化ΔWを測定、算出することで底付き現象の発生を検出することができる。
【0061】
図3に底付き現象が発生した場合の単結晶育成工程における育成している単結晶の結晶重量の時間変化を示す。図3中、時間に対する、育成している単結晶の重量の変化、すなわち傾きであるΔWが変化する矢印Aに示した時点で底付き現象が発生している。底付き現象発生前後では、時間に対する、育成している単結晶の重量の変化である傾きに違いが見られ、底付き現象発生後には急激に、時間に対する育成している単結晶の重量の変化である傾きが大きくなることが確認できる(前記図2(a)の場合を例記)。つまり、育成している単結晶の単位時間当たりの重量変化ΔWから底付き現象の発生有無を検知することが可能であることが確認できる。
【0062】
従ってΔWが正常な結晶成長において許容される範囲を超えた場合に、底付き現象の発生を検知し、底付き現象を解消させる操作を実施することで、底付き現象発生後にも結晶成長継続が可能となる。
【0063】
次に、本発明の発明者らは底付き現象が発生した場合に、底付き現象を解消させる操作について検討を行った。そして、坩堝の底面を加熱することで底付き現象を解消できることを見出した。
【0064】
本発明の発明者らの検討によれば、底付き現象は坩堝の底面近傍の温度低下に伴う結晶成長の促進や原料融液の固化が原因で生じている。
【0065】
そのため、底付き現象を解消させるためには、原料融液の温度を上げる方法が考えられるが、原料融液全体の温度を上げた場合には、育成した単結晶全体が再溶融し、底付き現象の解消後に再度結晶育成を開始すると固液界面の形状が乱れる恐れがある。固液界面の形状が乱れ、原料融液に対して凹状となった部分が生じると、該凹状となった部分に気泡や粒界が発生し、結晶成長を再開した部分の結晶品質が低下する場合がある。
【0066】
そこで、本実施形態の単結晶の製造方法においては、坩堝底面の温度を上昇させることで底付き現象を解消することが好ましい。坩堝の底面の温度を上昇させることで、底付きが発生した部分及びその周辺のみを再溶融させ、結晶品質の低下を抑制することができる。
【0067】
なお、坩堝の底面の温度を上昇させるために、図1に示した単結晶育成装置10においては、側面ヒータ13と、底面ヒータ14とは、それぞれ独立に出力を制御できるように構成されていることが好ましい。
【0068】
以上の本発明の発明者らの検討に基づいて、本実施形態の単結晶の製造方法の単結晶育成工程では以下のステップを有することができる。
【0069】
育成している単結晶の単位時間当たりの重量変化ΔWを測定、算出する重量変化算出ステップ。
【0070】
育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を超えたかを判定する判定ステップ。
【0071】
判定ステップにおいて育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を超えたと判定した場合に、単結晶の回転、および種結晶の回転を中止し、かつ側面ヒータおよび底面ヒータのうち、底面ヒータの出力のみを上げ、坩堝の底面の温度を昇温する底付き解消ステップ。
【0072】
各ステップについて以下に説明する。
(重量変化算出ステップ)
重量変化算出ステップでは、育成している単結晶の結晶重量を予め定めた時間おきに測定し、測定結果から、育成している単結晶の単位時間当たりの重量変化ΔWを算出できる。育成している単結晶の結晶重量の測定方法は特に限定されるものではないが、例えば、図1に示した単結晶育成装置10のように、引上げ軸17に重量測定部21を設け、重量測定部21により測定することができる。
【0073】
また、育成している単結晶の結晶重量を測定する時間の間隔についても特に限定されるものではなく、任意に選択できる。ただし、底付き現象が発生した場合に、早急に検出できることが好ましいことから、5分以下の間隔で育成している単結晶の結晶重量を測定することが好ましく、1分以下の間隔で育成している単結晶の結晶重量を測定することがより好ましい。
【0074】
育成している単結晶の結晶重量を測定する時間の間隔の下限値については特に限定されないが、頻繁に測定を行うとデータ量が増えることとなるため、例えば1秒以上の間隔で育成している単結晶の結晶重量を測定することが好ましく、15秒以上の間隔で育成している単結晶の結晶重量を測定することがより好ましい。
(判定ステップ)
判定ステップは、育成している単結晶の単位時間当たりの重量変化ΔWから、底付き現象が生じているかを判定するステップであり、上記ΔWが予め定めた定数を超えたかにより判定することができる。
【0075】
判定の際に用いる予め定めた定数については特に限定されるものではなく、例えば用いた単結晶育成装置において、実際に底付きが発生した際のデータ等から定めることができる。
【0076】
また、単結晶の結晶成長は温度変化に敏感であるため、単結晶育成装置を冷却する冷却水の流量やチャンバー内の圧力、温度などの外乱によっても育成している単結晶の単位時間当たりの重量変化ΔWは変化する。そのため、底付き現象発生の判定の基準となる定数としては、例えば単結晶育成工程開始後の通常の単位時間当たりの重量変化ΔWを基に、上述の外乱の影響以上に変化した場合となるように定めることもできる。例えばΔWの5倍以上15倍以下を定数とすることもできる。具体的には、ΔWの10倍である10×ΔWを定数とした場合、ΔW>10×ΔWとなった際に底付き現象が発生したと判定することができる。
【0077】
ΔWは、例えば単結晶育成工程開始後、ΔWが安定し、定常状態となっているときの値を用いることができる。また、判定ステップを単結晶育成工程開始後の早期の段階で開始できるように、例えば用いた単結晶育成装置において、実際に結晶育成を行った場合に、底付きが発生しなかったときの最大のΔWの値をΔWとすることもできる。
(底付き解消ステップ)
底付き解消ステップでは、判定ステップにおいて育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を超えたと判定した場合に、種結晶の回転、および種結晶の引上げを中止できる。そして、この際あわせて側面ヒータおよび底面ヒータのうち、底面ヒータの出力のみを上げ、坩堝の底面の温度を昇温することができる。
【0078】
底付き現象発生後は、坩堝11の底面と、種結晶に連なって育成している単結晶20とが固着しているため、駆動用モータ19により種結晶を回転させようとしても種結晶は回転しない。そのため、種結晶の回転を停止しないと、種結晶にねじれる力がかかり破断し育成した単結晶が坩堝中に落下してしまう恐れがある。
【0079】
また、底付き現象発生後に種結晶の引上げを継続すると、育成している単結晶20を介して、育成している単結晶20に固着した坩堝11も引上げることになる。そのため、種結晶に過剰な負荷が生じ、種結晶が破断して育成した単結晶20が坩堝内に落下する恐れがある。
【0080】
このため、判定ステップによる判定により底付き現象の発生を検知した場合、上述の様に種結晶の回転及び引上げを停止することが好ましい。
【0081】
上述の様に種結晶の回転、および種結晶の引上げを停止した後、または種結晶の回転、および種結晶の引上げを停止したのと同時に、坩堝11の底面の温度を昇温することで底付き現象を解消することが好ましい。
【0082】
坩堝11の底面の温度を上昇させる際、坩堝11の下方に設けられた底面ヒータ14の出力、すなわち底面ヒータ14に対する電力供給量、を増加させることが好ましい。一方、坩堝11の側面に対向するように設けられた側面ヒータ13の出力は一定とすることが好ましい。すなわち、側面ヒータ13と、底面ヒータ14のうち、底面ヒータ14のみ出力を上昇させることが好ましい。
【0083】
これは、既述のように、側面ヒータ13、及び底面ヒータ14の両方について出力を上げ、原料融液23全体の温度を上昇させると、育成している単結晶20が再融解してしまう場合がある。そして、再融解して結晶の表面に凹凸が形成されると、底付き現象解消後の再成長時に、気泡の凝集や転位の集積により粒界が発生し結晶品質が低下する恐れがあるからである。そのため、底付き現象が発生した坩堝11の底面を優先的に加熱するために、底面ヒータ14の出力のみを上昇させることが好ましい。
【0084】
なお、単結晶育成工程中は原料融液の温度を下げるために側面ヒータの出力は単結晶育成工程開始からの時間経過に応じて一定の割合で低下させる場合がある。しかし、底付き現象発生後も側面ヒータ13の出力の低下を継続すると原料融液の温度は下がり続け、底付き現象の解消に時間がかかる等の問題を生じる恐れがある。このため、底付き現象が発生した時点で側面ヒータの出力は一定とすることが好ましい。
【0085】
以上に説明した底付き解消ステップを実施することで、育成している単結晶の結晶品質を低下させることなく底付き現象を解消し、単結晶育成工程を継続することができる。
【0086】
底付き解消ステップの後、単結晶育成工程を継続する場合の各ヒータの制御条件は特に限定されるものではなく、例えば底付き現象が発生する前の単結晶育成工程時と同様の制御を継続して実施することができる。
【0087】
底付き解消ステップの後、単結晶の育成を継続して実施する場合、例えば側面ヒータ13を底付き発生前と同じ割合で出力を降下させることができる。また、底面ヒータ14は底付き現象の解消のために上昇させた出力をそのままに、底付き現象発生前と同じ割合で出力を変化させることができる。なお、底付き解消ステップの後、単結晶の育成を継続して実施する場合には、再び種結晶の回転、及び引上げを開始することになる。
【0088】
底付き解消ステップを実施し、底付き現象を解消した後、単結晶の育成を継続して実施する場合にも、既述の重量変化算出ステップと、判定ステップとを継続して繰り返し実施することが好ましい。そして、判定ステップでΔWが予め定めた定数を超えたと判断した場合には、同様に底付き解消ステップを実施することができる。
【0089】
なお、上記判定ステップにおいて、育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を下回っていると判定した場合には、底付き解消ステップを実施することなく、単結晶の育成を継続して実施できる。
【0090】
ただし、判定ステップにおいて育成している単結晶の単位時間当たりの重量変化ΔWが予め定めた定数を下回っていると判定し、単結晶の育成を継続して実施する場合にも、上述の重量変化算出ステップと、判定ステップとを繰り返し実施することが好ましい。重量変化算出ステップと、判定ステップとを繰り返し実施することで、その後、底付き現象が発生しているか否かを検出でき、底付き現象が発生した場合には底付き現象解消ステップを実施できるからである。
【0091】
単結晶育成工程では、上述の重量変化算出ステップ、判定ステップ、場合によってはさらに底付き解消ステップを繰り返し実施しつつ、単結晶を育成することで、所望の単結晶を育成することができる。単結晶育成工程を終了するタイミングは特に限定されるものではないが、例えば育成している単結晶の重量が目標結晶重量に達した場合に終了することができる。
【0092】
なお、判定ステップにおいてΔWが予め定めた定数を超えたと判定した場合でも、判定ステップを実施した時点において、育成した単結晶が十分に成長している場合には、底付き解消ステップを実施せずに単結晶育成工程を終了してもよい。
【0093】
これは単結晶の育成が十分に進行した段階では、底付き解消ステップを実施するためにかかる時間により、結晶成長のサイクルが延びてしまい経済的に不利だからである。
【0094】
結晶の育成が十分に進行したと判断する基準は特に限定されるものではなく、育成する単結晶に対して要求されるサイズ等に応じて任意に規定することができる。
【0095】
例えば、ΔWが予め定めた定数を超えたと判定した判定ステップ実施時の、育成した単結晶の結晶重量をW、育成する単結晶の目標結晶重量をWmaxとした場合にW/Wmax>0.95の場合に、単結晶の育成が十分に進行したと判断することができる。
【0096】
この場合、上述の様に、底付き解消ステップを実施せずに単結晶育成工程を終了することが好ましい。単結晶育成工程終了後は、後述する切り離し工程を実施することができる。なお、底付き現象が生じることにより、切り離し工程を実施することが困難な場合には、必要により、底面ヒータ14により坩堝11の底部を加熱し、切り離しができるように底付き現象を解消させることもできる。
【0097】
ただし、単結晶の育成が十分に進行していない段階では、坩堝内の原料融液の残量が多く、単結晶育成工程終了後、例えば後述する切り離し工程を実施しようとしても、坩堝、および引上げ軸の可動距離の範囲内では切り離しを実施できない恐れがある。また、引上げ軸の移動距離が長い場合、育成した単結晶の引上げ距離が長くなり、育成した単結晶を側面ヒータで囲まれた領域から離れた位置に移動させることとなる。このため、温度勾配の大きな環境下で育成した単結晶を冷却することになり、育成した単結晶にクラック等が生じる恐れがある。
【0098】
そこで、単結晶の育成が十分に進行していない場合、底付き解消ステップを実施し、単結晶育成工程を継続することが好ましい。なお、例えばΔWが予め定めた定数を超えたと判定した判定ステップ実施時の育成した単結晶の結晶重量をW、育成する単結晶の目標結晶重量をWmaxとした場合にW/Wmax≦0.95の場合を、単結晶の育成が十分に進行していない場合とすることができる。
(3)切り離し工程、冷却工程
単結晶育成工程終了後は、育成した単結晶を原料融液から切り離す切り離し工程や、育成した単結晶を室温、または室温近傍まで冷却する冷却工程を実施できる。
【0099】
切り離し工程では、坩堝内に残留している原料融液と、育成した単結晶とを切り離し、両者が接触している状態を解消することができる。切り離し工程の実施方法は特に限定されるものではないが、例えば図1に示した単結晶育成装置10を用いる場合、坩堝軸12を下降、および/または引上げ軸17を上昇させることにより、育成した単結晶20と原料融液23との距離を拡げることで実施できる。切り離し工程、及び冷却工程において、育成した単結晶20を側面ヒータ13で囲まれている領域の近くに配置することで、冷却工程を実施する際に育成した単結晶20内の温度勾配を抑制し、育成した単結晶20内にクラック等が発生することを抑制できる。このため、坩堝軸12を引上げ軸17よりも優先して移動させることで、育成した単結晶20の位置の変位量は最小限とし、単結晶20を側面ヒータ13で囲まれている領域の近くに配置することが好ましい。
【0100】
切り離し工程終了後は、室温または室温近傍まで、チャンバー16内の温度を冷却することができる。
【0101】
以上に本実施形態の単結晶の製造方法について説明したが、本実施形態の単結晶の製造方法によれば、底付き現象発生の検知と解消とを一連の動作により実施することができる。そして、底付き現象発生の検知と解消とを一連の動作により実施することで底付き現象が発生しても結晶成長の継続が可能となる。また、結晶成長を継続した場合にも底付き現象が発生した坩堝の底部近傍のみを再融解させるため、結晶の品質の低下を抑制することができる。
【0102】
このため、本実施形態の単結晶の製造方法によれば、底付き現象が発生したとしても結晶成長を中止することなく単結晶の生産が可能となり高品質な単結晶を歩留まり良く製造することが可能となる。
【実施例】
【0103】
以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
図1に示した単結晶育成装置10を用いて、サファイア単結晶の製造を行った。
(原料融液形成工程)
内径370mmのモリブデン製の坩堝11に4N(99.99%)のAl原料を150kg投入した。その後、チャンバー16内をアルゴンガスで十分に置換した後、側面ヒータ13、および底面ヒータ14に電力を供給し、Al原料を融解した。
(単結晶育成工程)
原料融解後、引上げ軸17に取り付けた種結晶を毎分0.5回転の速度で回転させながら原料融液に接触させ、引上げ速度0.4mm/hで引上げ軸17を上昇させて結晶成長を開始した。
【0104】
結晶成長中に結晶重量を30秒間隔で測定し、育成している単結晶の単位時間(30秒)当たりの重量変化ΔWを算出した(重量変化算出ステップ)。
【0105】
そして、同じ単結晶育成装置を用いて底付きが発生しなかった際の最大のΔWをΔWとし、ΔWの10倍を予め定めた定数として判定ステップを行った。
【0106】
目標結晶重量W=130kgに対して、結晶重量W=100kgとなる前までは重量変化算出ステップで算出したΔWは、予め定めた定数である、ΔWの10倍以下であり、底付き現象は生じていないと判定し、単結晶の育成を継続して実施した。
【0107】
しかし、目標結晶重量W=130kgに対して、結晶重量W=100kgになった時点で重量変化算出ステップで算出したΔWは、ΔWの10倍よりも大きくなっていることが確認された。このため、この時点で制御手段22により底付き現象が発生したと判定した。
【0108】
判定ステップで底付き現象の検知後に、育成している単結晶の引上げと回転とを停止した。同時に、底面ヒータ14の出力を底付き検知時と比較して2%上昇し、側面ヒータ13を底付き現象検知時の出力で一定とした(底付き解消ステップ)。
【0109】
底付き解消ステップの操作を実施した後、5時間後に底付き現象が解消されたのを確認した。このとき、底付き現象発生前と比較して成長結晶の重量は変化していないことが確認できた。
【0110】
底付き現象解消後に、結晶の引上げと回転を底付き現象発生前と同様の条件で再開し、さらに側面ヒータ13及び底面ヒータ14の出力も底付き現象発生前の割合で変化させて結晶成長を継続した。結晶成長再開後に目標結晶重量まで単結晶育成工程を継続した。
(切り離し工程、冷却工程)
目標結晶重量となり単結晶育成工程を終了した後、坩堝軸12を駆動用モータ18により下降させ、坩堝11の位置を下降させることで原料融液と成長結晶とを切り離した(切り離し工程)。
【0111】
切り離し工程後、チャンバー16内の温度を室温まで冷却した(冷却工程)。
【0112】
冷却工程終了後、チャンバー16内から育成した単結晶を取り出し、評価を行った。
【0113】
育成した単結晶を取り出し、得られた結晶の外観観察を行って、クラックがないか確認を行った。また、結晶をウエハーにスライスし、X線トポグラフ像を観察してウエハー内の小傾角粒界を測定した。小傾角粒界が少ないほど良好な単結晶が育成されていることを示している。
【0114】
その結果、重量130kgのクラックフリーのサファイア単結晶が得られていることが確認できた。また、ウエハーにするため得られた結晶をスライスする加工したところ、加工中にもクラックは発生しないことが確認できた。
【0115】
また、得られたウエハーについてX線トポグラフ像の観察の結果、小傾角粒界も観察されないことが確認できた。
[比較例1]
重量変化算出ステップ、判定ステップ、及び底付き解消ステップを実施しなかった点以外は実施例1と同様の単結晶育成工程を実施したところ、単結晶育成工程の最中に底付き現象が発生し、種結晶部が破断し、育成していた単結晶が坩堝内に落下した。このため、単結晶の育成を中止した。
[比較例2]
底付き現象解消ステップにおいて、側面ヒータ13、及び底面ヒータ14の出力を底付き検知時と比較して2%上昇させた点以外は実施例1と同様にしてサファイア単結晶の製造を行った。
【0116】
得られた単結晶について実施例1と同様にして評価を行ったところ、重量130kgのクラックフリーのサファイア単結晶が得られていることが確認できた。また、ウエハーにするため得られた結晶をスライスする加工したところ、加工中にもクラックは発生しないことが確認できた。
【0117】
しかしながら、得られたウエハーについてX線トポグラフ像の観察の結果、小傾角粒界が確認され、十分な品質を有していないことが確認された。
【符号の説明】
【0118】
11 坩堝
13 側面ヒータ
14 底面ヒータ
20 単結晶
23 原料融液
図1
図2
図3