(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6427093
(24)【登録日】2018年11月2日
(45)【発行日】2018年11月21日
(54)【発明の名称】光学式位置測定装置
(51)【国際特許分類】
G01D 5/347 20060101AFI20181112BHJP
G01D 5/38 20060101ALI20181112BHJP
【FI】
G01D5/347 110U
G01D5/38 A
【請求項の数】15
【全頁数】14
(21)【出願番号】特願2015-248265(P2015-248265)
(22)【出願日】2015年12月21日
(65)【公開番号】特開2016-130728(P2016-130728A)
(43)【公開日】2016年7月21日
【審査請求日】2018年8月14日
(31)【優先権主張番号】10 2015 200 293.4
(32)【優先日】2015年1月13日
(33)【優先権主張国】DE
【早期審査対象出願】
(73)【特許権者】
【識別番号】390014281
【氏名又は名称】ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング
【氏名又は名称原語表記】DR. JOHANNES HEIDENHAIN GESELLSCHAFT MIT BESCHRANKTER HAFTUNG
(74)【代理人】
【識別番号】100069556
【弁理士】
【氏名又は名称】江崎 光史
(74)【代理人】
【識別番号】100111486
【弁理士】
【氏名又は名称】鍛冶澤 實
(74)【代理人】
【識別番号】100173521
【弁理士】
【氏名又は名称】篠原 淳司
(74)【代理人】
【識別番号】100191835
【弁理士】
【氏名又は名称】中村 真介
(74)【代理人】
【識別番号】100153419
【弁理士】
【氏名又は名称】清田 栄章
(72)【発明者】
【氏名】ヴァルター・フーバー
【審査官】
吉田 久
(56)【参考文献】
【文献】
特開2014−98619(JP,A)
【文献】
特開2012−127939(JP,A)
【文献】
特開2002−372407(JP,A)
【文献】
特開2014−122901(JP,A)
【文献】
特開2014−228303(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/26−5/38
(57)【特許請求の範囲】
【請求項1】
二つの互いに移動する物体の相対位置を検出する光学式位置測定装置であって、本装置が、これら二つの物体の一方と接続された走査ユニットと、これら二つの物体の他方と接続された反射基準尺とから構成され、少なくとも二対の部分光ビームが重なり合って干渉することにより、相対位置情報が得られ、そのために、
(a)光源から走査ユニットに入射する光ビームが、第一の分割部品によって、第一の分割面内の少なくとも第一、第二及び第三の部分光ビームに分割され、
(b)これらの第一と第三の部分光ビームが、走査ユニットにおいて、偏向部品によって反射基準尺の方向に偏向される一方、第二の部分光ビームが、第二の分割部品によって、少なくとも第四と第五の部分光ビームに分割されて、第一と第四の部分光ビームが反射基準尺上の第一の衝突場所の方向に進むとともに、第三と第五の部分光ビームが反射基準尺上の第二の衝突場所の方向に進み、
(c)これらの重なり合う第一と第二の対の部分光ビームは、反射基準尺での反射後に、第一と第二の検出器の方向に進み、そこで、これらの部分光ビームが、対毎に重なり合って干渉し、その結果、これらの検出器によって、移動量に応じた第一と第二の走査信号を検出することが可能であり、これらの走査信号から、物体の垂直移動方向と第一の横移動方向に関する位置情報を導き出すことができ、この第一の横移動方向が第一の分割面内を延びるか、或いはそれと平行に延びる、光学式位置測定装置において、
この走査ユニット(20)に入射する光ビームは、第一の分割部品(22)によって、更に、第一の分割面(xz)に対して直角の方向を向く第二の分割面(yz)内の更に別の部分光ビーム(30.6,30.7,30.8,30.9,30.10)に分割されて、これらの第二の分割面(yz)内の部分光ビーム(30.6,30.7,30.8,30.9,30.10)は、第一の分割面(xz)内の部分光ビーム(30.1,30.2,30.3.30.4,30.5)と同様に進み、その結果、第三と第四の検出器(26.3,26.4)によって、移動量に応じた第三と第四の走査信号を検出することが可能であり、これらの走査信号から、物体の垂直移動方向(z)と第二の横移動方向(y)に関する位置情報を導き出すことができ、この第二の横移動方向(y)が第二の分割面(yz)内を延びるか、或いはそれと平行に延びることを特徴とする光学式位置測定装置。
【請求項2】
第一の分割部品(22)によって、更に、少なくとも第六、第七及び第八の部分光ビーム(30.6,30.7,30.8)への分割が行なわれ、
(a)第六と第八の部分光ビーム(30.6,30.,8)が、走査ユニット(20)において、別の偏向部品(25.3,25.4)によって反射基準尺(10)の方向に偏向される一方、第七の部分光ビーム(30.7)が、第二の分割部品(24)によって、少なくとも第九と第十の部分光ビーム(30.9,30.10)に分割されて、第六と第九の部分光ビーム(30.6,30.9)が反射基準尺(10)上の第三の衝突場所(A3)の方向に進むとともに、第八と第十の部分光ビーム(30.8,30.10)が反射基準尺(10)上の第四の衝突場所(A4)の方向に進み、
(b)重なり合う第三と第四の対の部分光ビーム(30.6,30.9;30.8,30.10)が、反射基準尺(10)での反射後に、第三と第四の検出器(26.3,26.4)の方向に進み、そこで、これら二対の部分光ビーム(30.6,30.9;30.8,30.10)が、それぞれ重なり合って干渉し、その結果、第三と第四の検出器(26.3,26.4)によって、移動量に応じた第三と第四の走査信号を検出することが可能であることを特徴とする請求項1に記載の光学式位置測定装置。
【請求項3】
第一の分割部品(22)と第二の分割部品(24)が、それぞれ十字線又はチェス盤構成の二次元回折構造として構成されていることを特徴とする請求項1に記載の光学式位置測定装置。
【請求項4】
当該の二次元回折構造が振幅格子又は位相格子として構成されていることを特徴とする請求項3に記載の光学式位置測定装置。
【請求項5】
第一の分割部品(22)と第二の分割部品(24)が、それぞれ二次元透過交差格子として構成されていることを特徴とする請求項3又は4に記載の光学式位置測定装置。
【請求項6】
当該の二つの分割面(xz,yz)が互いに直角の方向を向くことを特徴とする請求項3に記載の光学式位置測定装置。
【請求項7】
当該の反射基準尺(10)が十字線又はチェス盤構成の二次元回折構造として構成されていることを特徴とする請求項1から6までのいずれか一つに記載の光学式位置測定装置。
【請求項8】
当該の二次元回折構造が振幅格子又は位相格子として構成されていることを特徴とする請求項7に記載の光学式位置測定装置。
【請求項9】
当該の反射基準尺(10)が二次元反射交差格子として構成されていることを特徴とする請求項7又は8に記載の光学式位置測定装置。
【請求項10】
当該の走査ユニット(20)が透明なガラス板(23)を有し、
(a)そのガラス板の入射光ビームの方を向いた側に、第一の分割部品(22)が配置され、
(b)そのガラス板の反射基準尺(10)の方を向いた側に、第二の分割部品(24)と偏向部品(25.1〜25.4)が配置されている、
ことを特徴とする請求項1から9までのいずれか一つに記載の光学式位置測定装置。
【請求項11】
当該のガラス板(23)の入射光ビームの方を向いた側には、更に、それぞれ構造化された光検出器として構成され、その感光面がガラス板(23)の反対側の方向を向く四つの検出器(26.1〜26.4)が配置されていることを特徴とする請求項10に記載の光学式位置測定装置。
【請求項12】
当該の構造化された光検出器は、それぞれ複数の周期的に配置された検出器素子(26.11〜26.1n,26.21〜26.2n,26.31〜26.3n,26.41〜26.4n)を有し、これらの同相の検出器素子(26.11〜26.1n,26.21〜26.2n,26.31〜26.3n,26.41〜26.4n)が電気的に相互接続されていることを特徴とする請求項11に記載の光学式位置測定装置。
【請求項13】
当該の構造化された光検出器が、αシリコンから構成されて、ガラス板(23)上に直接構造化されて配置されていることを特徴とする請求項11に記載の光学式位置測定装置。
【請求項14】
当該の検出器(26.1〜26.4)が第一の分割部品(22)と同じ面内に配置されていることを特徴とする請求項1から13までのいずれか一つに記載の光学式位置測定装置。
【請求項15】
当該の偏向部品(25.1〜25.4)が透過線形格子として構成されていることを特徴とする請求項1から14までのいずれか一つに記載の光学式位置測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1の上位概念に基づく光学式位置測定装置に関する。この位置測定装置は、二つの互いに移動する物体の一つの垂直方向自由度と少なくとも一つの横方向自由度を同時に検出するのに適している。
【背景技術】
【0002】
この種の光学式位置測定装置は、例えば、特許文献1の
図6により周知である。その位置測定装置は、二つの互いに移動する物体の相対位置を検出する役割を果たし、それらの物体の一方と接続された走査ユニットと、それら二つの物体の他方と接続された反射基準尺とから構成される。それら二つの物体に関する相対位置情報は、少なくとも二対の部分光ビームが重なって干渉することから得られる。その場合、光源から走査ユニットに入射する光ビームが、第一の分割部品によって第一の分割面内の少なくとも第一、第二及び第三の部分光ビームに分割される。次に、第一と第三の部分光ビームが、走査ユニットにおいて、偏向部品によって反射基準尺の方向に偏向される。第二の部分光ビームは、走査ユニットにおいて、第二の分割部品によって少なくとも第四と第五の部分光ビームに分割されて、第一と第四の部分光ビームが反射基準尺上の第一の衝突場所の方向に進み、第三と第五の部分光ビームが第二の衝突場所の方向に進む。第一と第二の対の重なり合う部分光ビームは、反射基準尺での反射後に、第一と第二の検出器の方向に進み、そこで、少なくとも二対の部分光ビームが、それぞれ重なり合って干渉する。それらの検出器によって、移動量に応じた走査信号を検出することが可能であり、それらの走査信号から、更に、物体の垂直移動と第一の横移動方向に関する位置情報を導き出すことができる。
【0003】
そのため、そのような光学式位置測定装置によって、二つの互いに移動する物体の横方向と垂直方向の自由度を同時に検出することが可能である。
【0004】
特許文献1により周知の装置は、そのような三つ以上の自由度を測定技術的に検出しなければならない測定課題には適していない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−326231号公報
【特許文献2】ドイツ特許公開第102011005937号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の課題は、二つの互いに移動する物体の少なくとも三つの空間自由度における高精度の空間位置計測を可能とする冒頭で述べた形式の光学式位置測定装置を実現することである。
【課題を解決するための手段】
【0007】
本課題は、本発明による請求項1の特徴を有する光学式位置測定装置によって解決される。
【0008】
本発明による光学式位置測定装置の有利な実施形態は、従属請求項に記載された措置により得られる。
【0009】
本発明による二つの互いに移動する物体の相対位置を検出する光学式位置測定装置は、これら二つの物体の一方と接続された走査ユニットと、これら二つの物体の他方と接続された反射基準尺とから構成される。相対位置情報は、少なくとも二対の部分光ビームが重なり合って干渉することにより得られ、そのために、
(a)光源から走査ユニットに入射する光ビームが、第一の分割部品によって、第一の分割面内の少なくとも第一、第二及び第三の部分光ビームに分割され、
(b)これらの第一と第三の部分光ビームが、走査ユニットにおいて、偏向部品によって反射基準尺の方向に偏向される一方、第二の部分光ビームが、第二の分割部品によって少なくとも第四と第五の部分光ビームに分割されて、第一と第四の部分光ビームが反射基準尺上の第一の衝突場所の方向に進むとともに、第三と第五の部分光ビームが反射基準尺上の第二の衝突場所の方向に進み、
(c)これらの重なり合う第一と第二の対の部分光ビームは、反射基準尺での反射後に、第一と第二の検出器の方向に進み、そこで、これらの部分光ビームが、対毎に重なり合って干渉し、その結果、これらの検出器によって、移動量に応じた第一と第二の走査信号を検出することが可能であり、これらの走査信号から、物体の垂直移動方向と第一の横移動方向に関する位置情報を導き出すことが可能であり、この第一の横移動方向が第一の分割面内を延びるか、或いはそれと平行に延びる。この走査ユニットに入射する光ビームは、第一の分割部品によって、更に、第一の分割面に対して直角の方向を向く第二の分割面内の更に別の部分光ビームに分割される。これらの部分光ビームは、第一の分割面内の部分光ビームと同様に第二の分割面内を進み、その結果、第三と第四の検出器によって、移動量に応じた第三と第四の走査信号を検出することが可能であり、これらの走査信号から、物体の垂直移動方向と第二の横移動方向に関する位置情報を導き出すことが可能であり、この第二の横移動方向が第二の分割面内を延びるか、或いはそれと平行に延びる。
【0010】
有利には、第一の分割部品によって、更に、少なくとも第六、第七及び第八の部分光ビームへの分割が行なわれ、
(a)第六と第八の部分光ビームが、走査ユニットにおいて、別の偏向部品によって反射基準尺の方向に偏向される一方、第七の部分光ビームが、第二の分割部品によって、少なくとも第九と第十の部分光ビームに分割され、第六と第九の部分光ビームが反射基準尺上の第三の衝突場所の方向に進むとともに、第八と第十の部分光ビームが第四の衝突場所の方向に進み、
(b)重なり合う第三と第四の対の部分光ビームが、反射基準尺での反射後に第三と第四の検出器の方向に進み、そこで、これら二対の部分光ビームが、それぞれ重なり合って干渉し、その結果、第三と第四の検出器によって、移動量に応じた第三と第四の走査信号を検出することが可能である。
【0011】
第一の分割部品と第二の分割部品は、それぞれ十字線又はチェス盤構成の二次元回折構造として構成することが可能である。
【0012】
この場合、この二次元回折構造は、振幅格子又は位相格子として構成することができる。
【0013】
第一の分割部品と第二の分割部品は、それぞれ二次元透過交差格子として構成することができる。
【0014】
有利には、これら二つの分割面は、互いに直角の方向を向く。
【0015】
更に、反射基準尺は、十字線又はチェス盤構成の二次元回折構造として構成することが可能である。
【0016】
この場合、この二次元回折構造は、振幅格子又は位相格子として構成することができる。
【0017】
有利には、反射基準尺は、二次元反射交差格子として構成することができる。
【0018】
更に、走査ユニットは、透明なガラス板を有し、
(a)そのガラス板の入射光ビームの方を向いた側に、第一の分割部品が配置され、
(b)そのガラス板の反射基準尺の方を向いた側に、第二の分割部品と偏向部品が配置される、
と規定することができる。
【0019】
この場合、ガラス板の入射光ビームの方を向いた側には、更に、それぞれ構造化された光検出器として構成され、その感光面がガラス板の反対側の方向を向く四つの検出器を配置することができる。
【0020】
この場合、この構造化された光検出器は、それぞれ複数の周期的に配置された検出器素子を有し、これらの同相の検出器素子が電気的に相互接続されている。
【0021】
この場合、有利には、これらの構造化された光検出器は、αシリコンから構成され、ガラス板上に直接構造化されて配置される。
【0022】
更に、これらの検出器を第一の分割部品と同じ面内に配置するのが有利であることが分かっている。
【0023】
同様に、偏向部品を透過線形格子として構成するのが有利である。
【0024】
ここで、本発明による光学式位置測定装置を用いて、少なくとも三つの空間自由度を、即ち、二つの互いに移動する物体の垂直方向の相対移動量とそれらの物体の二つの横移動方向に沿った相対移動量を測定技術的に高精度に検出することが可能である。
【0025】
更に、本発明による光学式位置測定装置が、冒頭で述べた従来技術と異なり、目盛周期の小さい格子の使用を可能とするのが有利であることが分かっている。更に、非常に精確な位置計測を可能とする特に高精度な走査信号を生成することも可能である。
【0026】
更に、本発明による位置測定装置において、走査信号の生成に悪影響を与える望ましくない雑音光線を特に効果的に低減することができる。
【0027】
以下における図面と関連した本発明による装置の実施例の記述に基づき、本発明の更なる詳細と利点を説明する。
【図面の簡単な説明】
【0028】
【
図1a】本発明による光学式位置測定装置の実施例のxz面内の走査光路の模式図
【
図1b】本発明による光学式位置測定装置の実施例のyz面内の走査光路の模式図
【
図2】
図1の光学式位置測定装置の反射基準尺の平面図
【
図3a】
図1の光学式位置測定装置の走査ユニット内のガラス板の反射基準尺の方を向いた側の平面図
【
図3b】
図1の光学式位置測定装置の走査ユニット内のガラス板の入射光ビームの方を向いた側の平面図
【
図4】
図1の光学式位置測定装置の四つの検出器の部分平面図
【
図5】
図1の光学式位置測定装置の信号処理を説明するための大幅に模式化したブロック図
【発明を実施するための形態】
【0029】
以下において、本発明による光学式位置測定装置の実施例を
図1a、1b、2、3a、3b、4及び5に基づき説明する。
【0030】
この場合、
図1a,1bは、異なる面内の走査光路を大幅に模式化して図示し、
図2は使用する反射基準尺の平面図を図示し、
図3a,3bは、それぞれ走査ユニットで使用するガラス板の上側と下側の部分図を図示し、
図4は、走査ユニットの四つの検出器の部分平面図を図示している。
図5の図面に基づき、ここで説明する位置測定装置での信号処理を説明する。
【0031】
本発明による光学式位置測定装置は、走査ユニット20とそれに対して相対的に移動する反射基準尺10とから構成される。走査ユニット20と反射基準尺10は、相対位置を検出すべき(図示されていない)二つの互いに移動する物体と接続されている。これらの物体間において、一つの垂直移動方向zと二つの横移動方向x,yに沿った少なくとも一つの相対運動が規定される。これら二つの横移動方向x,yは、互いに直角の方向を向き、垂直移動方向zは、これら二つの横移動方向x,yに対して直角の方向を向く。走査ユニット20及び反射基準尺10と接続された物体は、例えば、互いに移動する機械部分とすることができる。これらの相対的な位置決めは、後続の電子機器によって、本発明による光学式位置測定装置の生成された走査信号に基づき行なわれる。
【0032】
図示された実施例では、走査ユニット20は、光源21とガラス板23を有し、ガラス板23の上側と下側には、異なる光学作用を奏する部品と検出器26.1〜26.4が配置されている。以下においてガラス板23の上側と称する側は、光源21から入射する光ビームの方を向き、ガラス板23の下側は、反射基準尺10の方を向くものとする。以下の走査光路の更なる記述において、走査ユニット20の個々の構成部品の機能を更に詳しく説明する。
【0033】
この例では、反射基準尺10は、二次元反射交差格子として構成され、その平面図が
図2に図示されている。本発明による光学式位置測定装置では、一般的に、十字線又はチェス盤構成に構成された振幅格子又は位相格子の形の二次元回折構造が反射基準尺10として配備される。この場合、二次元回折構造は、第一の横移動方向xにおける一次元基準尺とそれに対して直角の第二の横移動方向yにおける一次元基準尺との重なり合いから構成される。実現可能な実施構成では、反射交差格子は、二つの方向x,yにおいて同じ目盛周期TP
Mを有し、具体的な実施例では、TP
M=1.45μmと選定される。
【0034】
本発明による光学式位置測定装置を用いて、少なくとも二対の部分光ビームを重ね合わせて干渉させることから、二つの横移動方向x,yと垂直移動方向zに沿った反射基準尺10と走査ユニット20の相対位置に関する相対位置情報を生成することが可能である。反射基準尺10と走査ユニット20の相対位置の如何なる変化も、干渉する部分光ビームに位相差を生じさせ、その位相差が、次に、位相のずれた周期的に変調された走査信号を生成させる結果となる。これらの走査信号の検出は複数の検出器26.1〜26.4により行なわれる。
【0035】
ここで、以下では、本発明による光学式位置測定装置の図示した実施例の具体的な走査光路とその更なる詳細とを説明する。
【0036】
波長780nmの光源21、例えば、レーザーダイオードから放射された光ビームは、コリメートされて、走査ユニット20において、透明なガラス板23の上側に配置された第一の分割部品22に対して垂直に入射する。コリメートのために、例えば、光源21と第一の分割部品22の間に好適なコリメータレンズを配備することができるが、図面には図示されていない。
図1aに図示されている通り、第一の分割部品22によって、光源21から入射する光ビームが、第一の分割面xz内において、第一の部分光ビーム30.1、第二の部分光ビーム30.2及び第三の部分光ビーム30.3に分割される。第一の分割面xzは、
図1aの図面平面と一致し、第一の横移動方向xと垂直移動方向zによって規定される面である。
【0037】
ここでは、第一の分割部品22は、
図3bから明らかな通り、透過交差格子として構成されている。実現可能な実施構成では、この透過交差格子は、二つの延伸方向x,yに同じ目盛周期TP
A1を有し、例えば、TP
A1=1.38μmと選定される。
【0038】
本発明による光学式位置測定装置では、一般的に、第一の分割部品22が十字線又はチェス盤構成の二次元回折構造として構成され、ここでは、それに対応する回折構造として、振幅格子も位相格子も配備することができる。
【0039】
この実施例では、第一の部分光ビーム30.1は、透過交差格子において第一の分割面xz内に発生する−1回折次数を表し、第二の部分光ビーム30.2は0回折次数を表し、第三の部分光ビーム30.3は+1回折次数を表す。
【0040】
第一と第三の部分光ビーム30.1,30.3は、ガラス板23を通過した後、ガラス板23の下側に配置された偏向部品25.1,25.2に到達する。この場合、偏向部品25.1,25.2によって、第一と第三の部分光ビーム30.1,30.3が第一の分割面xz内において反射基準尺10の方向に偏向される。この場合、偏向は、二つの部分光ビーム30.1,30.3が次にコリメートされて、反射基準尺10に直角に当たるように行なわれる。
【0041】
図3aから明らかな通り、偏向部品25.1,25.2は、第一の横移動方向xに沿って周期的に配置された格子素子を有する透過線形格子から構成され、これらの格子素子は、0回折次数を抑制する位相格子の位相フレームである。この位相フレームの長手方向は、第二の横移動方向yに沿って延びる。実現可能な実施構成では、二つの偏向部品25.1,25.2の目盛周期TP
U1,TP
U2は同じであり、TP
U1=TP
U2=1.38μmと選定される。
【0042】
第一の分割部品22で得られた第二の部分光ビーム30.2は、同じくガラス板23を通過した後、ガラス板23の下側に配置された第二の分割部品24に当たる。この第二の分割部品24によって、第二の部分光ビーム30.2は、第一の分割面xz内において、第四の部分光ビーム30.4と第五の部分光ビーム30.5に分割される。次に、これらの部分光ビーム30.4,30.5は、それぞれコリメートされて、反射基準尺10の方向に進む。
【0043】
コリメートされた部分光ビーム30.1,30.3,30.4,30.5を用いた反射基準尺10との衝突は、反射基準尺10上における比較的大きな走査領域を走査することを保証する。
【0044】
それによって、反射基準尺10の格子構造における場合によっては生じる誤差、さもなければ反射基準尺10の起こり得る汚染による信号への影響が明らかに低減される。本発明による光学式位置測定装置の実施例の所与のシステムパラメータにおいて、反射基準尺10にコリメートされて入射する部分光ビームの典型的な横断面は0.5mmの規模である。
【0045】
ガラス板23の下側の第二の分割部品24も、
図3aから明らかな通り、透過交差格子として構成されている。本発明による光学式位置測定装置では、一般的に、第二の分割部品24に関しても、それが十字線又はチェス盤構成の二次元回折構造として構成されると規定する。この場合、それに対応する回折構造として、又もや振幅格子又は位相格子を配備することができる。実現可能な実施構成では、第二の分割部品24の透過交差格子は、二つの延伸方向x,yにおいて同じ目盛周期TP
A2を有し、TP
A2=1.45μmと選定される。
【0046】
ここで、第四の部分光ビーム30.4は、第二の分割部品24の透過交差格子において第一の分割面xz内で生じる−1回折次数であり、第五の部分光ビーム30.5は+1回折次数である。
【0047】
そのため、第一と第四の部分光ビーム30.1,30.4は、ガラス板23を通過した後、反射基準尺10上の第一の衝突場所A1の方向に進み、第三と第五の部分光ビーム30.3,30.5は反射基準尺10上の第二の衝突場所A2の方向に進む。
図1aから明らかな通り、二つの衝突場所A1,A2は、第一の移動方向xに沿って互いに間隔を開けて位置する。反射基準尺10上の二つの衝突場所A1,A2からは、入射する二対の部分光ビーム30.1,30.4又は30.3,30.5が回折されて、再び走査ユニット20又はガラス板23の方向に反射されて戻される。この場合、(
図1aの左の)干渉する第一の対の部分光ビームにおいて、反射基準尺10で得られる反射された、第四の部分光ビーム30.4の0回折次数と、反射基準尺10で得られる反射された、第一の部分光ビーム30.1の−1回折次数とが信号生成のために使用される。(
図1aの右の)干渉する第二の対の部分光ビームの側では、同様に反射基準尺10で得られる反射された、第五の部分光ビーム30.5の0回折次数と、反射基準尺10で得られる反射された、第三の部分光ビーム30.3の+1次数とが信号生成のために使用される。そして、これらの部分光ビーム対30.1/30.4又は30.3/30.5は、新たにガラス板23を通過して、二つの検出器26.1,26.2に到達して重なり合って干渉する。二つの検出器26.1,26.2は、第一の分割部品22と同様にガラス板23の上側に配置されている。この場合、反射基準尺10で0回折次数と−1回折次数から得られる、第一の対の干渉部分光ビームの部分光ビーム30.1,30.4が第一の検出器26.1で重なり合って干渉する。反射基準尺10で0回折次数と+1回折次数から得られる、第二の対の部分光ビームの部分光ビーム30.3,30.5が第二の検出器26.2で重なり合って干渉する。以下においても、重なり合う第一の対の部分光ビーム30.1,30.4を第一の信号光ビームAと称し、重なり合う第二の対の部分光ビーム30.3,30.5を第二の信号光ビームBと称する。
【0048】
検出器26.1,26.2によって、移動量に応じた第一と第二の走査信号を検出することが可能であり、これらの走査信号から、物体の垂直移動方向zと第一の横移動方向xに関する位置情報を導き出すことができ、この場合、第一の横移動方向xは第一の分割面xz内を延びるか、或いはそれと平行に延びる。
【0049】
図示された実施例では、第一と第二の走査信号内において位相のずれた複数の部分走査信号を生成するために、所謂バーニャ評価が規定され、以下において、それを説明する。しかし、それは、本発明にとって重要なことではない、即ち、基本的に位相のずれた部分走査信号を生成する代替手法も用いることができ、明細書の更なる記述の中で、その手法を取り上げる。
【0050】
ここでバーニャ評価を使用した場合、第二の分割部品24の目盛周期TP
A2=1.45μmと反射基準尺10の目盛周期TP
M=1.455μmが僅かに、即ち、ほぼ0.35%相違することによって、各信号光ビームA,Bに含まれる部分光ビーム30.1,30.4又は30.3,30.5が僅かに異なる角度で反射基準尺10上の衝突場所A1,A2から検出器26.1,26.2の方向に進むことが保証される。第二の分割部品24と反射基準尺10に関する前記のパラメータの場合、例えば、一つの信号光ビームA,B内の対応する部分光ビーム30.1,30.4又は30.3,30.5の間に約2mラジアンの角度が生じる。そして、検出器26.1,26.2の検出面内において、周期TP
SM=400μmの周期的な(バーニャ)縞模様が得られる。
【0051】
この実施例では、周期的な縞模様を検出するために、検出器26.1,26.2は、ガラス板23の上側に構造化された光検出器として構成されている。これらは、
図4に図示されている通り、複数の検出器素子26.1
1,26.1
2...26.1
n又は26.2
1,26.2
2...26.2
nから構成され、第一の移動方向xに沿って周期的に配置されており、同相の検出器素子26.1
1,26.1
2...26.1
n又は26.2
1,26.2
2...26.2
nが電気的に相互接続されている。これらの検出器素子26.1
1,26.1
2...26.1
n又は26.2
1,26.2
2...26.2
nの感光面は、それぞれ反射基準尺10の方向を向いている。この実施例では、構造化された光検出器は、αシリコンから構成され、ガラス板23上に直接構造化されて配置されている。ここでは、縞模様の周期毎に、四つの検出器素子26.1
1〜26.1
4又は26.2
1〜26.2
4が配置されている。この状況が
図4に模式的に図示されている。そして、これらの検出器素子26.1
1〜26.1
4又は26.2
1〜26.2
4によって、縞模様の周期毎に、それぞれ
図4に図示された位相位置による四つの部分走査信号が、即ち、90°位相のずれた四つの部分走査信号が生成される。検出器26.1,26.2毎に、それぞれ二つの逆相の部分走査信号を逆並列に接続することによって、それぞれ二つのオフセットの無い90°位相のずれた走査信号S1
0,S1
90又はS2
0,S2
90が生成され、これらの走査信号は、次に、
図5の図面の通り更に処理される。この図では、走査信号S1
0,S1
90又はS2
0,S2
90からの位置値の演算が記号で図示されている。これらの位置値は、物体の互いの横方向移動量にも垂直方向移動量にも依存する。専ら二つの(横、垂直)スライド運動の中の一方に一義的に対応付けることが可能な位置値POS
x,POS
zへの電子的な再処理は、
図5に図示されている通り、走査信号S1
0,S1
90又はS2
0,S2
90から得られる位相値Φ
1とΦ
2の差分演算又は合計演算に基づくものである。
【0052】
本発明による光学式位置測定装置では、好適なサイズ設定パラメータの選択によって、検出器26.1,26.2の検出面内で重なり合って干渉する全ての部分光ビームの第一の分割部品22と反射基準尺10上の第一又は第二の衝突場所A1,A2の間の光路長が公称走査間隔Dにおいて等しくなることを保証することができる。この場合、反射基準尺10上において横方向にずれること無く、第一と第四の部分光ビーム30.1,30.4が第一の衝突場所A1で重なり合い、第三と第五の部分光ビーム30.3,30.5が第二の衝突場所A2で重なり合う間隔を反射基準尺10とガラス板23の間の公称走査間隔Dと称する。そのために、分割部品22,24、偏向部品25.1,25.2の目盛周期TP
A1,TP
A2,TP
U1,TP
U2、ガラス板23の厚さd及び公称走査間隔Dを互いに好適に調整する。このようにして、公称走査間隔Dにおいて、位置計測を波長に依存せずに行なうことを保証できる。周囲環境条件の、そのため、波長の場合によっては生じる変動が位置計測に影響しなくなる。
【0053】
一つの実施例では、前述した異なる格子の目盛周期、d=2.5mmのガラス板23の厚さd及びD=1.56mmの公称走査間隔Dに対して、SP
x=1.455μmの第一の横移動方向xに沿った動きに関する走査信号の信号周期SP
xと、SP
z=5μmの垂直移動方向zに沿った動きに関する走査信号の信号周期SP
zとによる公称走査間隔Dにおける光路長を補正した位置計測が得られる。
【0054】
ここで、本発明による光学式位置測定装置を用いて、第一の横移動方向xと垂直移動方向zに沿った走査ユニット20と反射基準尺10の相対移動を測定技術的に検出できるだけでなく、更に、第二の横移動方向yに沿ったスライド運動の検出も可能である。
【0055】
そのために、光源21から走査ユニット20に入射する光ビームは、第一の分割部品22によって、更に、第一の分割面xzに対して直角の方向を向く第二の分割面yz内において別の部分光ビーム30.6,30.7,30.8,30.9,30.10に分割されると規定する。第一の分割部品22後に得られる第二の分割面yz内の走査光路は、基本的に第一の分割面xz内の走査光路と一致するが、それに対して移動方向zに沿って90°回転している。
図1bでは、それに対応する第二の分割面内の走査光路が詳しく図示されている。それによると、第二の分割面yz内の異なる部分光ビーム30.6,30.7,30.8,30.9,30.10が第一の分割面xz内の異なる部分光ビーム30.1,30.2,30.3,30.4,30.5と同様に進む。この走査光路では、第三と第四の検出器26.3,26.4によって、移動量に応じた第三と第四の走査信号を検出することが可能であり、これらの走査信号から、物体の垂直移動方向zと第二の横移動方向yに関する位置情報を導き出すことができ、この場合、第二の横移動方向yは第二の分割面yz内を延びるか、或いはそれと平行に延びる。
【0056】
図1bに図示されている通り、第一の分割部品22によって、第一の分割面xz内での分割(
図1a)の外に、更に、第二の分割面において、入射する光ビームの第六の部分光ビーム30.6、第七の部分光ビーム30.7及び第八の部分光ビーム30.8への分割が行なわれる。第六の部分光ビーム30.6と第八の部分光ビーム30.8は、走査ユニット20の偏向部品25.3,25.4によって反射基準尺10の方向に偏向される。第七の部分光ビーム30.7は、第二の分割部品24によって、第九の部分光ビーム30.9と第十の部分光ビーム30.10に分割される。最終的に、ガラス板23を通過した後、第六と第九の部分光ビーム30.6,30.9は、反射基準尺10上の第三の衝突場所A3の方向に進み、第八と第十の部分光ビーム30.8,30.10は、第四の衝突場所A4の方向に進む。これらの第三と第四の衝突場所A3,A4は、第二の横移動方向yに沿って互いに間隔を開けて位置する。反射基準尺での反射後、重なり合う部分光ビーム対30.6/30.9又は30.8/30.10は、最終的に、信号光ビームC,Dとして、第三と第四の検出器26.3,26.4の方向に進む。そこでは、部分光ビーム30.6,30.9;30.8,30.10が、二つの対として、それぞれ重なり合って干渉し、その結果、第三と第四の検出器26.3,26.4によって、移動量に応じた第三と第四の走査信号を検出することが可能である。
【0057】
第二の分割面yz内の走査光路における異なる構成部品の実施形態及び好適な信号評価に関しては、第一の分割面xz内の走査光路に対する前記の実施形態を参照されたい。直前に述べた走査光路の偏向部品25.3,25.4は、検出器26.3,26.4と同様に、当然のことながら冒頭で説明した走査光路の対応する部品に対して90°回転した形に構成又は向けられて配置されている。
【0058】
一つの実施例では、第二の横移動方向yに沿った動きに関して得られる走査信号は、前述したパラメータに関して、第一の横移動方向xに関する走査信号と同じ信号周期SP
yを有する、即ち、SP
y=SP
x=1.455μmである。
【0059】
ここで具体的に説明した実施例の外に、本発明の範囲内には、当然のことながら本発明による光学式位置測定装置の別の実施形態も存在する。
【0060】
既に前に述べた通り、ここで説明したバーニャ評価の使用は、必ずしも複数の位相のずれた部分走査信号を生成するために必要なことではない。例えば、本発明による位置測定装置では、そのような信号の所謂偏光符号化による生成も可能である。その場合、例えば、第二の分割部品と偏向部品は、回折次数1の円偏光子として構成される。それによって、部分光ビームが干渉して、左円偏光と右円偏光に偏光される。前に説明したバーニャ評価と異なり、走査ユニットの方向に進む信号光ビームである、反射基準尺上の衝突場所から反射して戻される部分光ビームは同じ放射方向を有する。そして、ガラス板の上側には、検出器の代わりに、それぞれ線形透過位相格子の形の別の分割部品が配置され、それによって、入射する信号光ビームのそれぞれ三つの部分信号光ビームへの分割が行なわれる。その次に、これらの部分信号光ビームは、偏光検出ユニットに供給され、このユニットは、特に、検出器も有し、例えば、特許文献2の
図1から僅かに変更された形により周知であり、ここに、それを明確に参照する。この場合、本用途の検出ユニットでは、信号光ビームにおいて、評価に必要な左円偏光及び右円偏光された部分光ビームが既に得られているので、検出ユニットのλ/4プレートと分割格子が特許文献2から除かれる。
【0061】
それに代わって、当然のことながら光路内に偏光部品を好適に配置する更に別の手法も存在する。
【0062】
更に、前述した実施例で規定されている通り、必要な光源を走査ユニット内に配置しない構成も可能である。基本的に、走査ユニットから離して光源を配置し、光ファイバを用いて、放射光ビームを走査ユニット又は第一の分割部品に供給することも可能である。
【0063】
最後に、ここで説明した実施例に、光源と反射基準尺の間に配置された、反射基準尺上に部分光ビームを収束する役割等を果たす追加の収束部品だけを補足することもできる。
【符号の説明】
【0064】
10 反射基準尺
20 走査ユニット
21 光源
22 第一の分割部品
23 ガラス板
24 第二の分割部品
25.1〜25.4 偏向部品
26.1〜26.4 検出器
26.1
1〜26.1
n,26.2
1〜26.2
n,26.3
1〜26.3
n,26.4
1〜26.4
n 検出器素子
30.1,30.2,30.3.30.4,30.5,30.6,30.7,30.8,30.9,30.10 部分光ビーム
d ガラス板23の幅
x,y,z 移動方向
A,B,C,D 信号光ビーム
A1〜A4 衝突場所
D 公称走査間隔
POS
x,POS
z 位置値
S1
0,S1
90,S2
0,S2
90 走査信号
SP
x,SP
z 走査信号の信号周期
Φ
1,Φ
2 位相値