【実施例】
【0040】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0041】
[実施例1]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径8μm(D
50)の酸化イットリウム粉末(角状単一粒)を、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。画像解析法で確認したところ、この下層の気孔率は3.2%であった。なお、具体的な気孔率の測定方法は、後述する表層の気孔率の測定と同様である。
【0042】
一方、平均粒径1μm(D
50)のフッ化イットリウム粉末Aを95質量%と平均粒径0.2μmの酸化イットリウム粉末Bを5質量%の割合で混合してスプレードライ法により造粒し、窒素ガス雰囲気下にて800℃で焼成し溶射粉(溶射材料)を製造した。この溶射粉の粒径(D
50)、嵩密度、安息角を測定した。結果を表1に示す。また、この溶射粉をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とからなりY
5O
4F
7割合は9.1質量%であった。この溶射粉(溶射材料)を上記酸化イットリウム溶射皮膜からなる下層の上に、該下層成膜時と同様の条件でプラズマ溶射して、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。
【0043】
上記イットリウム系フッ化物溶射皮膜の表層をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とからなるイットリウム系フッ化物結晶構造を有していた。また、同表層の溶射皮膜につき、表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVを測定した。結果を表1に示す。なお、クラック量、気孔率、硬度HVの測定は、下記の方法により行った。
【0044】
[表面のクラック量の測定]
得られた各試験片について電子顕微鏡により表面写真(倍率3000)を撮影した。5視野(1視野の撮影面積:0.0016mm
2)の撮影を行った後、画像処理ソフト「Photoshop」(アドビシステムズ株式会社)で画像処理した後、画像解析ソフト「Scion Image」(Scion Corporation)を使い、クラック量の定量化を行った。5箇所の平均クラック量を画像総面積に対する百分率として評価した結果を表1に示す。
[気孔率の測定]
得られた試験片を樹脂埋めし、断面を鏡面仕上げ(Ra=0.1μm)した後、電子顕微鏡により断面写真(倍率:200倍)を撮影した。10視野(1視野の撮影面積:0.017mm
2)の撮影を行った後、画像処理ソフト「Photoshop」(アドビシステムズ株式会社)で画像処理した後、画像解析ソフト「Scion Image」(Scion Corporation)を使い、気孔率の定量化を行い、10視野平均の気孔率を画像総面積に対する百分率として評価した。結果を表1に示す。
[硬度HVの測定]
得られた試験片について、表面、断面を鏡面仕上げ(Ra=0.1μm)して、マイクロビッカース硬度計により皮膜表面の硬度測定を実施した。3ヶ所を測定しその平均値を皮膜の表面硬度とした。結果を表1に示す。
【0045】
[実施例2]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径20μm(D
50)の酸化イットリウム粉末(造粒粉)を、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。実施例1と同様に画像解析法で確認したところ、この下層の気孔率は2.8%であった。
【0046】
一方、平均粒径1.7μm(D
50)のフッ化イットリウム粉末Aを90質量%と平均粒径0.3μmの酸化イットリウム粉末Bを10質量%の割合で混合してスプレードライ法により造粒し、窒素ガス雰囲気下にて800℃で焼成し溶射粉(溶射材料)を製造した。この溶射粉の粒径(D
50)、嵩密度、安息角を測定した。結果を表1に示す。また、この溶射粉をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とからなりY
5O
4F
7割合は17.3質量%であった。この溶射粉(溶射材料)を上記酸化イットリウム溶射皮膜からなる下層の上に、該下層成膜時と同様の条件でプラズマ溶射して、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。
【0047】
上記イットリウム系フッ化物溶射皮膜の表層をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とからなるイットリウム系フッ化物結晶構造を有していた。また、同表層の溶射皮膜につき、実施例1と同様にして、表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVを測定した。結果を表1に示す。
【0048】
[実施例3]
□20mm角(厚さ5mm)のアルミナセラミック基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径30μm(D
50)の酸化イットリウム粉末を、爆発溶射装置を使用し、酸素、エチレンガスを使用して、溶射距離100mmにて15μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。実施例1と同様に画像解析法で確認したところ、この下層の気孔率は1.8%であった。
【0049】
一方、平均粒径1.4μm(D
50)のフッ化イットリウム粉末Aを85質量%と平均粒径0.5μmの酸化イットリウム粉末Bを15質量%の割合でボールミル混合し、窒素ガス雰囲気下にて800℃で焼成し溶射粉(溶射材料)を製造した。この溶射粉の粒径(D
50)を測定した。結果を表1に示す。また、この溶射粉をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とからなりY
5O
4F
7割合は26.4質量%であった。この溶射粉(溶射材料)と純水を使用してスラリー濃度30質量%のスラリーを作製した。上記酸化イットリウム溶射皮膜からなる下層の上に、大気圧プラズマ溶射装置を使用し、アルゴンガス、窒素ガス、水素ガスをプラズマガスとして使用して、出力100kW、溶射距離70mmにて30μm/PassでSPS溶射し、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。
【0050】
上記イットリウム系フッ化物溶射皮膜の表層をXRD
解析したところ、表1に示したようにYF
3とYOF及びY
2O
3とからなるイットリウム系フッ化物結晶構造を有していた。また、同表層の溶射皮膜につき、実施例1と同様にして、表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVを測定した。結果を表1に示す。
【0051】
[実施例4]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径18μm(D
50)の酸化イットリウム粉末(球状単一粒)を、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。実施例1と同様に画像解析法で確認したところ、この下層の気孔率は2.8%であった。
【0052】
一方、平均粒径45μm(D
50)のフッ化イットリウム造粒粉Aと平均粒径40μmの酸化イットリウム造粒粉Bを混合比率90:10(質量比)で粉体混合し、混合粉末からなる溶射粉(溶射材料)を製造した。この溶射粉の粒径(D
50)、嵩密度、安息角を測定した。結果を表1に示す。また、この溶射粉をXRD
解析したところ、表1に示したようにYF
3とY
2O
3とがそのまま混合された状態であった。この溶射粉(溶射材料)を上記酸化イットリウム溶射皮膜からなる下層の上に、該下層成膜時と同様の条件でプラズマ溶射して、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。
【0053】
上記イットリウム系フッ化物溶射皮膜の表層をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7及びY
2O
3とからなるイットリウム系フッ化物結晶構造を有していた。また、同表層の溶射皮膜につき、実施例1と同様にして、表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVを測定した。結果を表1に示す。
【0054】
[比較例1]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径20μm(D
50)の酸化イットリウム粉末(造粒粉)を、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。実施例1と同様に画像解析法で確認したところ、この下層の気孔率は2.8%であった。
【0055】
この酸化イットリウム溶射皮膜からなる下層の上に、平均粒径40μmのフッ化イットリウム造粒粉Aを溶射材料として単独で用い、下層成膜時と同様の条件でプラズマ溶射して、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。実施例1と同様にして、XRD
解析を行なうと共に、溶射粉の嵩密度及び安息角、及び表層の表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVの測定を行なった。結果を表1に示す。
【0056】
[比較例2]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径30μm(D
50)のフッ化イットリウム造粒粉末Aを、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚200μmのフッ化イットリウム溶射皮膜を成膜した。これにより、フッ化イットリウム溶射皮膜の単層からなる耐食性皮膜を有する試験片を作製した。実施例1と同様にして、XRD
解析を行なうと共に、溶射粉の嵩密度及び安息角、溶射皮膜の表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVの測定を行なった。結果を表1に示す。
【0057】
[比較例3]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径20μm(D
50)の酸化イットリウム粉末(造粒粉)を、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。実施例1と同様に画像解析法で確認したところ、この下層の気孔率は2.8%であった。
【0058】
一方、平均粒径1μm(D
50)のフッ化イットリウム粉末Aを65質量%と平均粒径0.2μmの酸化イットリウム粉末Bを35質量%の割合で混合してスプレードライ法により造粒し、窒素ガス雰囲気下にて800℃で焼成し溶射粉(溶射材料)を製造した。この溶射粉の粒径(D
50)、嵩密度、安息角を測定した。結果を表1に示す。また、この溶射粉をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とからなりY
5O
4F
7割合は49.8質量%であった。この溶射粉(溶射材料)を上記酸化イットリウム溶射皮膜からなる下層の上に、該下層成膜時と同様の条件でプラズマ溶射して、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。
【0059】
上記イットリウム系フッ化物溶射皮膜の表層をXRD
解析したところ、表1に示したようにYOF、Y
5O
4F
7及びY
7O
6F
9からなるイットリウム系フッ化物結晶構造を有していた。また、同表層の溶射皮膜につき、実施例1と同様にして、表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVを測定した。結果を表1に示す。
【0060】
[比較例4]
□20mm角(厚さ5mm)のA6061アルミニウム合金基材の表面をアセトン脱脂し、該基材の片面をコランダムの研削材を用いて粗面化処理した。その後、平均粒径20μm(D
50)の酸化イットリウム粉末(造粒粉)を、大気圧プラズマ溶射装置を使用し、アルゴンガス、水素ガスをプラズマガスとして使用して、出力40kW、溶射距離100mmにて30μm/Passで溶射し、膜厚100μmの酸化イットリウム溶射皮膜を下層として成膜した。実施例1と同様に画像解析法で確認したところ、この下層の気孔率は2.8%であった。
【0061】
一方、平均粒径1μm(D
50)のフッ化イットリウム粉末Aを50質量%と平均粒径0.2μmの酸化イットリウム粉末Bを50質量%の割合で混合してスプレードライ法により造粒し、窒素ガス雰囲気下にて800℃で焼成し溶射粉(溶射材料)を製造した。この溶射粉の粒径(D
50)、嵩密度、安息角を測定した。結果を表1に示す。また、この溶射粉をXRD
解析したところ、表1に示したようにYF
3とY
5O
4F
7とY
2O
3とからなりY
5O
4F
7割合は59.1質量%であった。この溶射粉(溶射材料)を上記酸化イットリウム溶射皮膜からなる下層の上に、該下層成膜時と同様の条件でプラズマ溶射して、膜厚100μmのイットリウム系フッ化物溶射皮膜の表層を成膜し、全厚み200μmの2層構造の耐食性皮膜を有する試験片を作製した。
【0062】
上記イットリウム系フッ化物溶射皮膜の表層をXRD
解析したところ、表1に示したようにYOFとY
5O
4F
7とからなるイットリウム系フッ化物結晶構造を有していた。また、同表層の溶射皮膜につき、実施例1と同様にして、表面粗さRa、Y濃度、F濃度、O濃度、C濃度、表面クラック量、気孔率、硬度HVを測定した。結果を表1に示す。
【0063】
得られた上記実施例1〜4及び比較例1〜4の試験片につき、下記の試験により、パーティクルの発生及びプラズマ耐食性を評価した。結果を表1に示す。
[パーティクル発生評価試験]
各試験片について超音波洗浄(出力200W、洗浄時間30分)を行い、試験片を乾燥した後、20ccの超純水の中に浸漬させて更に15分間の超音波洗浄を行った。超音波洗浄後、試験片を取り出し、5.3規定の硝酸液を2cc加えて超純水中に含まれるY
2O
3微粒子を溶かし、ICP発光分光分析法によりY
2O
3定量値を測定した。結果を表1に示す。
[耐食性評価試験]
各試験片について、表面を鏡面仕上げ(Ra=0.1μm)して、マスキングテープでマスキングした部分と暴露部分を作った後に、リアクティブイオンプラズマ試験装置にセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF
4+O
2(20vol%)、流量50sccm、ガス圧50mtorr、20時間の条件でプラズマ耐食性試験を行った。レーザー顕微鏡を使用し、腐食によって暴露部分とマスキング部分との間に生じた段差の高さをレーザー顕微鏡で測定し、測定箇所4点の平均値を求め、耐食性を評価した。結果を表1に示す。
【0064】
【表1】
【0065】
表1に示されているように、本発明にかかる実施例1〜4のイットリウム系フッ化物溶射皮膜は、比較例1〜4の溶射皮膜に比べて、クラック及び開気孔が少なく、高硬度で緻密な皮膜であることが確認された。この場合、
図1,2に比較例1の溶射皮膜表面の解析画像写真、
図3,4に実施例2の溶射皮膜表面の解析画像写真を示した。
図1,2と
図3,4の比較により、本発明の溶射皮膜は従来の皮膜に比べてクラックが遥かに少ないことが明確に確認される。
【0066】
また、表面層として本発明のイットリウム系フッ化物溶射皮膜を含む実施例1〜4の耐食性皮膜は、上記パーティクル発生評価試験におけるY
2O
3の溶出量が比較例1〜4の皮膜に比べて遥かに少なく、脱落微粒子(パーティクル)の発生を効果的に防止し得ることが確認された。更に、この実施例1〜4の耐食性皮膜は、上記耐食性試験において腐食により生じる段差の高さが、比較例1〜4の皮膜に比べて遥かに小さく、プラズマエッチングに対する耐食性に優れることが確認された。