(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6445310
(24)【登録日】2018年12月7日
(45)【発行日】2018年12月26日
(54)【発明の名称】マルチターン‐ロータリエンコーダ
(51)【国際特許分類】
G01D 5/244 20060101AFI20181217BHJP
G01B 21/22 20060101ALI20181217BHJP
G01D 5/04 20060101ALI20181217BHJP
【FI】
G01D5/244 K
G01B21/22
G01D5/04 C
【請求項の数】10
【全頁数】15
(21)【出願番号】特願2014-236263(P2014-236263)
(22)【出願日】2014年11月21日
(65)【公開番号】特開2015-102552(P2015-102552A)
(43)【公開日】2015年6月4日
【審査請求日】2017年8月28日
(31)【優先権主張番号】10 2013 224 247.6
(32)【優先日】2013年11月27日
(33)【優先権主張国】DE
(73)【特許権者】
【識別番号】390014281
【氏名又は名称】ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング
【氏名又は名称原語表記】DR. JOHANNES HEIDENHAIN GESELLSCHAFT MIT BESCHRANKTER HAFTUNG
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100075270
【弁理士】
【氏名又は名称】小林 泰
(74)【代理人】
【識別番号】100101373
【弁理士】
【氏名又は名称】竹内 茂雄
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100153947
【弁理士】
【氏名又は名称】家成 隆彦
(72)【発明者】
【氏名】マルティン・フォン・ベルク
【審査官】
深田 高義
(56)【参考文献】
【文献】
特開2011−059116(JP,A)
【文献】
特開2012−068049(JP,A)
【文献】
特開昭63−061911(JP,A)
【文献】
米国特許出願公開第2015/0369636(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/244
G01B 21/22
G01D 5/04
(57)【特許請求の範囲】
【請求項1】
シングルターン‐位置信号(SP,SP1,SP2)を生成するためにシングルターン‐走査装置(13)によって走査可能なコード担体(11)と、シングルターン‐位置信号(SP,SP1,SP2)を、1回転における入力軸(W)の絶対位置を示す少なくとも1つのシングルターン‐コードワード(SC,SC1,SC2)として処理するためのシングルターン‐評価ユニット(14)とを含むシングルターン‐ユニット(10)、
第1マルチターン‐位置信号(MP1)を生成するために第1マルチターン‐走査装置(13,23)によって走査可能な少なくとも1つの第1マルチターン‐コード担体(11,21)と、第1マルチターン‐位置信号(MP1)を、入力軸(W)が進んだ回転数を示す第1マルチターン‐コードワード(MC1)として処理するための第1マルチターン‐評価ユニットとを含む、電源装置に依存した第1マルチターン‐ユニット(20,40)、および
第2マルチターン‐位置信号(MP2.1,MP2.2)を生成するために第2マルチターン‐走査装置(33.1,33.2)によって走査可能な少なくとも1つの第2マルチターン‐コード担体(31.1,31.2)と、第2マルチターン‐位置信号(MP2.1,MP2.2)を、同様に入力軸(W)が進んだ回転数を示す第2マルチターン‐コードワード(MC2)として処理するための第2マルチターン‐評価ユニット(34)とを含む、電源装置に依存しない第2マルチターン‐ユニット(30)を備え、
マルチターン‐ロータリエンコーダの電源装置のスイッチオン後の初期化段階で、第1マルチターン‐ユニット(20,40)の第1マルチターン‐コードワード(MC1)の値と、第2マルチターン‐コードワード(MC2)の値とを照合する、マルチターン‐ロータリエンコーダ。
【請求項2】
請求項1に記載のマルチターン‐ロータリエンコーダにおいて、
第1マルチターン‐ユニット(20,40)が、照合のために、電源装置のスイッチオン後に初期化‐ユニット(220)によって、第2マルチターン‐コードワード(MC2)の値により初期化可能であるマルチターン‐ロータリエンコーダ。
【請求項3】
請求項2に記載のマルチターン‐ロータリエンコーダにおいて、
データ伝送路(230,330)を介した後続電子回路との通信のためにインタフェイスユニット(210,310)が設けられており、第1マルチターン‐ユニット(20,40)の初期化がインタフェイスユニット(210,310)によって開始可能であるマルチターン‐ロータリエンコーダ。
【請求項4】
請求項1に記載のマルチターン‐ロータリエンコーダにおいて、
照合のために、電源装置のスイッチオン後に初期化‐ユニット(320)によって、第2マルチターン‐コードワード(MC2)の値と第1マルチターン‐コードワード(MC1)の値との間の差を示すオフセット値(OFF)として第2マルチターン‐コードワード(MC2)の値を保存可能であるマルチターン‐ロータリエンコーダ。
【請求項5】
請求項1から4までのいずれか一項に記載のマルチターン‐ロータリエンコーダにおいて、
前記第1マルチターン‐ユニット(20,40)が、カウンタに基づいたマルチターン‐ユニットであるマルチターン‐ロータリエンコーダ。
【請求項6】
請求項1から5までのいずれか一項に記載のマルチターン‐ロータリエンコーダにおいて、
前記第2マルチターン‐ユニット(30)が、ギアに基づいたマルチターン‐ユニットであるマルチターン‐ロータリエンコーダ。
【請求項7】
シングルターン‐位置信号(SP,SP1,SP2)を生成するためにシングルターン‐走査装置(13)によって走査可能なコード担体(11)と、シングルターン‐位置信号(SP,SP1,SP2)を、1回転における入力軸(W)の絶対位置を示す少なくとも1つのシングルターン‐コードワード(SC,SC1,SC2)として処理するためのシングルターン‐評価ユニット(14)とを含むシングルターン‐ユニット(10)、
第1マルチターン‐位置信号(MP1)を生成するために第1マルチターン‐走査装置(13,23)によって走査可能な少なくとも1つの第1マルチターン‐コード担体(11,21)と、第1マルチターン‐位置信号(MP1)を、入力軸(W)が進んだ回転数を示す第1マルチターン‐コードワード(MC1)として処理するための第1マルチターン‐評価ユニットとを含む電源装置に依存した第1マルチターン‐ユニット(20,40)、および
第2マルチターン‐位置信号(MP2.1,MP2.2)を生成するために第2マルチターン‐走査装置(33.1,33.2)によって走査可能な少なくとも1つの第2マルチターン‐コード担体(31.1,31.2)と、第2マルチターン‐位置信号(MP2.1,MP2.2)を、同様に入力軸(W)が進んだ回転数を示す第2マルチターン‐コードワード(MC2)として処理するための第2マルチターン‐評価ユニット(34)とを含む、電源装置に依存しない第2マルチターン‐ユニット(30)を備えるマルチターン‐ロータリエンコーダを作動する方法において、
マルチターン‐ロータリエンコーダの電源装置のスイッチオン後の初期化段階で、第1マルチターン‐ユニット(20,40)の第1マルチターン‐コードワード(MC1)の値と第2マルチターン‐コードワード(MC2)の値とを照合する方法。
【請求項8】
請求項7に記載の方法において、
マルチターン‐ユニット(20,40)が、照合のために、電源装置のスイッチオン後に初期化‐ユニット(220)によって第2マルチターン‐コードワード(MC2)の値により初期化されるマルチターン‐ロータリエンコーダ。
【請求項9】
請求項8に記載の方法において、
データ伝送路(230,330)を介した後続電子回路との通信のためにインタフェイスユニット(210,310)が設けられており、第1マルチターン‐ユニット(20,40)の初期化がインタフェイスユニット(210,310)によって開始されるマルチターン‐ロータリエンコーダ。
【請求項10】
請求項7に記載の方法において、
照合のために、第2マルチターン‐コードワード(MC2)の値が、電源装置のスイッチオン後に初期化‐ユニット(320)によって、第2マルチターン‐コードワード(MC2)の値と第1マルチターン‐コードワード(MC1)の値との間の差を示すオフセット値(OFF)として保存されるマルチターン‐ロータリエンコーダ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1に記載の確実なマルチターン‐ロータリエンコーダ、および請求項7に記載のこのようなマルチターン‐ロータリエンコーダを作動する方法に関する。このようなマルチターン‐ロータリエンコーダは、例えば、軸の角度位置および進んだ回転数を測定するために自動化技術で使用される。
【背景技術】
【0002】
軸の角度位置を測定するための位置測定装置は、多数の刊行物により既知である。このような位置測定装置はロータリエンコーダと呼ばれる。さらに位置測定装置が軸の角度位置だけではなく軸によって進められた回転数を測定することもできる場合、マルチターン‐ロータリエンコーダと呼ばれる。
【0003】
マルチターン‐ユニット、すなわち、軸が進んだ回転数を確認するユニットを構成するためには、基本的に2つの手段が既知であり、1つはギアに基づいたマルチターン‐ユニットであり、もう1つはカウンタに基づいたマルチターン‐ユニットである。
【0004】
ギアに基づいたマルチターン‐ユニットの場合、入力軸は、入力回転数を低減する1つまたは複数のギア段を駆動する。16:1の減速比を有するギア段の場合には、例えばギア段の出力軸は、入力軸の16回転につき1回の回転を行う。出力軸はコード担体を駆動し、コード担体の角度位置は入力軸の回転数の推論を可能にする。
【0005】
ギアに基づいたマルチターン‐ロータリエンコーダの一例がドイツ連邦共和国特許出願公開第2817172号明細書に記載されている。この場合には、第1角度‐コードディスクと、後続の複数の角度‐コードディスクを備える角度エンコーダである。
【0006】
欧州特許出願公開第1457762号明細書が、物体の位置、経路または回転角度を測定するための装置を開示している。この装置は、差動歯車装置を介して連結された互いに連続する3つのコードディスクの形態の3つの測定基準器を含む。コード‐ディスクの走査は、全てのコードディスクのコードトラックを半径方向にカバーする走査ユニットにより行われる。
【0007】
ギアに基づいたマルチターン‐ユニットは、実質的に電源装置に依存していない。すなわち、ギアに基づいたマルチターン‐ユニットは、ロータリエンコーダがスイッチオフされた状態においても機能する。これは、ギアによって駆動されるコードディスクは電源装置がなくても回転するからである。ロータリエンコーダを再びスイッチオンした後には、マルチターン‐ユニットのコードディスクの角度位置の検出により、入力軸が進んだ回転数を決定することができる。
【0008】
カウンタに基づいたマルチターン‐ユニットは、コード担体の回転数により、軸が進んだ回転数を検出する。コード担体は軸によって直接に駆動され、したがって測定される軸と同じ回転数を進む。コード担体には、走査ユニットにより走査されるコードが配置されている。走査ユニットによって検出される位置信号により、カウント用電子回路においてカウンタのためのカウント信号が生成される。カウンタは、コード担体、ひいては軸の完全な回転の数を回転方向に応じてカウントする。他の手段がない場合、カウンタに基づいたマルチターン‐ユニットは電源装置に依存している。すなわち、ロータリエンコーダの電源装置がスイッチオフされた場合、カウンタに基づいたマルチターン‐ユニットは、一方ではカウンタの値を失い、他方では軸の回転をもはやカウントすることはできない。再びスイッチオンされた後にはカウンタはリセットされている。
【0009】
主電源装置がスイッチオフされた場合、すなわち、例えば、マルチターン‐ロータリエンコーダを駆動する機械がスイッチオフされた場合にもカウンタのカウント状態を保存し、さらにカウント機能を保持するために、カウンタに基づいたマルチターン‐ユニットは、主電源装置が故障した場合に少なくともロータリエンコーダのマルチターン‐ユニットのエネルギー供給を引き受けるバッテリを備えていることが多い。
【0010】
例えば、欧州特許第1462771号明細書に記載されているマルチターン‐ロータリエンコーダは、スイッチオフ状態でバッテリによって作動されるカウンタに基づいたマルチターン‐ユニットを備える。
【0011】
カウンタに基づいたマルチターン‐ユニットを補助し、電源装置に応じた作動を可能にするこれらの手段および他の手段は、コスト高であり、したがって避けることが望ましい。節電した電気回路においても遅かれ早かれバッテリ交換が必要となるので、バッテリの使用は極めて不都合である。
【0012】
安全技術上の理由から、例えば、測定エラーによりマルチターン‐ロータリエンコーダを作動する装置が損傷されるか、または機械の操作員に危険が及ぶ可能性がある場合には、軸の回転数を重複して測定することが必要となる場合もある。
【0013】
そこでドイツ連邦共和国特許出願公開第102009029431号明細書は、電源に依存しない2つのマルチターン‐ユニットを備えるマルチターン‐ロータリエンコーダを提案している。これらのマルチターン‐ユニットの測定値の比較により、常にマルチターン‐ロータリエンコーダの機能性を点検することが可能である。したがって、このようなマルチターン‐ロータリエンコーダは安全性が重要な用途において使用するために適している。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】ドイツ連邦共和国特許出願公開第2817172号明細書
【特許文献2】欧州特許出願公開第1457762号明細書
【特許文献3】欧州特許第1462771号明細書
【特許文献4】ドイツ連邦共和国特許出願公開第102009029431号明細書
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明の課題は、構成が簡単であり、安全性が重要となる用途に適したマルチターン‐ロータリエンコーダを提案することである。
【課題を解決するための手段】
【0016】
この課題は、請求項1に記載のマルチターン‐ロータリエンコーダにより解決される。
【0017】
シングルターン‐位置信号を生成するためにシングルターン‐走査装置によって走査可能なコード担体と、シングルターン‐位置信号を、1回転における入力軸の絶対位置を示す少なくとも1つのシングルターン‐コードワードとして処理するためのシングルターン‐評価ユニットとを含むシングルターン‐ユニット、
第1マルチターン‐位置信号を生成するために第1マルチターン‐走査装置によって走査可能な少なくとも1つの第1マルチターン‐コード担体と、第1マルチターン‐位置信号を、入力軸が進んだ回転数を示す第1マルチターン‐コードワードとして処理するための第1マルチターン‐評価ユニットとを含む電源装置に依存した第1マルチターン‐ユニット、および
第2マルチターン‐位置信号を生成するために第2マルチターン‐走査装置によって走査可能な少なくとも1つの第2マルチターン‐コード担体と、第2マルチターン‐位置信号を、同様に入力軸が進んだ回転数を示す第2マルチターン‐コードワードとして処理するための第2マルチターン‐評価ユニットとを含む電源装置に依存しない第2マルチターン‐ユニットを備え、
第1マルチターン‐ユニットの第1マルチターン‐コードワードの値が、マルチターン‐ロータリエンコーダの電源装置がスイッチオンされた後の初期化段階で第2マルチターン‐コードワードの値と照合されるマルチターン‐ロータリエンコーダが提案される。
【0018】
さらに本発明の課題は、このようなマルチターン‐ロータリエンコーダを作動する方法を提案することである。
【0019】
この方法は、請求項7に記載の方法により解決される。
【0020】
請求項7では、
シングルターン‐位置信号を生成するためにシングルターン‐走査装置によって走査可能なコード担体と、シングルターン‐位置信号を、1回転における入力軸の絶対位置を示す少なくとも1つのシングルターン‐コードワードとして処理するためのシングルターン‐評価ユニットとを含むシングルターン‐ユニット、
第1マルチターン‐位置信号を生成するために第1マルチターン‐走査装置によって走査可能な少なくとも1つの第1マルチターン‐コード担体と、第1マルチターン‐位置信号を、入力軸が進んだ回転数を示す第1マルチターン‐コードワードとして処理するための第1マルチターン‐評価ユニットとを含む、電源装置に依存した第1マルチターン‐ユニット、および
第2マルチターン‐位置信号を生成するために第2マルチターン‐走査装置によって走査可能な少なくとも1つの第2マルチターン‐コード担体と、第2マルチターン‐位置信号を、同様に入力軸が進んだ回転数を示す第2マルチターン‐コードワードとして処理するための第2マルチターン‐評価ユニットとを含む、電源装置に依存しない第2マルチターン‐ユニットを備えるマルチターン‐ロータリエンコーダを作動し、
この場合に第1マルチターン‐ユニットの第1マルチターン‐コードワードの値が、マルチターン‐ロータリエンコーダの電源装置がスイッチオンされた後の初期化段階で第2マルチターン‐コードワードの値と照合可能である方法が提案される。
【0021】
本発明によるマルチターン‐ロータリエンコーダならびにこのようなマルチターン‐ロータリエンコーダを作動する方法のさらなる利点および詳細を以下の実施例に示す。
【図面の簡単な説明】
【0022】
【
図1】本発明によるマルチターン‐ロータリエンコーダの第1実施例を示す図である。
【
図2】
図1に示したマルチターン‐評価ユニットのブロック回路図である。
【
図3】
図1に示したマルチターン‐ロータリエンコーダのブロック回路図である。
【
図4】本発明によるマルチターン‐ロータリエンコーダの別の実施例を示す図である。
【
図5】
図4に示したマルチターン‐ロータリエンコーダのブロック回路図である。
【発明を実施するための形態】
【0023】
図1には、本発明による第1のマルチターン‐ロータリエンコーダが示されている。この第1のマルチターン‐ロータリエンコーダは、シングルターン‐ユニット10、第1マルチターン‐ユニット20、および第2マルチターン‐ユニット30を備える。
【0024】
シングルターン‐ユニット10はコードディスク11によって形成されており、コードディスク11は、測定される入力軸Wに直接に結合されている。コードディスク11は、光電式、磁気式、容量式または誘導式に走査可能なコード12を有し、入力軸Wの回転を多数の識別可能なセクターに分割する。このコード12はデジタル式またはアナログ式に構成されていてもよい。デジタル式のコード12は、例えば、グレー‐コードなどのマルチトラックコードとして構成されていてもよいし、またはシングルトラックのチェーンコード、いわゆる「疑似ランダムコード」(PRC)によって構成されていてもよい。アナログ式のコード12の場合、走査時にアナログ式走査信号が生じ、これらのアナログ式走査信号の振幅および/または位相から、入力軸Wの角度位置を決定することができる。コード12は、シングルターン‐位置信号SPを生成するために操作装置13によって走査される。シングルターン‐位置信号SPはシングルターン‐評価ユニット14に供給され、シングルターン‐評価ユニット14は、単一の回転における入力軸Wの絶対位置を示す複数桁のシングルターン・コードワードSCを形成し、出力部において出力する。
【0025】
入力軸Wの回転数を検出するために、マルチターン‐ユニット20,30が設けられている。
【0026】
第1マルチターン‐ユニット20は、カウンタに基づいたマルチターン‐ユニットである。第1マルチターン‐ユニット20は、同様に入力軸Wに回動不能に結合された第1マルチターン‐コード担体21を備える。第1マルチターン‐コード担体21は、単一の磁気双極子、すなわち、N極およびS極を備える。
【0027】
これらの極は、第1マルチターン‐走査装置23によって走査される。第1マルチターン‐走査装置23は、磁界に反応する複数のセンサ素子を備え、これらのセンサ素子によって第1マルチターン‐位置信号MP1が生成可能であり、これらの第1マルチターン‐位置信号MP1により、第1マルチターン‐評価ユニット24において、第1マルチターン‐コード担体21の絶対位置を示す第1マルチターン‐コードワードMC1を形成することができる。センサ素子は、例えば、ホール‐センサ、MR‐センサ、またはGMRセンサである。好ましくは、これらのセンサ素子および第1マルチターン‐評価ユニット24は共に半導体基板に組み込まれている。
【0028】
図2は、第1マルチターン‐評価ユニット24のブロック回路図を示す。この場合、第1マルチターン‐位置信号MP1は2つの信号を含み、これらの信号は広範囲に正弦状の経過を示し、入力軸Wの回転時には完全な正弦波振動周期を通過する。通常、これら2つの信号は、互いに約90°の位相ずれを示し、これにより、入力軸Wの回転方向を決定することが可能となる。
【0029】
第1マルチターン‐評価ユニット24において、第1マルチターン‐位置信号MP1は、まず信号形成ユニット100に供給され、信号形成ユニット100は、正弦状の入力信号からデジタル式の矩形のカウント信号を形成し、これらのカウント信号は、一方では方向弁別器101に供給され、他方ではカウンタユニット102に供給される。方向弁別器101は、カウント信号のエッジの時系列から回転方向を突き止め、この回転方向をカウンタユニット102の方向信号UP/DOWNとして伝送する。カウンタユニット102は、カウント信号の立ち上がりエッジまたは立ち下りエッジ、および方向信号UP/DOWNを利用して、方向に応じて入力軸Wの回転数をカウントする。
【0030】
上位のマルチターン‐ユニット20の場合と同様に、第1マルチターン‐評価ユニット24には、マルチターン‐ロータリエンコーダのスイッチオフ状態でも機能を可能にする手段は設けられていない。供給電源のスイッチオフにより、カウンタユニット102は最新のカウント値を失い、入力軸Wの動作は見られない。すなわち、マルチターン‐ユニット20は供給電源に依存したマルチターン‐ユニットである。
【0031】
第2マルチターン‐ユニット30はギアに基づいたマルチターン‐ユニットであり、例えば2つのギア段32.1,32.2を備える。必要とされるギア段の数は、確認した入力軸Wの回転数と、ギア段によって確認できる回転数に広範囲に依存している。入力軸Wの小さい回転数のみを測定したい場合、1つのギア段があれば十分な場合もある。工具の送りねじの回転を確認するためには、3つ以上のギア段が必要となる場合もある。
【0032】
第1ギア段32.1は入力軸Wに直接に結合されている。第1ギア段32.1は16倍のギア減速度を備え、第1ギア段32.1の出力軸は、同様に16倍のギア減速を行う第2ギア段32.2に結合されている。ギア段32.1,32.2は2つのマルチターン‐コード担体31.1,31.2をそれぞれ駆動し、マルチターン‐コード担体31.1,31.2は、第2マルチターン‐位置信号MP2.1,MP2.2を生成するために第2マルチターン‐走査装置33.1,33.2によって走査される。入力軸Wが現在行っているカウント可能な回転情報は、第2マルチターン‐コード担体31.1.31.2の角度位置に符号化されている。第2マルチターン‐コード担体31.1,31.2は、第1マルチターン‐コード担体21と同様に、単一の磁気双極子によって形成されている。したがって、第2マルチターン‐コード担体31.1,31.2の走査は、第1マルチターン‐コード担体21の走査と同様に行われる。しかしながら、第1マルチターン‐ユニット20のマルチターン‐位置信号MP1とは異なり、第2マルチターン‐位置信号MP1,MP2は第2マルチターン‐評価ユニット34で補間される。すなわち、マルチターン‐位置信号MP1,MP2の瞬時値には、それぞれのマルチターン‐コード担体31.1,31.2の角度位置を示す絶対値が割り当てられている。瞬時値の分解能は、付属のギア段の減速比に少なくとも対応している。最終的に、第2マルチターン‐評価ユニット34は、決定された第2マルチターン‐位置信号MP2.1,MP2.2の絶対値を第2マルチターン‐コードワードMC2として処理する。
【0033】
ここで説明した多段減速ギアによる実施態様の他に、本発明では当然ながら冒頭で述べた欧州特許出願公開第1457762号明細書で提案されているような、差動歯車装置によるギアに基づいたマルチターン‐ユニットも適している。
【0034】
2つのマルチターン‐ユニット20,30が設けられていることにより、マルチターン‐ロータリエンコーダには、互いに独立して形成された2つのマルチターン‐コードワードMC1,MC2が提供されている。しかしながら、第1マルチターン‐ユニット20がスイッチオン後に常に新たにカウントを開始することにより、電源装置のスイッチオン直後に2つのマルチターン‐ユニット20,30が機能しているかどうかをこれら2つのマルチターン‐コードワードMC1,MC2の比較によって確認することはできない。
【0035】
ギアに基づいたマルチターン‐ユニットを作動する機械が停止している場合にこのマルチターン‐ユニットが故障する可能性が極めて低いことが調査により示されている。すなわち、逆にいえば、機械、ひいてはマルチターン‐ロータリエンコーダのスイッチオン後には、極めて高い可能性をもってギアに基づいたマルチターン‐ユニット30の測定値が正確であると仮定することができる。
【0036】
この事実に基づいて、(カウンタに基づいて電源装置に応じて第1マルチターン‐ユニット20により生成された)第1マルチターン‐コードワードMC1の値を、供給電圧のスイッチオン後の初期化段階で、(ギアに基づいて電源装置に応じて第2マルチターン‐ユニット30により生成された)第2マルチターン‐コードワードMC2の値と照合することができるという認識に基づいている。換言すれば、第2マルチターン‐コードワードMC2の値は、第1マルチターン‐コードワードMC1と第2マルチターン‐コードワードMC2との間の関係を形成するために参照値として使用することができる。さらなる作動時に、2つのマルチターン‐コードワードMC1,MC2の比較により、マルチターン‐ユニット20,30の正確な機能を推論することが可能である。
【0037】
図1が示すように、例えば、第1マルチターン‐ユニット20が電源装置のスイッチオン後に第2マルチターン‐ユニット30(すなわち、第2マルチターン‐コードワードMC2)の測定値によって初期化されることによって照合を行うことができる。このために、第1マルチターン‐評価ユニット24の第2マルチターン‐コードワードMC2が、特にカウンタユニット102に供給される。初期化は、同様にマルチターン‐評価ユニット24に供給された初期化信号INITによって制御される。さらなる作動時に、マルチターン‐コードワードMC1,MC2が、対応するマルチターン‐ユニット20,30によって再び互いに独立して生成され、マルチターン‐コードワードMC1,MC2が一致しているかどうかを点検することにより、マルチターン‐ユニット20,30の故障を確実に検出することができる。
【0038】
図3は、
図1に示した本発明によるマルチターン‐ロータリエンコーダのブロック図を示す。このマルチターン‐ロータリエンコーダは、シングルターン‐ユニット10、第1マルチターン‐ユニット20、および第2マルチターン‐ユニット30を含み、これらのユニットの出力信号SC,MC1,MC2は処理ユニット200に供給される。データ伝送路230を介した後続電子回路(図示しない)との通信のためにインタフェイスユニット210が設けられている。データ伝送は、例えば直列に行うことができる。適切な直列インタフェイスは、専門家には十分に知られている。
【0039】
初期化信号INITを生成するために、マルチターン‐ロータリエンコーダはさらに初期化‐ユニット220を含む。初期化‐ユニット220は、電源装置のスイッチオン後に第2マルチターン‐コードワードMC2が提供されるとすぐに初期化信号INITが自動的に生成されるように構成されていてもよい。代替的または付加的に、例えば、後続電子回路からマルチターン‐ロータリエンコーダに特定のコマンドが送信されることにより、インタフェイスユニット210を介して後続電子回路によって初期化信号INITの生成が開始されるように構成されていてもよい。
【0040】
処理ユニット200は、この実施例では、一方ではコード接続‐ユニット240においてシングルターン‐コードワードおよび第1マルチターン‐コードワードMC1から位置‐データワードPOS1が生成されるように構成されており、他方では、第1マルチターン‐コードワードMC1と第2マルチターン‐コードワードMC2との比較によりマルチターン‐ユニット20,30の機能を確認し、確認されたエラーがエラーフラグFとしてインタフェイスユニット210に出力されるように構成された比較ユニット250を備える。位置‐データワードPOS1およびエラーフラグFはインタフェイスユニット210およびデータ伝送路230を介して後続電子回路に伝送可能である。後続電子回路は、状態フラグFを評価し、エラー発生時に適切な手段をとり、例えば、機械を適正に停止させることができる。
【0041】
代替的には、処理ユニット200を省略し、シングルターン‐コードワードSC、第1マルチターン‐コードワードMC1、および第2マルチターン‐コードワードMC2を後続電子回路への伝送のために直接にインタフェイスユニット210に供給することも可能である。
【0042】
図4は、本発明によるマルチターン‐ロータリエンコーダの別の実施形態の原理を示す。このマルチターン‐ロータリエンコーダは、同様に、シングルターン‐ユニット10、第1マルチターン‐ユニット40、および第2マルチターン‐ユニット30からなる。第2マルチターン‐ユニット30は、
図1に関連して説明したユニットに広範囲に対応しており、ここではもう一度説明しない。
【0043】
シングルターン‐ユニット10は、この実施例では、互いに独立した2つのシングルターン‐コードワードSC1,SC2が生成されるように構成されている。この構成は、シングルターン‐走査ユニット13およびシングルターン‐評価ユニット14が2経路により構成されていることにより達成できる。これにより、シングルターン‐走査ユニット13にはシングルターン‐位置信号SP1,SP2の2つのグループが生じ、これらのシングルターン‐位置信号SP1,SP2から、シングルターン‐評価ユニット14において対応するシングルターン‐コードワードSC1,SC2が生成される。
【0044】
これに対して、第1マルチターン‐ユニット40は、シングルターン‐走査装置13によるコード担体11のコード12の走査により得られるシングルターン‐位置信号SP1,SP2も、第1マルチターン‐コードワードMC1を形成するために考慮することができるという事実を利用している。したがって、2つのグループの少なくともいずれか一方のシングルターン‐位置信号SP1,SP2が(第1マルチターン‐コードワードMC1を形成するために必要な場合には)、第1マルチターン‐位置信号MP1として第1マルチターン‐評価ユニット44に少なくとも部分的に供給され、第1マルチターン‐評価ユニット44はこの第1マルチターン‐位置信号MP1から第1マルチターン‐コードワードMC1を形成するためのカウント信号を生成し、カウントする。したがって、第1マルチターン‐ユニット40もカウンタに基づいたマルチターン‐ユニットである。この実施例においても、マルチターン‐ロータリエンコーダの電源装置が取り除かれた場合に第1マルチターン‐ユニット40が機能しないことを達成する手段は設けられていない。したがって、この場合も電源装置に依存したマルチターン‐ユニットである。
【0045】
第1マルチターン‐評価ユニット44の他に、この実施例ではコード12を備えるコード担体11およびシングルターン‐走査装置13も第1マルチターン‐ユニット40に割り当てられている。
【0046】
第1マルチターン‐コードワードMC1の値と第2マルチターン‐コードワードMC2の値との照合は、この実施例においても上記実施例に示した場合と同様に、電源装置のスイッチオン後の第1マルチターン‐評価ユニット44の初期化によって行うことができる。
【0047】
図5は、
図4に示した原理に基づいたマルチターン‐ロータリエンコーダのブロック図を示す。このブロック図では照合の代替的な可能性が提案される。マルチターン‐ロータリエンコーダは、シングルターン‐ユニット10、第1マルチターン‐ユニット40、および第2マルチターン‐ユニット30を含み、これらのユニットの出力信号SC1,SC2,MC1,MC2は処理ユニット300に供給される。処理ユニット330は2つのコード接続‐ユニット340,350を含み、これらのコード接続‐ユニット340,350は、それぞれ1つのシングルターン‐コードワードSC1もしくはSC2およびマルチターン‐コードワードMC1もしくはMC2から位置‐データワードPOS1もしくはPOS2を形成する。この実施例においても、データ伝送路330を介したマルチターン‐ロータリエンコーダと後続電子回路(図示しない)と間の通信およびデータ伝送のためのインタフェイスユニット310が設けられている。
【0048】
第1マルチターン‐コードワードMC1の値と第2マルチターン‐コードワードMC2の値とを照合するために、初期化‐ユニット320が設けられている。この初期化‐ユニット320は、電源装置のスイッチオン後に第2マルチターン‐コードワードMC2が提供されるとすぐに第2マルチターン‐コードワードMC2の値をオフセット値OFFとして保存するように構成されている。第1マルチターン‐ユニット40は再びスイッチオンされた後にリセットされ、値「0」でカウントを開始するので、第1マルチターン‐コードワードMC1と第2マルチターン‐コードワードMC2との間の一定の差であるオフセット値OFFは参照値として適しており、マルチターン‐コードワードMC1,MC2のさらなる処理および評価の際に考慮することができる。
【0049】
したがって、オフセット値OFFは、例えば第1コード接続‐ユニット340に供給されてもよい。第1コード接続‐ユニット340は、(第1マルチターン‐コードワードMC1を補正して)第1位置‐データワードPOS1を形成する場合にオフセットOFFを考慮し、これにより、第1位置‐データワードPOS1および第2位置‐データワードPOS2は再び同じ値を示し、マルチターン‐ロータリエンコーダ(
図3に示すように)または後続電子回路における位置データワードPOS1,POS2の比較によりマルチターン‐ユニット30,40の適正な機能を確認することができる。
【0050】
代替的には、インタフェイスユニット310およびデータ伝送路330を介してオフセット値OFFを後続電子回路に伝達することができ、後続電子回路において位置‐データワードPOS1,POS2を比較する場合に考慮することができる。
[形態1]
シングルターン‐位置信号(SP,SP1,SP2)を生成するためにシングルターン‐走査装置(13)によって走査可能なコード担体(11)と、シングルターン‐位置信号(SP,SP1,SP2)を、1回転における入力軸(W)の絶対位置を示す少なくとも1つのシングルターン‐コードワード(SC,SC1,SC2)として処理するためのシングルターン‐評価ユニット(14)とを含むシングルターン‐ユニット(10)、
第1マルチターン‐位置信号(MP1)を生成するために第1マルチターン‐走査装置(13,23)によって走査可能な少なくとも1つの第1マルチターン‐コード担体(11,21)と、第1マルチターン‐位置信号(MP1)を、入力軸(W)が進んだ回転数を示す第1マルチターン‐コードワード(MC1)として処理するための第1マルチターン‐評価ユニットとを含む、電源装置に依存した第1マルチターン‐ユニット(20,40)、および
第2マルチターン‐位置信号(MP2.1,MP2.2)を生成するために第2マルチターン‐走査装置(33.1,33.2)によって走査可能な少なくとも1つの第2マルチターン‐コード担体(31.1,31.2)と、第2マルチターン‐位置信号(MP2.1,MP2.2)を、同様に入力軸(W)が進んだ回転数を示す第2マルチターン‐コードワード(MC2)として処理するための第2マルチターン‐評価ユニット(34)とを含む、電源装置に依存しない第2マルチターン‐ユニット(30)を備え、
第1マルチターン‐ユニット(20,40)の第1マルチターン‐コードワード(MC1)の値が、マルチターン‐ロータリエンコーダの電源装置のスイッチオン後の初期化段階で第2マルチターン‐コードワード(MC2)の値と照合可能であるマルチターン‐ロータリエンコーダ。
[形態2]
形態1に記載のマルチターン‐ロータリエンコーダにおいて、
第1マルチターン‐ユニット(20,40)が、照合のために、電源装置のスイッチオン後に初期化‐ユニット(220)によって、第2マルチターン‐コードワード(MC2)の値により初期化可能であるマルチターン‐ロータリエンコーダ。
[形態3]
形態2に記載のマルチターン‐ロータリエンコーダにおいて、
データ伝送路(230,330)を介した後続電子回路との通信のためにインタフェイスユニット(210,310)が設けられており、第1マルチターン‐ユニット(20,40)の初期化がインタフェイスユニット(210,310)によって開始可能であるマルチターン‐ロータリエンコーダ。
[形態4]
形態1に記載のマルチターン‐ロータリエンコーダにおいて、
照合のために、電源装置のスイッチオン後に初期化‐ユニット(320)によって、第2マルチターン‐コードワード(MC2)の値と第1マルチターン‐コードワード(MC1)の値との間の差を示すオフセット値(OFF)として第2マルチターン‐コードワード(MC2)の値を保存可能であるマルチターン‐ロータリエンコーダ。
[形態5]
形態1から4までのいずれか一項に記載のマルチターン‐ロータリエンコーダにおいて、
前記第1マルチターン‐ユニット(20,40)が、カウンタに基づいたマルチターン‐ユニットであるマルチターン‐ロータリエンコーダ。
[形態6]
形態1から5までのいずれか一項に記載のマルチターン‐ロータリエンコーダにおいて、
前記第2マルチターン‐ユニット(30)が、ギアに基づいたマルチターン‐ユニットであるマルチターン‐ロータリエンコーダ。
[形態7]
シングルターン‐位置信号(SP,SP1,SP2)を生成するためにシングルターン‐走査装置(13)によって走査可能なコード担体(11)と、シングルターン‐位置信号(SP,SP1,SP2)を、1回転における入力軸(W)の絶対位置を示す少なくとも1つのシングルターン‐コードワード(SC,SC1,SC2)として処理するためのシングルターン‐評価ユニット(14)とを含むシングルターン‐ユニット(10)、
第1マルチターン‐位置信号(MP1)を生成するために第1マルチターン‐走査装置(13,23)によって走査可能な少なくとも1つの第1マルチターン‐コード担体(11,21)と、第1マルチターン‐位置信号(MP1)を、入力軸(W)が進んだ回転数を示す第1マルチターン‐コードワード(MC1)として処理するための第1マルチターン‐評価ユニットとを含む電源装置に依存した第1マルチターン‐ユニット(20,40)、および
第2マルチターン‐位置信号(MP2.1,MP2.2)を生成するために第2マルチターン‐走査装置(33.1,33.2)によって走査可能な少なくとも1つの第2マルチターン‐コード担体(31.1,31.2)と、第2マルチターン‐位置信号(MP2.1,MP2.2)を、同様に入力軸(W)が進んだ回転数を示す第2マルチターン‐コードワード(MC2)として処理するための第2マルチターン‐評価ユニット(34)とを含む、電源装置に依存しない第2マルチターン‐ユニット(30)を備えるマルチターン‐ロータリエンコーダを作動する方法において、
マルチターン‐ロータリエンコーダの電源装置のスイッチオン後の初期化段階で、第1マルチターン‐ユニット(20,40)の第1マルチターン‐コードワード(MC1)の値と第2マルチターン‐コードワード(MC2)の値とを照合する方法。
[形態8]
形態7に記載の方法において、
マルチターン‐ユニット(20,40)が、照合のために、電源装置のスイッチオン後に初期化‐ユニット(220)によって第2マルチターン‐コードワード(MC2)の値により初期化されるマルチターン‐ロータリエンコーダ。
[形態9]
形態8に記載の方法において、
データ伝送路(230,330)を介した後続電子回路との通信のためにインタフェイスユニット(210,310)が設けられており、第1マルチターン‐ユニット(20,40)の初期化がインタフェイスユニット(210,310)によって開始されるマルチターン‐ロータリエンコーダ。
[形態10]
形態7に記載の方法において、
照合のために、第2マルチターン‐コードワード(MC2)の値が、電源装置のスイッチオン後に初期化‐ユニット(320)によって、第2マルチターン‐コードワード(MC2)の値と第1マルチターン‐コードワード(MC1)の値との間の差を示すオフセット値(OFF)として保存されるマルチターン‐ロータリエンコーダ。
【符号の説明】
【0051】
10 シングルターン‐ユニット
11,21 コード担体
13,23 シングルターン‐走査装置
14 シングルターン‐評価ユニット
20,30,40 マルチターン‐ユニット
31.1,31.2 マルチターン‐コード担体
33.1,33.2 マルチターン‐走査装置
24 第1マルチターン‐評価ユニット
34 第2マルチターン‐評価ユニット
210,310 インタフェイスユニット
230,330 データ伝送路
320 初期化‐ユニット
MC1 第1マルチターン‐コードワード
MC2 第2マルチターン‐コードワード
MP1 第1マルチターン‐位置信号
MP2,MP2.1,MP2.2 第2マルチターン‐位置信号
OFF オフセット
SC,SC1,SC2 シングルターン‐コードワード
SP,SP1,SP2 シングルターン‐位置信号
W 入力軸