特許第6446029号(P6446029)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クラレの特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6446029
(24)【登録日】2018年12月7日
(45)【発行日】2018年12月26日
(54)【発明の名称】含硫黄化合物除去用の組成物
(51)【国際特許分類】
   C10G 29/24 20060101AFI20181217BHJP
   C10L 3/10 20060101ALI20181217BHJP
【FI】
   C10G29/24
   C10L3/10
【請求項の数】9
【全頁数】14
(21)【出願番号】特願2016-508677(P2016-508677)
(86)(22)【出願日】2015年3月11日
(86)【国際出願番号】JP2015057114
(87)【国際公開番号】WO2015141535
(87)【国際公開日】20150924
【審査請求日】2017年11月1日
(31)【優先権主張番号】特願2014-53181(P2014-53181)
(32)【優先日】2014年3月17日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001085
【氏名又は名称】株式会社クラレ
(74)【代理人】
【識別番号】100078732
【弁理士】
【氏名又は名称】大谷 保
(74)【代理人】
【識別番号】100089185
【弁理士】
【氏名又は名称】片岡 誠
(72)【発明者】
【氏名】藤 純市
(72)【発明者】
【氏名】宮崎 涼子
(72)【発明者】
【氏名】鈴木 理浩
【審査官】 森 健一
(56)【参考文献】
【文献】 米国特許出願公開第2013/0004393(US,A1)
【文献】 米国特許第05347004(US,A)
【文献】 米国特許出願公開第2012/0241361(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C10G 1/00−99/00
B01D 53/14
C10L 3/00
(57)【特許請求の範囲】
【請求項1】
炭化水素中の含硫黄化合物を除去するための組成物であって、含硫黄化合物が硫化水素、−SH基を含有する化合物またはこれらの混合物であり、かつ組成物が1,9−ノナンジアールおよび/または2−メチル−1,8−オクタンジアールを有効成分として含有することを特徴とする、組成物。
【請求項2】
炭化水素中の含硫黄化合物を除去するための組成物であって、含硫黄化合物が硫化水素、−SH基を含有する化合物またはこれらの混合物であり、かつ組成物が3−メチルグルタルアルデヒドを有効成分として含有することを特徴とする、組成物。
【請求項3】
含硫黄化合物を除去する対象である炭化水素が、天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物からなる群の1つ以上である、請求項1または2に記載の組成物。
【請求項4】
請求項1〜のいずれかに記載の組成物を用いて炭化水素中の含硫黄化合物を除去する方法であって、含硫黄化合物が硫化水素、−SH基を含有する化合物またはこれらの混合物である、方法。
【請求項5】
さらに含窒素化合物を用いる、請求項に記載の方法。
【請求項6】
炭化水素が、天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物からなる群の1つ以上である、請求項または請求項に記載の方法。
【請求項7】
請求項1〜のいずれかに記載の組成物の使用量が、炭化水素の質量に対して1〜10000ppmの範囲であることを特徴とする、請求項のいずれかに記載の方法。
【請求項8】
請求項1〜のいずれかに記載の組成物と炭化水素を20℃〜200℃の範囲で接触させることを特徴とする、請求項のいずれかに記載の方法。
【請求項9】
炭化水素中の硫化水素、−SH基を含有する化合物またはこれらの混合物である含硫黄化合物を除去するための、請求項1〜のいずれかに記載の組成物の使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭化水素中の含硫黄化合物、典型的には硫化水素、−SH基を含有する化合物またはこれらの混合物を除去するか濃度を低減するための組成物に関する。詳細には、本発明は、例えば天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物などの、化石燃料や精製石油製品などに含有される含硫黄化合物(典型的には硫化水素)を除去するための組成物、該組成物を用いた含硫黄化合物(典型的には硫化水素)の除去方法に関する。
【背景技術】
【0002】
天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物などの化石燃料や精製石油製品などの炭化水素は、しばしば硫化水素や−SH基を含有するさまざまな化合物(典型的には各種メルカプタン類)などの含硫黄化合物を含む。硫化水素の毒性はよく知られており、化石燃料や精製石油製品を扱う産業においては、硫化水素の含有量を安全なレベルまで低減させるために相当の費用と努力が払われている。例えばパイプラインガスに対しては、硫化水素の含有量が4ppmを超えないことが多くの規制値として要求されている。また、硫化水素及び−SH基を含有するさまざまな化合物(典型的には各種メルカプタン類)は、その揮発性のために蒸気空間に放出される傾向にあり、その場合、それらの悪臭が貯蔵場所および/またはその周辺の場所、並びに前記炭化水素を輸送するために使用されるパイプライン及び出荷システムを通じて問題となっている。
【0003】
上記の観点から、化石燃料や精製石油製品を扱う大規模設備においては、硫化水素を含有する炭化水素または炭化水素流を処理するためのシステムが通常設置されている。これらのシステムは、炭化水素または炭化水素流に接触し、硫化水素や−SH基を含有するさまざまな化合物(典型的には各種メルカプタン類)などの含硫黄化合物、場合によって二酸化炭素などを吸収するアルカノールアミン、PEG、ヒンダードアミンなどの、吸収後に処理システムにおいて再生使用することが可能な種類の化合物を充填した吸収塔を備える。
【0004】
一方、炭化水素中の硫化水素を除去するためにトリアジンを用いることが古くから知られているが、トリアジンは塩基性条件でないと用いることができない(中性〜酸性条件では分解してしまう)という欠点がある。
炭化水素中の硫化水素を除去するためにアルデヒド化合物を用いることも古くから提案されている。具体的には特許文献1に、pHが2〜12の範囲である水溶液中での、アルデヒド化合物と硫化水素との反応、特にホルムアルデヒド水溶液と硫化水素との反応が開示されている。以降、硫化水素を除去するためにアルデヒド化合物を用いることに関して多数の報告がなされており、例えば特許文献2では、ホルムアルデヒド、グリオキサールまたはグルタルアルデヒドなどの水溶性のアルデヒドを水溶液として、炭化水素中の硫化水素除去剤として用いている。
水溶液である硫化水素除去剤を炭化水素に単に添加するだけでは混合の観点から改善が求められ、例えば特許文献3では、上記アルデヒド類に対してソルビタンセスキオレートのようなエマルジョン化剤を添加することで、硫化水素の除去効率を向上できるとされている。また、特許文献4では重質油中の硫化水素を効率的に除去するために、水溶液である硫化水素除去剤と重質油とをスタティックミキサを備えた射出システムでエマルジョン化させている。
【0005】
また、上記水溶性アルデヒドを水溶液として硫化水素除去剤として用いる場合には、ホルムアルデヒド、グリオキサール、グルタルアルデヒドの酸化による有機カルボン酸が該水溶液中に存在することに起因する装置腐食を引き起こすことが懸念される。この観点から、特許文献5や特許文献6では、LiHPO、NaHPO、NaHPO、KHPO、KHPOなどのリン酸塩、リン酸エステル、チオホスフェート、チオアミンなどを腐食抑制剤として併用することが提案されている。
しかしながら、ホルムアルデヒドは変異原性物質であることがよく知られている。また、後述する試験例のとおり、グルタルアルデヒドは毒性を有しかつ難分解性であるため、これらのアルデヒドは取り扱い時の安全性や環境へ与える影響について問題がある。
【0006】
一方、特許文献2には、前記した水溶性アルデヒドだけではなく、より有機性の高いアクロレインを硫化水素除去剤として用いることも開示されており、2011年10月30日〜11月2日に米国コロラド州デンバーで開かれたSPE Annual Technical Conference and Exhibition SPE146080でも、アクロレインを有効成分とする硫化水素除去に関して発表されている。しかしながら、アクロレインは毒性が強く、労働安全上および環境安全上で厳しくその濃度が規制されている化合物であり、取り扱いに注意を要するという問題がある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第1991765号公報
【特許文献2】米国特許第4680127号公報
【特許文献3】米国特許第5284635号公報
【特許文献4】国際公開WO2011/087540号パンフレット
【特許文献5】米国特許公開第2013/090271号公報
【特許文献6】米国特許公開第2013/089460号公報
【非特許文献】
【0008】
【非特許文献1】SPE Annual Technical Conference and Exhibition SPE146080、2011年;http://dx.doi.org/10.2118/146080-MS
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記のように、炭化水素及び炭化水素流体に含まれる硫化水素の除去剤として、従来提案されている水溶性アルデヒドの水溶液を用いるには、炭化水素中に何らかの手段で分散させる必要があったり、該水溶液自体に起因する腐食を抑制する必要があり、他の添加剤や装置が必要となることから、なお改善が望まれている。
【0010】
しかして、本発明の目的は、炭化水素に含まれる含硫黄化合物、特に硫化水素、−SH基を含有する化合物またはこれらの混合物を、安全に効率よく除去することができる組成物を提供することにある。
【課題を解決するための手段】
【0011】
本発明は以下のとおりである。
[1]炭化水素中の含硫黄化合物を除去するための組成物であって、含硫黄化合物が硫化水素、−SH基を含有する化合物またはこれらの混合物であり、かつ組成物が炭素数6〜16のジアルデヒドを有効成分として含有することを特徴とする、組成物。
[2]前記ジアルデヒドが1,9−ノナンジアールおよび/または2−メチル−1,8−オクタンジアールである、[1]の組成物。
[3]含硫黄化合物を除去する対象である炭化水素が、天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物からなる群の1つ以上である、[1]または[2]の組成物。
[4][1]〜[3]のいずれかの組成物を用いて炭化水素中の含硫黄化合物を除去する方法であって、含硫黄化合物が硫化水素、−SH基を含有する化合物またはこれらの混合物である、方法。
[5]さらに含窒素化合物を用いる、[4]の方法。
[6]炭化水素が、天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物からなる群の1つ以上である、[4]または[5]の方法。
[7][1]〜[3]のいずれかの組成物の使用量が、炭化水素の質量に対して1〜10000ppmの範囲であることを特徴とする、[4]〜[6]のいずれかの方法。
[8][1]〜[3]のいずれかの組成物と炭化水素を20℃〜200℃の範囲で接触させることを特徴とする、[4]〜[7]のいずれかの方法。
[9]炭化水素中の硫化水素、−SH基を含有する化合物またはこれらの混合物である含硫黄化合物を除去するための、[1]〜[3]のいずれかの組成物の使用。
【発明の効果】
【0012】
本発明の組成物は、炭素数6〜16のジアルデヒド、例えば1,9−ノナンジアールおよび/または2−メチル−1,8−オクタンジアールや3−メチルグルタルアルデヒドを有効成分とすることで、炭化水素中の含硫黄化合物、特に硫化水素、−SH基を含有する化合物またはこれらの混合物の除去性能に優れる。また、他の硫化水素除去剤として従来より用いられているアルデヒド類に比べ、特に1,9−ノナンジアールおよび/または2−メチル−1,8−オクタンジアールを有効成分とする本発明の組成物は低毒性かつ生分解性であるので、環境への悪影響がなく取扱い上の安全性に優れるほか、耐熱性にも優れるので炭化水素を貯留、運送などする際において本発明の組成物を用いても装置腐食性が低い。
【発明を実施するための形態】
【0013】
本明細書において、本発明の組成物を用いる対象となる炭化水素とは、気体状、液体状、固体状またはこれらの混合状態であることができ、典型的には天然ガス、液化天然ガス、サワーガス、原油、ナフサ、重質芳香族ナフサ、ガソリン、ケロシン、ディーゼル油、軽油、重油、FCCスラリー、アスファルト、油田濃縮物などの化石燃料や精製石油製品など、およびこれらの任意の組み合わせが挙げられるが、これらに限定されない。
【0014】
本発明においては、本発明の組成物を用いて除去する対象となる前記炭化水素中に含有され得る含硫黄化合物は、硫化水素、−SH基を含有する化合物またはこれらの混合物である。ここで、−SH基を含有する化合物としては、化学式「R−SH」で示されメルカプタン類として分類される含硫黄化合物、例えばRがアルキル基であるメチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、イソブチルメルカプタン、sec−ブチルメルカプタン、tert−ブチルメルカプタン、n−アミルメルカプタン;Rがアリール基であるフェニルメルカプタン;Rがアラルキル基であるベンジルメルカプタン;などが挙げられるが、これらに限定されない。
【0015】
本発明の組成物は、炭素数6〜16のジアルデヒドを有効成分として含有することを特徴とする。炭素数6〜16のジアルデヒドとしては脂肪族ジアルデヒドが好適であり、例えばメチルグルタルアルデヒド、1,6−ヘキサンジアール、エチルペンタンジアール、1,7−ヘプタンジアール、メチルヘキサンジアール、1,8−オクタンジアール、メチルヘプタンジアール、ジメチルヘキサンジアール、エチルヘキサンジアール、1,9−ノナンジアール、メチルオクタンジアール、エチルヘプタンジアール、1,10−デカンジアール、ジメチルオクタンジアール、エチルオクタンジアール、ドデカンジアール、ヘキサデカンジアール、1,2−シクロヘキサンジカルボアルデヒド、1,3−シクロヘキサンジカルボアルデヒド、1,4−シクロヘキサンジカルボアルデヒド、1,2−シクロオクタンジカルボアルデヒド、1,3−シクロオクタンジカルボアルデヒド、1,4−シクロオクタンジカルボアルデヒド、1,5−シクロオクタンジカルボアルデヒド、4,7−ジメチル−1,2−シクロオクタンジカルボアルデヒド、4,7−ジメチル−1,3−シクロオクタンジカルボアルデヒド、2,6−ジメチル−1,3−シクロオクタンジカルボアルデヒド、2,6−ジメチル−1,4−シクロオクタンジカルボアルデヒド、2,6−ジメチル−1,5−シクロオクタンジカルボアルデヒド、オクタヒドロ−4、7−メタノ−1H−インデン−2,5−ジカルボキシアルデヒドなどが挙げられる。これらの中でも、3−メチルグルタルアルデヒド、1,9−ノナンジアール、2−メチル−1,8−オクタンジアールが好ましく、本発明の組成物が低毒性、生分解性、取扱い上の安全性、耐熱性などを備えることができる観点から、有効成分として1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールのうち少なくとも一方を含有することがさらに好ましい。
【0016】
本発明の組成物が有効成分として1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールのうち少なくとも一方を含有する場合において、有効成分としては1,9−ノナンジアール単独または2−メチル−1,8−オクタンジアール単独でもよいが、工業的な入手容易性の観点からは1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールの混合物の形態であることが特に好ましい。かかる1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールの混合物の混合比に特に制限はないが、通常、1,9−ノナンジアール/2−メチル−1,8−オクタンジアールの質量比として99/1〜1/99であるのが好ましく、95/5〜5/95であるのがより好ましく、90/10〜45/55であるのがさらに好ましく、90/10〜55/45であるのが特に好ましい。
【0017】
1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールはいずれも公知物質であり、自体公知の方法(例えば特許第2857055号公報、特公昭62−61577号公報等に記載の方法)またはそれに準ずる方法によって製造することができる。また、市販品を用いてもよい。3−メチルグルタルアルデヒド(MGL)についても公知物質であり、公知の方法(例えばOrganic Syntheses,Vol.34,p.29(1954)、およびOrganic Syntheses,Vol.34,p.71(1954)等に記載の方法)、またはそれに準ずる方法によって製造できる。
【0018】
なお、1,9−ノナンジアールおよび/または2−メチル−1,8−オクタンジアールは、グルタルアルデヒドと同等またはそれ以上の殺菌作用を有し、経口毒性が低くかつ生分解性にも優れて安全性が高く、かつ耐熱性に優れ保存安定性を有する。
【0019】
本発明の組成物における有効成分であるジアルデヒドの含有割合は、使用態様に応じて適宜設定することができるが、通常1〜100質量%であり、費用対効果の観点から、好ましくは5〜100質量%であり、より好ましくは5〜95質量%である。
【0020】
本発明の組成物の製造方法は特に制限されず、自体公知の方法またはそれに準ずる方法を用いることができる。例えばジアルデヒド、好適には3−メチルグルタルアルデヒド、1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールから選択される少なくとも1種、特に好適には1,9−ノナンジアールおよび2−メチル−1,8−オクタンジアールの混合物に、所望により後述する任意成分を添加し混合することなどによって製造できる。
本発明の組成物は好適には液状であるが、炭化水素中の含硫黄化合物を除去するために使用する形態に応じて、適宜担体などに担持させる形態での粉体、粒体などの固体状であっても良い。
【0021】
本発明の組成物を用いての、炭化水素中の含硫黄化合物を除去する方法においては、本発明の組成物に加えて、ホルムアルデヒド、グリオキサール、グルタルアルデヒド、アクロレインなどの、硫化水素除去剤として従来から公知であるアルデヒド化合物を適宜添加して用いても差し支えない。
【0022】
また、本発明の組成物を用いての、炭化水素中の含硫黄化合物を除去する方法においては、本発明の効果を一層増大させるか、または損なわない範囲においてさらに含窒素化合物を添加してもよい。かかる含窒素化合物としては、例えばN,N’−オキシビス(メチレン)ビス(N,N−ジブチルアミン)、N,N’−(メチレンビス(オキシ)ビス(メチレン))ビス(N,N−ジブチルアミン)、4,4’−オキシビス(メチレン)ジモルホリン、ビス(モルホリノメトキシ)メタン、1,1’−オキシビス(メチレン)ジピペリジン、ビス(ピペリジノメトキシ)メタン、N,N’−オキシビス(メチレン)ビス(N,N−ジプロピルアミン)、N,N’−(メチレンビス(オキシ)ビス(メチレン))ビス(N,N−ジプロピルアミン)、1,1’−オキシビス(メチレン)ジピロリジン、ビス(ピロリジノメトキシ)メタン、N,N’−オキシビス(メチレン)ビス(N,N−ジエチルアミン)、N,N’−(メチレンビス(オキシ)ビス(メチレン))ビス(N,N−ジエチルアミン)などのαアミノエーテル化合物;1,3,5−トリメトキシプロピル−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリメトキシエチル−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリ(3−エトキシプロピル)−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリ(3−イソプロポキシプロピル)−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリ(3−ブトキシプロピル)−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリ(5−メトキシペンチル)−ヘキサヒドロ−1,3,5−トリアジンなどのアルコキシ−ヘキサヒドロトリアジン化合物;1,3,5−トリメチル−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリエチル−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリプロピル−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリブチル−ヘキサヒドロ−1,3,5−トリアジンなどのアルキル−ヘキサヒドロトリアジン化合物;1,3,5−トリ(ヒドロキシメチル)−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリ(2−ヒドロキシエチル)−ヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリ(3−ヒドロキシプロピル)−ヘキサヒドロ−1,3,5−トリアジンなどのヒドロキシアルキル−ヘキサヒドロトリアジン化合物;モノメチルアミン、モノエチルアミン、ジメチルアミン、ジプロピルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、モノメタノールアミン、ジメタノールアミン、トリメタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジプロパノールアミン、ジイソプロパノールアミン、トリプロパノールアミン、N−メチルエタノールアミン、ジメチル(エタノール)アミン、メチルジエタノールアミン、ジメチルアミノエタノール、エトキシエトキシエタノールtert−ブチルアミンなどのモノアミン化合物;アミノメチルシクロペンチルアミン、1,2−シクロヘキサンジアミン、1,4−ブタンジアミン、1,5−ペンタンジアミン、1,6−ヘキサンジアミン、ビス(tert−ブチルアミノエトキシ)エタンなどのジアミン化合物;イミン化合物;イミダゾリン化合物;ヒドロキシアミノアルキルエーテル化合物;モルホリン化合物;ピロリドン化合物;ピペリドン化合物;アルキルピリジン化合物;1H−ヘキサヒドロアゼピン;エチレンジアミンとホルムアルデヒドとの反応生成物などの、アルキレンポリアミンとホルムアルデヒドとの反応生成物;アミノカルボン酸の多価金属キレート化合物;ベンジル(ココアルキル)(ジメチル)4級アンモニウムクロリド、ジ(ココアルキル)ジメチルアンモニウムクロリド、ジ(tallowアルキル)ジメチル4級アンモニウムクロリド、ジ(水素化tallowアルキル)ジメチル4級アンモニウムクロリド、ジメチル(2−エチルヘキシル)(tallowアルキル)アンモニウムメチルスルフェート、(水素化tallowアルキル)(2−エチルヘキシル)ジメチル4級アンモニウムメチルスルフェートなどの4級アンモニウム塩化合物;ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン;アミノカルビノール化合物;アミナール化合物;ビスオキサゾリジン化合物;などが挙げられる。これらは1種類単独でも、2種類以上の併用であってもよい。
なお、これら含窒素化合物が炭化水素へ添加された場合、精製においてNO(ノックス)が発生し、環境影響への負荷が懸念される。このことを考慮すれば、含窒素化合物は添加しないことがより好ましい。
【0023】
本発明の好ましい実施態様の例としては、本発明の組成物を、含硫黄化合物(硫化水素、−SH基を含有する化合物またはこれらの混合物)の除去に十分な量を炭化水素へ添加して処理を行う。本発明の組成物を用いての、炭化水素中の含硫黄化合物を除去する方法においては、本発明の組成物を炭化水素の質量に対して、通常好ましくは1〜10000ppmの範囲で添加する。本発明の組成物を炭化水素に添加して接触させ、処理を行う際の温度は20℃〜200℃の範囲であることが好ましい。また、本発明の組成物はトルエン、キシレン、重質芳香族ナフサ、石油蒸留物;メタノール、エタノール、エチレングリコール、ポリエチレングリコールなどの炭素数1〜10のモノアルコールまたはジオール;などの適当な溶媒に溶解させて用いてもよい。
【0024】
本発明の組成物を用いての、炭化水素中の含硫黄化合物を除去する方法においては、炭化水素が液体である場合には、その貯留タンク、輸送のためのパイプライン、精製のための蒸留塔などに注入するなどの公知の手段で添加することができる。炭化水素が気体である場合には、気体と接触させるように本発明の組成物を設置するか、または本発明の組成物を充填した吸収塔に気体を通過させるなどの手段を取ることができる。
【実施例】
【0025】
以下、実施例などにより本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0026】
<製造例1>
[1,9−ノナンジアール(NL)および2−メチル−1,8−オクタンジアール(MOL)の混合物の製造]
特許第2857055号公報記載の方法によって、1,9−ノナンジアール(以下、NLと称する)および2−メチル−1,8−オクタンジアール(以下、MOLと称する)の混合物を製造した。該混合物におけるNLとMOLの質量比は、NL/MOL=85/15であった。
<製造例2>
[3−メチルグルタルアルデヒド(MGL)の製造]
文献(Organic Syntheses,Vol.34,p.29(1954))の方法によって3−メチルグルタルアルデヒド(以下、MGLと称する)の混合物を製造した。該化合物については安定性の観点から50質量%水溶液となるように希釈して保管した。
【0027】
<実施例1>
温度計、滴下漏斗、三方コックを備えた容量300mlの三口フラスコに、硫化鉄(和光純薬工業株式会社製)4.40g(50mmol)を入れ、滴下漏斗から20%硫酸水溶液(和光純薬工業株式会社製)50.0g(100mmol)を21℃で120分かけて滴下し、硫化水素を発生させた。
他方で、温度計および三方コックを備え内部を窒素置換した容量5Lの三口フラスコにケロシン(和光純薬工業株式会社製)500gを入れて21℃に保ち、上記で発生させた硫化水素を三方コックを通じて吹き込み、ケロシンに吸収させた。その後、三口フラスコを密閉して同温度で60分静置して硫化水素を液相間と気相間の平衡状態とした後、三口フラスコ内部の気相中の硫化水素濃度を後述する硫化水素測定方法に従い測定したところ510ppmであった。
製造例1の方法で得たNL/MOL=85/15の混合物をケロシンの質量に対して850ppmとなるように、前記硫化水素を吹き込んで吸収させ三口フラスコ内にて気相と液相の平衡状態であるケロシンに添加し、直ちに21℃、密閉下、400rpmで攪拌した。三口フラスコ内部の気相中の硫化水素濃度を、NL/MOL添加後60分、90分および120分において前記と同様にして測定した。結果を表1に示す。三口フラスコ内部の気相中の硫化水素濃度は顕著に減少していることがわかる。
【0028】
<硫化水素測定方法>
北川式ガス検知管(光明理化学工業株式会社製;硫化水素ガス検知管「120−ST」をガス採取器「AP−20」に取付けて使用)を用いてフラスコ内部の気相部を50mLサンプリングし、検知管での濃度値を気相の硫化水素濃度とした。
【0029】
【表1】
【0030】
<実施例2>
温度計、攪拌機を備えた100mLのオートクレーブに日本国内で採取された原油を30mL加え、気相部のHS濃度が一定になるまで攪拌した後、RX−517(理研機器製)を用いて濃度を測定したところ2,800ppmであった。次にPEG−200とNL/MOLを質量比で1:1となるように混合した組成液を原油に対して1質量%となるように添加した。このときのNL/MOLの添加量は0.6mmolであり、装置内のHSの存在量は0.05mmolであった。その後、装置内を800rpmで攪拌しながら80℃に昇温し5時間反応させた。反応後に室温まで冷やし、気相部のHS濃度を測定したところ2ppmであり、除去効率は99.9%であった。
【0031】
<実施例3>
温度計、攪拌機を備えた100mLのオートクレーブに日本国内で採取された原油を30mL加え、気相部のHS濃度が一定になるまで攪拌した後、RX−517(理研機器製)を用いて濃度を測定したところ2,580ppmであった。次に50質量%MGL水溶液を原油に対して1質量%となるように添加した。このときのMGLの添加量は0.9mmolであり、装置内のHSの存在量は0.05mmolであった。その後、装置内を800rpmで攪拌しながら80℃に昇温し5時間反応させた。反応後に室温まで冷やし、気相部のHS濃度を測定したところ70ppmであり、除去効率97.3%であった。
【0032】
<比較例1>
温度計、攪拌機を備えた100mLのオートクレーブに日本国内で採取された原油を30mL加え、気相部のHS濃度が一定になるまで攪拌した後、RX−517(理研機器製)を用いて濃度を測定したところ2,714ppmであった。次に50質量%グルタルアルデヒド水溶液を原油に対して1質量%となるように添加した。このときのグルタルアルデヒドの添加量は1.0mmolであり、装置内のHSの存在量は0.05mmolであった。その後、装置内を800rpmで攪拌しながら80℃に昇温し5時間反応させた。反応後に室温まで冷やし、気相部のHS濃度を測定したところ100ppmであり、除去効率は96.3%であった。
【0033】
<比較例2>
温度計、攪拌機を備えた100mLのオートクレーブに日本国内で採取された原油を30mL加え、気相部のHS濃度が一定になるまで攪拌した後、RX−517(理研機器製)を用いて濃度を測定したところ2,600ppmであった。次に40質量%グリオキサール水溶液(和光純薬株式会社製)を原油に対して1質量%となるように添加した。このときのグリオキサールの添加量は1.8mmolであり、装置内のHSの存在量は0.04mmolであった。その後、装置内を800rpmで攪拌しながら80℃に昇温し5時間反応させた。反応後に室温まで冷やし、気相部のHS濃度を測定したところ498ppmであり、除去効率は80.8%であった。
【0034】
<試験例1>
NL、MOLおよびグルタルアルデヒドについて、経口毒性の測定、藻類への毒性試験、汚泥への殺菌性試験、生分解性試験を行った。試験方法と結果は以下のとおりである。<経口毒性試験>
2%−アラビアゴム水溶液(0.5%−Tween80を含む)に乳化分散させた被験物質を、6週令の雄性CRj:CD(SD)ラットに経口ゾンデを用い1日1回14日間強制的に投与した。投与期間中の体重変動および一般状態を観察した。最終投与日より1日間絶食し(飲水は自由摂取)、最終投与の翌日に解剖、採血(各種血液検査)、主要臓器の質量測定を行った。また、肝・腎・脾臓・精巣については病理組織学的な検査(HE染色薄切切片の光学顕微鏡観察)も実施した。投与量は1000,250,60,15,0mg/kg/day(投与液量=1ml/100g-体重/day)で、各用量につき5匹を用いた。
被験物質:
(1)NL(GC純度:99.7%)
(2)グルタルアルデヒド(含水量101ppm,GC純度:99.8%)
試験の結果、NLについては最高投与量1000mg/kg/dayでも死亡例は認められなかった。NLは「劇物」には該当しない。本試験条件での最大無作用量(NOEL)を表2に示す。
【0035】
【表2】
【0036】
<藻類試験>
OECDテストガイドラインNo.201を参考に被験物質の藻類生長阻害試験を実施した。すなわち、以下の被験物質を試験培地で希釈し規定の用量とした。前培養により指数増殖期まで生長させた藻類の懸濁液を初期濃度1×10cells/mlとなるよう添加した。光照射型のバイオシェーカー(TAITEC製 Bio Shaker BR−180LF)で23℃にて振とう培養し、試験開始から24,48,72時間後の藻類細胞をフローサイトメーター(BECKMAN COULTER製 Cell LabQuant SC)で計数し、正常対照の生長度を100%として各試験用量の生長度を算出した。また、生長阻害率をプロットしたグラフの近似曲線の方程式よりErC50を算出した。標準物質として二クロム酸カリウムを用いた。
藻類:Pseudokirchneriella subcapitata
被験物質:
(1)NLとMOLの混合物(GC純度:98.7%,NL/MOL=59/41)
(2)グルタルアルデヒド(含水量101ppm,GC純度:99.8%)
被験物質用量:
被験物質(1)、被験物質(2)各々について、それぞれ100,32,10,3.2,1,0.32 mg/L(公比:√10)及び0mg/L(正常対照)
標準物質:3.2,1,0.32 mg/L及び0mg/L(正常対照)
本試験における二クロム酸カリウム(標準物質)の72時間後のErC50は1.3mg/Lであり、正常対照の72時間後の生長率は93.0%であったことから、本試験は正常に稼働したと判断した。試験結果を表3に示す。
【0037】
【表3】
【0038】
<汚泥への殺菌性試験>
グルコース、ペプトン、リン酸二水素一カリウム各々5gを水1リットルに溶解させ、水酸化ナトリウムでpHを7.0±1.0に調整した合成下水に、日本国岡山県倉敷市水島地区の下水処理場の汚泥を乾燥質量換算で30ppmとなるように添加して菌液を調製した。一方、24wellのマイクロプレート上で、被験物質が最終濃度で1000〜0.004ppm(公比=4)となるように蒸留水で10段階希釈したものを試験液とした。各濃度毎に2wellを使用した。比較対象としては、蒸留水+菌液を“菌液ブランク”、蒸留水のみを“ブランク”とした。
上記で調製した菌液と試験液を容量比1:1で混合し、常温(約25℃)の恒温槽内で24時間および48時間静置し、それぞれMTT法を用いて被験物質の各濃度における汚泥影響度を目視確認した。なお、MTT試薬は汚泥中微生物のミトコンドリアで変換され、フォルマザンを形成し青色を呈する。微生物が死滅した場合には同反応が起こらず、黄色を呈する。
被験物質:
(1)NLとMOLの混合物(GC純度:98.7%,NL/MOL=59/41)
(2)グルタルアルデヒド(含水量101ppm,GC純度:99.8%)
結果を表4に示す。
【0039】
【表4】
【0040】
<生分解性試験>
OECDテストガイドライン301C,JIS K 6950(ISO 14851)の試験方法を参考に被験物質の分解度試験を実施した。すなわち、培養ボトルに無機培地液300ml、日本国岡山県倉敷市水島地区の水島下水処理場より試験開始当日入手した活性汚泥9mg(30ppm)を入れ、被験物質は共に殺菌作用があることから汚泥への影響を加味して高濃度群:被験物質30mg(100ppm)、および低濃度群:9mg(30ppm)の2濃度で生分解性試験を実施した。
被験物質:
(1)NLとMOLの混合物(GC純度:98.7%,NL/MOL=59/41)
(2)グルタルアルデヒド(含水量101ppm,GC純度:99.8%)
クーロメーター(大倉電気3001A型)を用いて25℃で28日間培養し、被験物質の分解に消費された酸素量と被験物質の構造式より求めた理論酸素要求量を用いて生分解率を算出した。生分解標準物質としてはアニリン30mg(100ppm)を用いた。生分解率が60%以上の時、良分解性物質と判定した。被験物質の評価数はn=2とした。
【0041】
以上の条件で測定した結果、生分解標準物質であるアニリンは、試験期間中に60%以上の生分解率を示し良分解性と判定された。これにより、本試験系は正常に稼動したものと判断した。
NL/MOL高濃度群(100ppm)の28日間の生分解率はそれぞれ88.4%,86.8%(平均:87.6%)であり、『良分解性』と判断された。
NL/MOL低濃度群(30ppm)の28日間の生分解率はそれぞれ100.3%,97.3%(平均:98.8%)であり、『良分解性』と判断された。
グルタルアルデヒド高濃度群(100ppm)の28日間の生分解率はそれぞれ52.7%,52.5%(平均:52.6%)であり、『部分的な生分解性(難分解性)』と判断された。
グルタルアルデヒド低濃度群(30ppm)の28日間の生分解率はそれぞれ78.5%,77.5%(平均:78.0%)であり、『良分解性』と判断された。
【0042】
以上の結果より、NLおよび/またはMOLは、グルタルアルデヒドに比べて経口毒性が低く、藻類への毒性試験の結果も良好であるとともに、生分解性が高い。したがって、NLおよび/またはMOLは、グルタルアルデヒドに比べ、環境・労働安全上、安全性が高いことがわかる。
【0043】
<試験例2>
<熱安定性試験>
以下の試験液をそれぞれバイアル瓶に入れ、空隙部を窒素置換し、密封したものを60℃で保管し、保管開始直後の各試験液におけるNL/MOL、またはグルタルアルデヒド含有量を100%とした際の5日後、12日後、21日後の含有量の変化を、内部標準を用いたガスクロマトグラフィーによる検量線法で観察した。結果を表5に示す。
試験液1:NLおよびMOLの混合物(質量比:92/8)
試験液2:NL/MOL/水=91:7:2(質量比)の混合物
試験液3:50%グルタルアルデヒド水溶液(東京化成工業株式会社製)
[ガスクロマトグラフィー分析条件]
分析機器:GC−14A(株式会社島津製作所製)
検出器:FID(水素炎イオン化型検出器)
使用カラム:G−300(長さ20m、膜厚2μm、内径1.2mm)
(化学物質評価研究機構社製)
分析条件:Inject.Temp.250℃、Detect.Temp.250℃
昇温条件:80℃→(5℃/分で昇温)→230℃
内部標準物質:ジグライム(ジエチレングリコールジメチルエーテル)
【0044】
【表5】
【0045】
NLおよびMOLを含む試験液1、試験液2では21日後でも98%が残存していたのに対して、グルタルアルデヒドを含む試験液3は21日後には62%の残存量であった。
したがって、NLおよび/またはMOLは、グルタルアルデヒド水溶液よりも熱安定性が高いことがわかる。
【0046】
<試験例3>
アルデヒド水溶液の金属への腐食性を評価するため、下記の水溶液を用意した。
A.1%NL/MOL水溶液:NL/MOLの混合物を蒸留水で希釈
B.1%MGL水溶液:MGLを蒸留水で希釈
C.1%グルタルアルデヒド水溶液:50%グルタルアルデヒド水溶液(和光純薬工業株式会社製)を蒸留水で希釈
D.1%グリオキサール水溶液:40%グリオキサール水溶液(東京化成工業株式会社製)を蒸留水で希釈
E.蒸留水(ブランク)
【0047】
5本の50mLスクリュー管に、SS400の試験片(20mm×20mm×2mm)および上記アルデヒド水溶液A〜D各々を25g、大気下で入れて密閉し、85℃にセットした循環型乾燥機内で9日間保存した。保存終了後、試験片を取り出し、水溶液中の鉄イオン濃度を原子吸光法にて測定した結果を表6に示す。
【0048】
<試験例4>
試験例3において、窒素下で密閉したこと以外は試験例3と同じ手順を行い、各々の水溶液中の鉄イオン濃度を測定した。結果を表6に示す。
【0049】
【表6】
【0050】
試験例3および試験例4の結果より、NL/MOL水溶液、MGL水溶液ではグルタルアルデヒド水溶液やグリオキサール水溶液よりも鉄の腐食が抑制されることがわかる。