(58)【調査した分野】(Int.Cl.,DB名)
前記少なくとも1つの磁性部材の形状、前記少なくとも1つの磁性部材のサイズ、前記少なくとも1つの磁性部材の位置、及び前記少なくとも1つの磁性部材の前記磁性材料のうち少なくとも1つが、前記アクチュエータの1つ又は複数のパラメータを選択するように選択されている請求項1に記載のアクチュエータ。
前記パラメータは、スティープネス、法線力、インダクタンス、コギング力、リラクタンス力、Kファクタリップル、及び力密度のうち1つ又は複数を含む請求項2に記載のアクチュエータ。
前記少なくとも1つの磁性部材の形状、前記少なくとも1つの磁性部材のサイズ、前記少なくとも1つの磁性部材の位置、及び前記少なくとも1つの磁性部材の前記磁性材料のうち少なくとも1つを、前記アクチュエータの1つ又は複数のパラメータを制御するように選択することを備える請求項15に記載の方法。
前記少なくとも1つの磁性部材を形成するよう前記磁性材料を研削することを備え、それにより前記アクチュエータの1つ又は複数のパラメータを制御するように前記少なくとも1つの磁性部材の形状及び前記少なくとも1つの磁性部材のサイズのうち少なくとも1つを選択する請求項15から19のいずれかに記載の方法。
【発明を実施するための形態】
【0019】
図1は、本発明のある実施の形態に係るリソグラフィ装置100を概略的に示す。リソグラフィ装置100は、放射ビームB(例えば、UV放射、または、他の適する放射)を調整するよう構成されている照明システム(イルミネータ)ILと、パターニングデバイス(例えばマスク)MAを支持するよう構成され、いくつかのパラメータに従ってパターニングデバイスMAを正確に位置決めするよう構成されている第1位置決め装置PMに接続されているマスク支持構造(例えばマスクテーブル)MTと、を含む。またリソグラフィ装置100は、基板(例えば、レジストで被覆されたウェーハ)Wを保持するよう構成され、いくつかのパラメータに従って基板Wを正確に位置決めするよう構成されている第2位置決め装置PWに接続されている基板テーブル(例えばウェーハテーブル)WTを含む。リソグラフィ装置100は、さらに、パターニングデバイスMAにより放射ビームBに付与されたパターンを基板Wの(例えば1つ以上のダイを含む)目標部分Cに投影するよう構成されている投影システム(例えば、屈折投影レンズ系)PSを含む。
【0020】
照明システムILは、放射の方向や形状の調整、または放射の制御のために、各種の光学素子、例えば屈折光学素子、反射光学素子、磁気的光学素子、電磁気的光学素子、静電的光学素子、またはその他の形式の光学素子、若しくはそれらの任意の組み合わせを含んでもよい。
【0021】
マスク支持構造MTは、パターニングデバイスMAを支持する(すなわち、パターニングデバイスの重量を支える)。マスク支持構造MTは、パターニングデバイスMAの向きやリソグラフィ装置100の設計、あるいはパターニングデバイスMAが真空環境下で保持されるか否か等その他の条件に応じた方式でパターニングデバイスMAを保持する。マスク支持構造MTは、機械的固定、真空固定、静電固定、またはパターニングデバイスを保持するその他の固定技術を用いることができる。マスク支持構造MTは例えばフレームまたはテーブルであってよく、固定されていてもよいし必要に応じて移動可能であってもよい。マスク支持構造MTは、パターニングデバイスMAが例えば投影システムPSに対して所望の位置にあることを保証してもよい。本書では「レチクル」または「マスク」という用語を用いた場合には、より一般的な用語である「パターニングデバイス」に同義であるとみなされうる。
【0022】
本書で使用される「パターニングデバイス」という用語は、基板Wの目標部分Cにパターンを形成すべく放射ビームBの断面にパターンを付与するために使用可能ないかなるデバイスをも指し示すよう広く解釈されるべきである。例えばパターンが位相シフトフィーチャあるいはいわゆるアシストフィーチャを含む場合のように、放射ビームBに付与されるパターンが基板Wの目標部分Cに所望されるパターンと厳密に一致していなくてもよいことに留意すべきである。一般には、放射ビームBに付与されるパターンは、目標部分Cに形成される集積回路などのデバイスにおける特定の機能層に対応する。
【0023】
パターニングデバイスMAは透過型であっても反射型であってもよい。パターニングデバイスの例としては、マスクやプログラマブルミラーアレイ、プログラマブルLCDパネルがある。マスクはリソグラフィの分野で周知であり、バイナリマスクやレベンソン型位相シフトマスク、ハーフトーン型位相シフトマスク、更に各種のハイブリッド型マスクが含まれる。プログラマブルミラーアレイの一例としては、小型のミラーがマトリックス状に配列され、各ミラーが入射してくる放射ビームを異なる方向に反射するように個別に傾斜可能であるというものがある。これらの傾斜ミラーにより、マトリックス状ミラーで反射された放射ビームにパターンが付与されることになる。
【0024】
本書で使用される「投影システム」という用語は、使用される露光放射に関して又は液浸液や真空の利用などの他の要因に関して適切とされるいかなる投影システムPSをも包含するよう広く解釈されるべきであり、屈折光学系、反射光学系、反射屈折光学系、磁気的光学系、電磁気的光学系、静電的光学系、またはそれらの任意の組み合わせを含む。本書における「投影レンズ」との用語の使用はいかなる場合も、より一般的な用語である「投影システム」と同義とみなされうる。
【0025】
照明システムILは、放射ビームBの角強度分布を調整するよう構成されたアジャスタADを含んでもよい。一般には、照明システムILの瞳面における強度分布の少なくとも外側及び/又は内側半径範囲(通常それぞれ「シグマ−アウタ(σ-outer)」、「シグマ−インナ(σ-inner)」と呼ばれる)を調整することができる。加えて照明システムILは、インテグレータINおよびコンデンサCN等その他の各種構成要素を含んでもよい。照明システムILは、ビーム断面における所望の均一性及び強度分布を得るべく放射ビームBを調整するために使用されてもよい。照明システムILは、リソグラフィ装置100の一部を構成するとみなされてもよいし、そうでなくてもよい。例えば、照明システムILは、リソグラフィ装置100に一体の部分であってもよいし、リソグラフィ装置100とは別体であってもよい。後者の場合、リソグラフィ装置100は照明システムILを搭載可能に構成されていてもよい。照明システムILは取り外し可能とされ、(例えば、リソグラフィ装置の製造業者によって、または他の供給業者によって)別々に提供されてもよい。
【0026】
図示されるように、リソグラフィ装置100は、(例えば透過型マスクを用いる)透過型である。これに代えて、リソグラフィ装置100は、(例えば、上述の形式のプログラマブルミラーアレイ、または反射型マスクを用いる)反射型であってもよい。
【0027】
リソグラフィ装置100は、2つ(デュアルステージ)又はそれより多くの基板テーブルWT(及び/または2つ以上のマスク支持構造MT、例えばマスクテーブル)を有する形式のものであってもよい。このような多重ステージ型のリソグラフィ装置100においては、追加された基板テーブルWT及び/またはマスク支持構造MTは並行して使用されるか、あるいは1以上の基板テーブルWT及び/またはマスク支持構造MTが露光のために使用されている間に1以上の他の基板テーブルWT及び/またはマスク支持構造MTで準備工程が実行されてもよい。
【0028】
パターニングデバイスMAは、マスク支持構造MTに保持される。放射ビームBは、パターニングデバイスMAに入射する。放射ビームBは、パターニングデバイスMAによりパターン形成される。パターニングデバイスMAからの反射後に放射ビームBは投影システムPSを通過する。投影システムPSは放射ビームBを基板Wの目標部分Cに合焦する。第1位置決め装置PMと第1位置センサ(例えば、干渉計、リニアエンコーダ、または静電容量センサ)は、放射ビームBの経路に対してパターニングデバイスMAを正確に位置決めするために使用することができる。第1位置センサは
図1には明示されていない。第2位置決め装置PWと位置センサPS2(例えば、干渉計、リニアエンコーダ、または静電容量センサ)により、例えば放射ビームBの経路に異なる目標部分Cを位置決めするように、基板テーブルWTを正確に移動させることができる。
【0029】
一般にマスク支持構造MTの移動は、第1位置決め装置PMの一部を構成するロングストロークモジュール(粗い位置決め用)及びショートストロークモジュール(精細な位置決め用)により実現されうる。同様に、基板テーブルWTの移動は、第2位置決め装置PWの一部を構成するロングストロークモジュール及びショートストロークモジュールにより実現されうる。ステッパでは(スキャナとは異なり)、マスク支持構造MTはショートストロークのアクチュエータにのみ接続されているか、あるいは固定されていてもよい。パターニングデバイスMAは、マスクアライメントマークM
1、M
2を用いてアライメントされてもよい。基板Wは、基板アライメントマークP
1、P
2を用いてアライメントされてもよい。図においては基板アライメントマークP
1、P
2が専用の目標部分Cを占拠しているが、それらは目標部分C間の配置されてもよい(これはスクライブライン・アライメントマークとして公知である)。同様に、パターニングデバイスMAに複数のダイがある場合にはマスクアライメントマークM
1、M
2がダイ間に配置されてもよい。
【0030】
液浸技術は投影システムPSの開口数NAを増大させるために使用することができる。
図1に示されるように、ある実施の形態ではリソグラフィ装置100は、基板Wの少なくとも一部が例えば水などの比較的高い屈折率を有する液体で投影システムPSと基板Wとの間の空間を満たすよう覆われうる形式のものであってもよい。液浸液は、例えばパターニングデバイスMAと投影システムPSとの間などのリソグラフィ装置100の他の空間に適用されてもよい。本書で使用される「液浸」との用語は、基板W等の構造体が液体に浸されなければならないことを意味するのではなく、液体が投影システムPSと基板Wとの間に露光中に配置されることを意味するにすぎない。
【0031】
図1を参照すると、イルミネータILはソースモジュールSOから放射ビームを受ける。例えば放射源がエキシマレーザである場合には、ソースモジュールSOとリソグラフィ装置100とは別体であってもよい。この場合、ソースモジュールSOはリソグラフィ装置100の一部を構成しているとはみなされなく、放射は、ビーム搬送系BDを介してソースモジュールSOから照明システムILへと受け渡される。ある実施の形態においては、ビーム搬送系BDは例えば、適当な方向変更用のミラー及び/またはビームエキスパンダを含む。あるいはソースモジュールSOが例えば水銀ランプである場合には、ソースモジュールSOはリソグラフィ装置100に一体に構成されていてもよい。ソースモジュールSOと照明システムILとは、またビーム搬送系BDが必要とされる場合にはこれも合わせて、放射システムと総称されてもよい。
【0032】
投影システムPSの最終要素と基板Wとの間に液体を提供する構成は3種類に大きく分類することができる。浴槽型の構成、いわゆる局所液浸システム、及びオールウェット液浸システムである。浴槽型の構成においては基板Wの実質的に全体と任意的に基板テーブルWTの一部とが液槽に浸される。
【0033】
図1に示されるように液体供給システムには、投影システムPSの最終要素と基板W、基板テーブルWTまたはこれら両者との間の空間の境界の少なくとも一部に沿って延在する液体閉じ込め構造IHが設けられている。
【0034】
ある実施の形態においては、リソグラフィ装置100は、少なくとも1つのアクチュエータ51を備える。アクチュエータ51は、マスク支持構造MTなどの構成要素の位置を変化させるよう構成されている。上述のように、第1位置決め装置PMは、マスク支持構造MTの位置を変化させるよう構成されている。ある実施の形態においては、第1位置決め装置PMがアクチュエータ51を備える。ある実施の形態においては、アクチュエータ51は、マスク支持構造MTの向き及び/または位置を変化させるよう構成されている。ある実施の形態においては、アクチュエータ51は、マスク支持構造MTをXY平面の全体及びZ方向に移動させるよう構成されている。ここで、Z方向は、鉛直方向を意味する。
【0035】
ある実施の形態においては、アクチュエータ51は、さらに、基板テーブルWTの位置を変化させるよう構成された第2位置決め装置PWの機能を実行する。ある実施の形態においては、アクチュエータ51は、第1位置決め装置PMに加えて第2位置決め装置PWでもある。
【0036】
ある実施の形態においては、リソグラフィ装置100は、コントローラ500を備える。コントローラ500は、センサ(図示せず)によりなされた計測結果に基づいてアクチュエータ51を制御するよう構成されている。ある実施の形態においては、コントローラ500は、マスク支持構造MTがリソグラフィ装置100内で所望の位置を有するように、マスク支持構造MTを位置決めするようアクチュエータ51を制御するよう構成されている。
【0037】
ある実施の形態においては、マグネットアレイ55が、アクチュエータ51によって位置決めされる構成要素、例えばマスク支持構造MTに固定されている。アクチュエータ51は、マグネットアレイ55に面する複数のコイルアセンブリ60を備える。アクチュエータ51は、コイルアセンブリ60及びマグネットアレイ55を備える。ある実施の形態においては、コイルアセンブリ60は、アレイ状に配置され、マスク支持構造MTに固定されたマグネットアレイ55と実質的に平行である。ただし、マグネットアレイ55がアクチュエータ51によって位置決めされる構成要素に固定されていることは、必須ではない。例えば、ある実施の形態においては、コイルアセンブリ60が、マスク支持構造MTのような構成要素に固定されていてもよい。この場合、マグネットアレイ55は、コイルアセンブリ60に面するようにアクチュエータ51の下方に位置してもよい。位置決めされる構成要素にアクチュエータ51とマグネットアレイ55のどちらが固定されるかは、状況に応じて選択されてもよい。設計者は、(1)位置決めされる構成要素にマグネットアレイ55を接続する(マグネットアレイを移動させコイルアセンブリを静止させる)ことを望むのか、あるいは(2)位置決めされる構成要素にコイルアセンブリ60を接続する(コイルアセンブリを移動させマグネットアレイを静止させる)ことを望むのかを選ぶことができる。
【0038】
本発明のアクチュエータ51は、マスク支持構造MTの位置決め、またはリソグラフィ装置100の他の構造に適用することができる。以下の説明においては本発明が、リソグラフィ装置100において駆動されるマスク支持構造MT上のパターニングデバイスMAに主に言及して記述される。本発明は、パターニングデバイスMA及びマスク支持構造MTの位置決めという文脈には限定されない。例えば、本発明は、基板Wを支持する基板テーブルWTの位置決めに適用することができる。
【0039】
図2は、従来技術のアクチュエータ52を示す。
図2に示される従来技術のアクチュエータ52は、ローレンツ移動マグネットシステムの一部である。
図2に示されるように、ローレンツ移動マグネットの従来技術のアクチュエータ52は、マグネットアレイ55、アレイ状に配置されたコイルアセンブリ60、及び磁性背部40を備える。コイルアセンブリ60は、磁性背部40に固定されている。
【0040】
図2において、マグネットアレイ55内の実線矢印は、マグネットアレイ55の個別のマグネットの極性を表す。各コイルアセンブリ60は、コア室61を画定する。コア室61は、コイルアセンブリ60によって画定される領域である。コア室61は、コイルアセンブリ60がコア室61まわりに巻き付けられているとみえるようにコイルアセンブリ60の内側にある。コア室高さ61dは、コイルアセンブリ60の高さに一致する。コア室61の幅は、コイルアセンブリ61の内径に相当する。
図2において、回路を形成する破線の矢印は、磁束を表す。
【0041】
増加された加速度を提供できるローレンツ移動マグネットシステムを作るとすると、移動するアクチュエータ質量の大きさが副作用として大きくなる。より高い水準の加速度では、移動するアクチュエータ質量の大きさが問題となり、ケーブルスラブのサイズが(例えば、導体の厚みが増すために)問題でありうる。ケーブルスラブは、コイルアセンブリ60を電源に接続する電気ケーブルにあたる。電源はコイルアセンブリに電力を供給する。電流がコイルアセンブリ60を流れる。
【0042】
図3は、本発明のある実施の形態に係るアクチュエータ51の実施の形態を示す。
図3に示されるように、ある実施の形態においては、アクチュエータ51は、アレイ状に配置された複数のコイルアセンブリ60を備える。各コイルアセンブリ60は、コア室高さ61dを有するコア室61(コイルの目と呼ばれることもある)を画定する。
【0043】
ある実施の形態においては、アクチュエータ51は、少なくとも1つの磁性部材62を備える。磁性部材62は、対応する少なくとも1つのコイルアセンブリ60のコア室61のコア室高さ61dに沿って部分的に延在する。磁性部材62は、磁性材料で形成されている。磁性部材62は、コア室61の内側にある。コア室61は、コイルアセンブリ60の高さに相当するコア室高さ61dを有する。磁性部材62は、コア室61を部分的に埋めている。コア室61の空間部は、コイルアセンブリ60の高さより小さい高さを有する。ただし、コア室61は全体(すなわち、空間部及び磁性部材62によって埋められた部分)として、コイルアセンブリ60の高さに相当するコア室高さ61dを有する。
【0044】
磁性部材62を設けることによって、アクチュエータ51の効率が高まる。本発明のある実施の形態は、
図2に示されるローレンツ移動マグネットの従来技術のアクチュエータ52に比べて増加された力密度を達成するものと期待される。アクチュエータ51の力密度は、アクチュエータ51が生成する力をアクチュエータ51の質量で除したものとして定義される。アクチュエータ51の力密度を大きくすることによって、所与の質量のアクチュエータ51が、より高い水準の加速度を達成することができる。本発明のある実施の形態は、より高い水準の加速度を所与の質量のアクチュエータ51によって達成するものと期待される。
【0045】
ある実施の形態においては、磁性部材62の磁性材料、磁性部材62の形状、磁性部材62のサイズ、及び磁性部材62の位置のうち少なくとも1つが、アクチュエータ51の1つ又は複数のパラメータを選択するように選択されている。例えば、(
図3に示されるように)磁性部材62の高さHをコア室高さ61dから独立して選択することができる。磁性部材62の高さHは、磁性背部40の平面に垂直な方向における磁性部材62の寸法にあたる。
【0046】
磁性部材62の高さHは、0より大きくコア室高さ61dより小さい任意の値をとるよう選択することができる。磁性部材62の高さHは、アクチュエータ51の1つ又は複数のパラメータを選択するように選択することができる。磁性部材62の高さHが大きいほど、アクチュエータ51の力密度が大きくなる。しかし、磁性部材62の高さHが大きいほど、アクチュエータ51の寄生力が大きくなる。磁性部材62の高さHをコア室61のコア室高さ61dから独立して選択可能であることによって、アクチュエータ51の寄生力と力密度との間で選択をするようにアクチュエータ51の構造を選ぶことができる。アクチュエータ51の構造は、アクチュエータ51の寄生力と力密度との間で望ましい妥協をすることができる。本発明のある実施の形態は、大きすぎる寄生力に悩まされることなくアクチュエータ51の効率について改善を達成するものと期待される。これは、コイルアセンブリ60のコア室61に磁性部材62を追加することによって達成することができる。
【0047】
図3から
図8に示されるように、ある実施の形態においては、各コイルアセンブリ60が自身のコア室61に磁性部材62を有する。しかし、このことは必須ではない。ある実施の形態においては、いくつかのコイルアセンブリ60に磁性部材62が設けられ、他のコイルアセンブリ60には磁性部材62が設けられなくてもよい。
【0048】
ある実施の形態においては、アクチュエータ51の磁性部材62のすべてが実質的に同一である。しかし、このことは必須ではない。例えば、
図9に概略的に示されるように、磁性部材62の磁性材料、サイズ、位置、及び形状は、複数のコイルアセンブリ60にわたって変化していてもよい。
【0049】
図4は、本発明に係るアクチュエータ51の実施の形態を示す。
図3に示されるアクチュエータ51の構成要素の一部は、
図3に示されるアクチュエータ51の構成要素の一部と同一である。このことは
図3及び
図4において同じ参照番号を用いることによって表される。
【0050】
図4において、マグネットアレイ55に示される実線矢印は、マグネットアレイ55の個別のマグネットの極性の方向を表す。極性の方向の配列は単なる例示である。
図4において、マグネットアレイ55は、ハルバッハ配列として構成されている。しかし、他の構成も可能である。例えば、ある実施の形態においては、マグネットアレイは、正弦波状の配列として構成されている。ある実施の形態においては、マグネットの極性の方向がある1つのマグネットから次のマグネットへと45°回転している。ある実施の形態においては、マグネットアレイ55は、周期的な配置を有する複数の個別のマグネットを備える。
【0051】
図4に示されるように、ある実施の形態においては、各コイルアセンブリ60は、積み重ねられた少なくとも2つのサブコイル63を備える。少なくとも2つの積み重ねられたコイル63を備えるコイルアセンブリ60は、積層コイルアセンブリと称しうる。磁性背部40に最も近いサブコイル63は、背部コア区画67を画定する。磁性背部40から最も遠いサブコイル63は、前部コア区画68を画定する。
【0052】
ある実施の形態においては、各コイルアセンブリ60は、中間プレート65を備える。中間プレート65は、上記の少なくとも2つのサブコイル63の間に位置する。コイルアセンブリ60が2つより多くのサブコイル63を備える場合には、コイルアセンブリ60は、1つより多くの中間プレート65を備えてもよい。例えば、コイルアセンブリ60が4つのサブコイル63を備える場合には、コイルアセンブリ60は、それら4つのサブコイル63同士の間に3つの中間プレート65を備えてもよい。
【0053】
図4に示されるように、ある実施の形態においては、コイルアセンブリ60のコア室61は、背部コア区画67及び前部コア区画68を備える。背部コア区画67は、前部コア区画68と磁性背部40との間に位置する。背部コア区画67と磁性背部40との距離は、前部コア区画68と磁性背部40との差より小さい。
【0054】
図4に示されるように、ある実施の形態においては、アクチュエータ51は、隔離プレート64を備える。
図4に示されるように、ある実施の形態においては、磁性部材62は、隔離プレート64を貫通して延在している。隔離プレート64は、各磁性部材62が隔離プレート64を貫通して延在することを許容する一連の穴を備えてもよい。
【0055】
図4に示されるように、ある実施の形態においては、アクチュエータ51は、閉鎖プレート66を備える。閉鎖プレート66は、コイルアセンブリ60の一端に設けられている。ある実施の形態においては、閉鎖プレート66は、マグネットアレイ55に面する表面を提供する。複数のコイルアセンブリ60は、閉鎖プレート66と磁性背部40の間にある。
【0056】
ある実施の形態においては、隔離プレート64、中間プレート65、及び閉鎖プレート66のうち1つ又は複数は、複数のコイルアセンブリ60の温度を低下させるよう構成された冷却プレートである。ある実施の形態においては、冷却プレートは、コイルアセンブリ60から熱を除去するよう構成された冷却媒体を収容する。例えば、冷却媒体は、水などの液体であってもよいし、または、空気または蒸発媒体などの気体であってもよい。
【0057】
図5は、本発明に係るアクチュエータ51の実施の形態を示す。
図5に示されるように、ある実施の形態においては、アクチュエータ51は、磁性背部40を備える。ある実施の形態においては、複数のコイルアセンブリ60は、磁性背部40に固定されている。ある実施の形態においては、磁性部材62は、磁性背部40から間隔を空けている。磁性部材62を磁性背部40から間隔を空けて配置することによって、磁性部材62は、磁性背部40と直接には接続されていない。
【0058】
磁性部材62の形状、サイズ、及び位置は、アクチュエータ51の1つ又は複数のパラメータを調整するように磁性背部40から独立して選択することができる。磁性部材62の磁性材料も寸法及び形状と同様に、アクチュエータ51がある特定の機能または使用法に最適化されるように選択することができる。
【0059】
図5に示されるように、ある実施の形態においては、隔離プレート64は、磁性背部40と磁性部材62との間にある。隔離プレート64は、磁性背部40を磁性部材62から分離する。磁性部材62は、磁性背部40と接触していない。磁性部材62は、磁性部材62と磁性背部40がアクチュエータ51において組み合わされる前に、磁性背部40から分離した構成要素として製造されることができる。本発明のある実施の形態は、コア室61内に磁性材料を有するアクチュエータ51を製造することをより容易にするものと期待される。
【0060】
ある実施の形態においては、アクチュエータ51を製造する方法は、磁性部材62を形成するよう磁性材料を研削することを備え、それにより少なくとも1つの磁性部材の形状及び少なくとも1つの磁性部材のサイズのうち少なくとも1つがアクチュエータの1つ又は複数のパラメータを選択するように選択されている。
【0061】
ある実施の形態においては、隔離プレート64は、複数のコイルアセンブリ60を磁性背部40から電気的に絶縁するよう構成されている。アクチュエータの使用時には電流がコイルアセンブリ60を流れる。使用時には、磁性背部40とコイルアセンブリ60との間に電位差が生じる。ある実施の形態においては、磁性背部40が接地されてもよい。リソグラフィ装置100の使用時には、磁性背部40とコイルアセンブリ60との電位差は、約800Vの領域となりうる。アクチュエータ51の信頼性と安全性を改善するために、アクチュエータ51は磁性背部40とコイルアセンブリ60との間に約2500Vの領域の電位差で動作可能であることが望ましい。
【0062】
コイルアセンブリ60と磁性背部40との間に電気的絶縁を提供することは困難でありうる(例えば
図3参照)。隔離プレート64がコイルアセンブリ60を磁性背部40から電気的に絶縁するよう構成されていることによって、アクチュエータ51を製造することがより容易となる。磁性背部40とコイルアセンブリ60との間に電気的絶縁を提供する代替的な手段は高価となりうるが、それを設ける必要がない。本発明の
図5の実施の形態は、コイルアセンブリ60のコア室61の内側に磁性材料を有するアクチュエータ51を製造するコストを低減するものと期待される。
【0063】
図5に示されるように、ある実施の形態においては、隔離プレート64は、実質的に連続している。これが意味するのは、各磁性部材62が貫通する穴を隔離プレート64が含まないということである。対照的に、
図4に示されるアクチュエータ51は、隔離プレート64に穴を含む。
図4に示されるアクチュエータ51においては、各磁性部材62は、磁性背部40から隔離プレート64を通じて延在する歯のようである。
【0064】
図5に示されるアクチュエータ51においては、磁性部材62は、磁性背部40から分離して設けられている。各磁性部材62は、コイルアセンブリ60の内側に一体化されている。これは、アクチュエータ51を製造することをより容易にする。コイルアセンブリ60と磁性背部40の間に電気的絶縁を提供することがより容易となる。コイルアセンブリ60を隔離プレート64、中間プレート65、及び閉鎖プレート66とともに成形することがより容易となる。コイルアセンブリ60から分離した磁性背部40を製造(例えば接着)することが可能となる。これは、アクチュエータ51を製造することをより容易にする。磁性背部40をコイルアセンブリ60と同時に組み立てる必要がない。
【0065】
ある実施の形態においては、磁性背部40は、アレイ状に配置された複数のコイルアセンブリ60の水平範囲より小さい。ある実施の形態においては、少なくとも1つの磁性部材62は、磁性背部40を越える。これは、仮に磁性部材62が磁性背部40と一体であったとしたら不可能である。磁性部材62が磁性背部40から独立していることによって、磁性背部40を越えて延在するコイルアセンブリ62のために磁性部材62を設けることができる。このようにして、磁性背部40のサイズをコイルアセンブリ60のアレイに対して小さくすることによってアクチュエータ51のサイズ及び質量を小さくすることができる。アクチュエータ51の質量低減は、アクチュエータ51の力密度に有利な効果をもたらすことができる。
【0066】
磁性部材62が磁性背部40から分離していることは必須ではない。例えば、
図3及び
図4に示されるように、ある実施の形態においては、磁性部材62は、磁性背部40の一部である。
【0067】
ある実施の形態においては、隔離プレート64及び閉鎖プレート66は、磁性部材62をコア室61内に収容するようにコイルアセンブリ60の両端にある。磁性部材62は全体的に隔離プレート64及び閉鎖プレート66によって封入されている。これは、コイルアセンブリ60から磁性部材62に向かう部分放電を制御し又は防止することをより容易にしうる。
【0068】
図6は、本発明に係るアクチュエータ51の実施の形態を示す。
図6に示されるように、ある実施の形態においては、磁性部材62の形状は、磁性部材62が丸みを帯びた表面69を有するように選択されている。
図10は、
図8に示されるアクチュエータ51の部分拡大図を示す。磁性部材62の丸みを帯びた表面69が
図10に示される。ある実施の形態においては、磁性部材62の丸みを帯びた表面69は、磁性背部40とは反対側を向く。リソグラフィ装置100の使用時には、磁性部材62の丸みを帯びた表面69は、マグネットアレイ55に面する。磁性部材62の形状は、アクチュエータ51の1つ又は複数のパラメータを最適化するように選択されている。例えば、磁性部材62が磁性背部40とは反対側を向く丸みを帯びた表面69を有することによって、アクチュエータ51の力密度を顕著に減少させることなく、アクチュエータ51が生成する寄生力を低減しうる。
【0069】
図7は、本発明に係るアクチュエータ51の実施の形態を示す。
図7に示されるように、ある実施の形態においては、背部コア区画67は、前部コア区画68より大きい。ただし、これは必須ではない。ある実施の形態においては、背部コア区画67は、前部コア区画68より小さい。
【0070】
ある実施の形態においては、磁性部材62を収容するコア区画(例えば
図7における背部コア区画67)が、磁性部材を収容しない他方のコア区画(例えば
図7における前部コア区画68)より大きい。
【0071】
磁性部材62を収容する背部コア区画67が磁性部材を収容しない前部コア区画68より大きいことによって、磁性部材62は、コア室61のコア室高さ61dの半分を超えて延在している。コア室61dにおいて磁性部材62がより長く延在しているほど、アクチュエータ51の力密度は大きくなる。
【0072】
図5及び
図6に示されるように、ある実施の形態においては、背部コア区画67が磁性部材62を収容し、前部コア区画はいかなる磁性部材も収容していない。コア室61の一部が磁性材料で満たされ、コア室61の一部が磁性材料で満たされていない。磁性部材62が背部コア区画67にあることは必須ではない。
【0073】
図7は、本発明に係るアクチュエータ51の実施の形態を示す。
図7に示されるように、ある実施の形態においては、前部コア区画68が磁性部材62を収容し、背部コア区画67はいかなる磁性部材も収容していない。
【0074】
図3から
図8に示される構成における特徴は互いに組み合わせることができる。例えば、ある実施の形態においては、磁性部材62は、(
図6及び
図8に示されるように)丸みを帯びた表面69を有し、かつ磁性部材62は、(
図3及び
図4に示されるように)磁性背部40の一部である。
【0075】
ある実施の形態においては、磁性部材62の磁性材料は、軟磁性材料である。軟磁性材料は、比透磁率が10より大きい材料をいう。ある実施の形態においては、軟磁性材料は、コバルト鉄磁性合金、ニッケル鉄磁性合金、純鉄、低炭素鋼、及び電炉鋼からなるグループから選択される。用語「純鉄」は、磁鉄、すなわち比較的不純物の少ない鉄を意味するのに使用される。その他の適する軟磁性材料も使用されうる。磁性部材62の磁性材料は、アクチュエータ51の具体的な機能または使用法に応じて選択されてもよい。
【0076】
ある実施の形態においては、磁性部材62の磁性材料は、磁性背部40を形成する材料とは異なる。磁性背部40は、例えば鉄などのフェライト材料から形成されてもよい。磁性部材62は、軟磁性材料で形成されてもよい。
【0077】
隔離プレート64、中間プレート65、及び閉鎖プレート66が冷却プレートであることは必須ではない。ある実施の形態においては、アクチュエータ51は、代替的な冷却システムを備える。例えば、ある実施の形態においては、アルミニウム構造が磁性背部40内に設けられ、または磁性背部40に取り付けられている。アルミニウム構造は、アクチュエータ51から熱を除去する冷却媒体を収容する複数の冷却流路を備えてもよい。
【0078】
ある実施の形態においては、コイルアセンブリ60は、約1.5mの領域の長さにわたり延在していてもよい。したがってアクチュエータ51を製造することが効率的かつ容易であることは重要である。磁性部材62が磁性背部40から分離していることによって、磁性背部40の表面を実質的に平坦とすることができる。磁性部材62が磁性背部40の一部として形成される場合には、各コイルアセンブリ60が突出する磁性部材62を自身のコア室61に備えるように複数の磁性部材62を複数のコイルアセンブリ60と整列させることは、困難でありうる。複数の突出する磁性部材62を有する磁性背部40を複数のコイルアセンブリ60と組み合わせる場合には、例えばコイルアセンブリ60が埋め込まれるときに磁性背部40とコイルアセンブリ60の間に気泡が捕らわれる可能性がある。こうした気泡は望まれない。磁性背部40から分離した物品として磁性部材62を設けることによって、アクチュエータ51の製造中に気泡が形成される可能性は低減される。
【0079】
磁性部材62を磁性背部40から分離して隔離プレート64を設けることによって、磁性背部40と隔離プレート64との界面が単純になる。これにより、アクチュエータ51の製造時の公差の厳密さを緩和することができる。
【0080】
ある実施の形態においては、磁性部材62の高さは、コア室61(すなわちコイルの目)において利用可能な高さ(すなわちコア室高さ61d)から独立して選択することができる。フェライト部とも称しうる磁性部材62は、アクチュエータ51の設計を具体的な力密度及び寄生力に調整する選択条件として製造時に使用することができる。磁性部材62の断面形状も、
図2に示されるローレンツ移動マグネットの従来技術のアクチュエータ52に対して改善された力密度に寄与しつつ、低い寄生力をもたらすよう調整可能である。
【0081】
一方のコア区画がいかなる磁性部材も収容しないことは必須ではない。ある実施の形態においては、背部コア区画67及び前部コア区画68の両方が磁性部材62を収容する。各コイルアセンブリ60には、複数の磁性部材62が設けられてもよい。
【0082】
ある実施の形態においては、コア室高さ61dは、約10mmから約250mmの領域にあってもよい。ある実施の形態においては、磁性部材62は、約1mmから約10mmの領域にある高さを有してもよい。ある実施の形態においては、隔離プレート64、中間プレート65、及び閉鎖プレート66のうち1つ又は複数は、約1mmから約2mmの領域にある厚さを有してもよい。ある実施の形態においては、マグネットアレイ55は、約75mmの磁気的周期を有する。磁気的周期は、マグネットアレイ55内で同一の極性方向を有する個別のマグネットの中心間距離に相当する。ある実施の形態においては、コア室61の幅は、約5mmから約20mmの領域にあり、例えば約10mmである。
【0083】
ある実施の形態においては、磁性部材62の材料、形状、サイズ、及び位置によって選択されるアクチュエータ51のパラメータは、力密度、スティープネス、法線力、インダクタンス、及びKファクタリップルのうち1つ又は複数を含む。法線力及びKファクタリップルは、アクチュエータ51の寄生力である。法線力は、磁性背部40とマグネットアレイ55との間の引力である。スティープネスは、一般のアクチュエータ/モータの「効率」のパラメータであり、本技術分野における文献でよく用いられる。スティープネスは、アクチュエータ51が生成する力をコイルアセンブリ60内での消費電力で除したものの二乗で定義される。スティープネスの値が大きければ、アクチュエータ51が大きな力を低消費で生成することを表す。
【0084】
使用時には、マグネットアレイ55はコイルアセンブリ60に対して水平に移動しうる。この相対移動の間に、磁性背部40とマグネットアレイ55との間の引力が変化しうる。それは例えばマグネットアレイ55のマグネットの極性の方向が変化するためである。この引力は、アクチュエータ51を備える位置決め装置の精度を低下させうる。この現象はコギングとも称されうる。本発明の実施の形態は、同じ力密度の公知のアクチュエータに対しコギングの低下を達成するものと期待される。
【0085】
図2に示されるローレンツ移動マグネットの従来技術のアクチュエータ52においては、コイルアセンブリ60のコア室61に磁性部材がない。電流がコイルアセンブリ60に供給されマグネットアレイ55がコイルアセンブリ60に対して水平に動くとき、マグネットアレイ55とコイルアセンブリ60との間に働く寄生力は小さい。しかしながら、磁性部材62が設けられた場合、そうした寄生力はより大きくなる。磁性部材62が設けられた場合には、力密度の増加と寄生力の増加との間に均衡がある。
【0086】
本発明における磁性部材62を設ける効果を計測するためにシミュレーションが行われた。シミュレーション結果が示すのは、コア室61に磁性部材62を追加することによって、アクチュエータ51の力密度が増加し電力消費が低減されることである。電力消費とは、アクチュエータ51がある力を生成するときコイルアセンブリ60において消費される電力の大きさである。コイルアセンブリ60において電力が消費されコイルアセンブリ60が加熱される。電力消費の大きさはアクチュエータ51の熱性能とも称される。シミュレーション結果は、電力消費が例えば35%低減されうることを示している。
【0087】
アクチュエータ51の熱性能は、アクチュエータ51の力密度を制限する因子でありうる。アクチュエータ51の熱性能は、コイルアセンブリ60内での電力消費に関係づけられる。電力消費を小さくすることによって、アクチュエータ51の力密度が増加する。シミュレーション結果は、磁性部材62を設けることによって、力密度が例えば約20%増加しうることを示している。
【0088】
磁性部材61で埋められていないコア室61の容積は、磁気回路にエアギャップを提供する。本発明においては、コア室61の一部がいかなる磁性材料でも埋められていないので、こうしたエアギャップが存在する。エアギャップを設けることによって、仮にコア室61の全体が磁性部材62で埋められた場合に比べて法線力が小さくなる。シミュレーション結果は、本発明の実施の形態が、
図2に示されるローレンツ移動マグネットの従来技術のアクチュエータ52と同様の法線力を達成するものと期待されることを示している。これは、本発明の改善された力密度によるものである。改善された力密度が意味するのは、アクチュエータ51が同じ水準の力を提供しつつアクチュエータ51(及びマグネットアレイ55)の容積を小さくすることができるということである。アクチュエータ51の総容積を低減することによって、総法線力が低減される。
【0089】
本発明のある実施の形態は、寄生力に対する力密度の比の増加を達成するものと期待される。この比は、磁性部材62の材料、形状、サイズ、及び位置によって制御可能である。磁性部材62の材料、形状、サイズ、及び位置は、アクチュエータ51の適用対象に適するように選択されることができる。
【0090】
以下のテーブル1は、磁性部材62の高さHの増加の効果を示す。磁性部材62の高さHは、コア室高さ61dに沿って磁性部材62がどこまで延在しているかを表す。テーブル1の結果は、コア室高さ61dが約16mmとしたシミュレーションに基づく。
テーブル1
【0091】
テーブル1の最初の行は、磁性部材62を有しない(例えば
図2に示される)従来技術のアクチュエータ52について規格化した値を示す。そのためテーブルに示される値は無次元である。テーブル1の他の行はすべて、その規格化値と比較したものである。
【0092】
スティープネスは、アクチュエータ51が生成する力をコイルアセンブリ60内での消費電力で除したものの二乗で定義される。スティープネスはできるだけ大きいことが望ましい。テーブル1が示すのは、磁性部材62の高さHが大きくなるとともにスティープネスが望ましく顕著に改善するということである。スティープネスが改善するのと同じ比率で電力消費が低下する。
【0093】
コア室61の内側に磁性部材62を設けることによって、法線力は(
図2に示される従来技術のアクチュエータ52に対して)増加するが、コア室61の全体が磁性背部40の磁性材料で満たされたアクチュエータに比べると約1/4の低さに留まる。
【0094】
力密度は、磁性部材62の高さHの増加とともに望ましく増加する。これは、より軽く、よりコンパクトなアクチュエータ設計を可能にする。
【0095】
本発明のアクチュエータ51が生成する寄生力は、磁性部材62の高さHの増加とともに増加する。しかし、寄生力は、コア室61の全体が磁性背部40の磁性材料で満たされた同様のサイズのアクチュエータの寄生力よりも実質的に低く留まる。
【0096】
シミュレーション結果は、コア室61の全体が磁性背部40の磁性材料で満たされたアクチュエータに比べてコギングが約1/15に低減されうることを示している。
【0097】
Kファクタリップルは、アクチュエータ51が生成することを意図された力に対してアクチュエータ51が生成する力を変化させる寄生力である。Kファクタリップルは、意図された力の変動に相当する。Kファクタリップルは、少なくとも部分的に周期的である。本発明のKファクタリップルの周期的成分は、コア室61の全体が磁性背部40の磁性材料で満たされたアクチュエータのものに比べて、より正弦波状である。本発明の実施の形態は、Kファクタリップルを例えばソフトウェア制御アルゴリズムを用いて補償することをより容易にするものと期待される。Kファクタリップルは、Kファクタの変動に関係する。Kファクタは、コイルアセンブリ60を流れる電流に対しアクチュエータ51が生成する力の比と定義される。Kファクタ=力/電流である。アクチュエータ51の力はコイルアセンブリ60とマグネットアレイ55の相対位置に関して一定ではない。マグネットアレイ55のマグネットは、ある関連した磁束密度を有し、これはある振幅をもつ。コイルアセンブリ60は、ある関連した電流密度を有し、これはある振幅をもつ。磁束密度の振幅と電流密度の振幅はマグネットアレイ55とコイルアセンブリ60の相対位置に応じて変化する。アクチュエータ51が生成する力は磁束密度の振幅と電流密度の振幅に依存する。そのため、アクチュエータ51が生成する力はマグネットアレイ55とコイルアセンブリ60の相対位置に応じて変化する。
【0098】
本発明は、ロングストロークLoSの位置決めシステム、例えば、少なくとも一方向に100mmを超える範囲をもつ位置決めシステムに適用可能である。本発明は、ショートストロークSSの位置決めシステム、例えば、少なくとも一方向望ましくは全ての方向に10mm未満の範囲をもつ位置決めシステムに適用可能である。
【0099】
露光波長を短くし、従って最小の印刷可能なサイズを小さくするために、極紫外(EUV)放射源を使用することが提案されている。EUV放射は、10〜20nmの範囲内、例えば13〜14nmの範囲内の波長を有する電磁放射である。さらに、10nm未満の波長、例えば6.7nmまたは6.8nmといった5〜10nmの範囲内の波長をもつEUV放射を使用することができるかもしれないことも提案されている。こうした放射は極紫外放射または軟X線放射と名付けられている。ありうる源には例えば、レーザ生成プラズマ源、放電プラズマ源、または、電子蓄積リングにより供給されるシンクロトロン放射に基づく源が含まれる。
【0100】
図11は、本発明のある実施の形態に係るステージシステムを示す。ステージシステムは、可動体、マグネットアレイ55、コイルアセンブリ60、及び磁性背部40を有する。可動体は、マスク支持構造MTまたは基板テーブルWTであってもよい。マグネットアレイ55は可動体に接続されている。コイルアセンブリ60はy方向に細長く、可動体をy方向に駆動するようマグネットアレイ55と協働するように配置されている。y方向に細長いというのは、多数のコイルがy方向に沿って隣どうしに配列されていることを意味する。コイルアセンブリ60及びマグネットアレイ55は既述の任意の実施の形態に係るアクチュエータ51を形成する。あるいは、コイルアセンブリ60及びマグネットアレイ55は
図2に示される従来技術のアクチュエータ52を形成する。コントローラ500は、y方向に沿って可動体を移動させる駆動力Fyを生成するとともに可動体を少なくとも部分的に支持する支持力Fzを生成するようにコイルアセンブリ60を転流するよう設けられている。
【0101】
駆動力Fy及び支持力Fzは異なる方向である。駆動力Fyは水平面内にあり、例えば投影システムPSの光軸に垂直な方向にある。支持力Fzは鉛直でありうる。駆動力Fy及び支持力Fzは、互いに垂直であってもよい。支持力Fzは、コイルアセンブリ60に面するマグネットアレイ55の表面に垂直であってもよい。
【0102】
コントローラ500は、コイルアセンブリ60における複数のコイルの各々に電流を供給してもよい。コイルに対してマグネットアレイ55を移動させる駆動力Fyを生成するために、コントローラ500は、コイルを転流する必要がある。転流は、コイルの各々にある電流振幅及びある電流位相で電流を供給することによって行われる。電流位相はコイルアセンブリ60に対するマグネットアレイ55の位置に依存する。例えば、電流位相とコイルアセンブリ60に対するマグネットアレイ55の位置との依存性は正弦波形状でありうる。この例においては、電流のプロファイルが正弦波形状である電流をコイルの各々に与えることによって3つのコイルが転流される。正弦波形状の振幅は3つのコイルそれぞれに同一であるが、正弦波形状の位相は第1コイルが0°であり、第2コイルが120°であり、第3コイルが240°である。
【0103】
転流の一例は本書の付属書類に述べられた等式(1):
により与えられる。等式(1)は、次のパラメータを有する。I
peakはコイルアセンブリ60のあるコイルを流れる最大電流であり、pはコイルアセンブリ60に対するマグネットアレイ55の位置であり、τはマグネットのピッチ、すなわちマグネットアレイ55におけるN極とそれに最も近いS極との距離であり、φは転流角であり、iはそのコイルの位相である。この例においては三相の転流がある。よって三相それぞれについて電流Iを決定するには、等式(1)を三回用いなければならない。一度目は第1位相についてi=1とし、次は第2位相についてi=2とし、その次は第3位相についてi=3とする。各位相は単一のコイルによって、またはコイルアセンブリ60における多数のコイルによって実現されうる。
【0104】
公知のアクチュエータにおいては、転流角φは、最大の効率を達成すべく駆動力Fyを最大化するように設定される。しかし、本発明者らは、駆動力Fyを最大にする転流角φから外れた場合に、転流角φが可動体を支持する支持力Fzを生成するために使用可能であることを発見した。
【0105】
図12には、転流角φに対する駆動力Fyと支持力Fzの関係の一例が与えられている。転流角φが0°のとき、駆動力Fyが最大値であり、支持力Fzがゼロである。転流角φを変化させることによって、駆動力Fyを犠牲にして支持力Fzを増加することができる。極端な状況では、転流角φが90°のとき支持力Fzが最大値であり駆動力Fyがゼロである。
【0106】
可動体が例えば5gまたは10gまたは40gまたは80gまたはそれより大きい高加速度(ここでgは約9.81m/s
2である標準重力値に相当する)で移動する必要がある場合、駆動力Fyは支持力Fzよりも実質的に大きい。支持力Fzは重力に抗することを求められているから、支持力Fzは典型的に可動体を1gで加速する場合を超えないであろう。
【0107】
転流角φの関数としての駆動力Fyと支持力Fzとの関係が正弦波形状であるから、
図12からわかることは、小さい支持力Fzには小さい転流角を要するということである。例えば1°〜5°の転流角である。こうした小さい転流角は駆動力Fyに実質的に影響しない。例えば、駆動力Fyの減少は1%未満である。
【0108】
よって、駆動力Fyに実質的に影響することなく、可動体の重量及びマグネットアレイ55の重量が支持力Fzによって支持されうる。可動体を支持力Fzで支持することには、可動体を支持するベアリングを省略しうるという利点がある。こうしたベアリングを省略することで可動体の重量が減り、そのためアクチュエータ51が可動体を加速するのに必要な電力が少なくなる。こうしたベアリングの省略がとくに有利なのは、可動体が真空環境に適用される場合である。真空環境においては、ベアリングを真空環境から分離するためにベアリングにはシールが必要とされうる。シールはベアリングからのパーティクルまたは気体流れが真空環境に入るのを防止しうる。
【0109】
またシールは可動体とコイルアセンブリ60の間にある剛性を有しうる。可動体の鉛直位置を測定して所望の支持力Fzを生成するよう転流角φを制御することによって、所望の剛性を可動体とコイルアセンブリ60の間に電子的に生成することができる。このよううな電子的に生成された剛性はマグネットアレイ55の位置制御を乱す外力を避けるのに有利でありうる。
【0110】
可動体には更なるマグネットアレイ55Aが設けられてもよい。更なるマグネットアレイ55Aはマグネットアレイ55と同様であってもよい。更なるマグネットアレイ55Aは、マグネットアレイ55からある距離に配置されている。
図11においては、マグネットアレイ55と更なるマグネットアレイ55Aとの間にx方向にあるオフセットがある。更なるコイルアセンブリ60Aが更なるマグネットアレイ55Aと協働するよう設けられている。更なるコイルアセンブリ60Aは、コイルアセンブリ60と同様であってもよい。更なるコイルアセンブリ60Aは、磁性背部40aに接続されていてもよい。更なるコイルアセンブリ60A及び更なるマグネットアレイ55Aは、更なる駆動力Fy2及び更なる支持力Fz2を生成するよう配置されている。
【0111】
駆動力Fy及び更なる駆動力Fy2を使用する場合、可動体はz方向まわりに回転されうる。支持力Fz及び更なる支持力Fz2を使用する場合、可動体はy方向まわりに回転されうる。
【0112】
ある実施の形態においては、コイルアセンブリ60は、y方向に延在している。コイルアセンブリ60は、y方向に沿って隣どうしに配列された複数のコイルを有する。複数のコイルは少なくとも2つのグループで転流される。それらグループの各々は、他のグループから独立して支持力Fzを生成することが可能である。各グループが生成する支持力Fzどうしはy方向にオフセットがあるから、可動体はx方向まわりに回転されうる。各グループは別々の増幅器に接続され、例えば三相増幅器に接続されてもよい。あるグループ内の各コイルが別々の増幅器に接続されてもよい。同じ電流位相が求められる別のグループのコイルが同じ増幅器に接続されてもよい。
【0113】
ある実施の形態においては、支持力Fzは、例えば力センサを使用して測定された力から決定されることができる。このような測定された力は、
図16に示される、2つの力センサ70A,70Bがマスク支持構造MTとマグネットアレイ55,55Aとの間に配置された構成を使用して取得することができる。こうした実施の形態は、例えばモータ構成要素の特性及びモータ部分の位置決めにおいて公差が小さいことに起因して駆動力Fyのうちある小さい比率がz方向のような他の方向に励起されうる場合に有利でありうる。こうした不所望の力は「寄生力」と表される。
図16に示されるその他の特徴についての説明は例えば
図11を参照されたい。力センサによって測定された力は、寄生力を補償するフィードバック構成における追加の制御ループにおいて使用されることができる。ある実施の形態においては、力センサによって測定された力は、オンラインで測定され、力コントローラによってモータにフィードバックされる。
図16には2つの力センサ70A,70Bが示されているが、少なくとも1つの力センサを含むことが有益であり、よって本発明は2つの力センサを有する実施の形態には限定されないことに留意されたい。ある代替的な実施の形態においては、測定された力は、力コントローラによる転流アルゴリズムにフィードバックされる。ある方向には力が存在しないことが意図され、かつその方向に力が測定された場合には、その測定された力は寄生力とみなされる。ある力が意図される場合、その意図される力と測定された力との差は寄生力とみなされるものとみなされる。あるいは、何回かの実験において誘起された力を測定し、その結果生じる力をオフラインで決定することも可能である。一例として、何回かの実験の間、マスク支持構造MTが種々の加速度を用いて種々の位置で移動されてもよい。その結果生じる力は、位置及び加速度の関数として例えばルックアップテーブルに保存される。使用時には、保存された力がモータ入力に与えられ、それにより不所望の寄生力を補償してもよい。更なる代替的な実施の形態においては、コイルアセンブリとマグネットアレイとの間の実際のギャップを測定することも可能であり、または例えばマスク支持構造MTを支持するエアベアリングの実際のギャップが測定されてもよい。エアベアリングはある剛性を表すから、ギャップの寸法変化に起因して生じる力を決定することができる。あるいは、エアベアリングにおける圧力及び流れの測定結果から力を推定することができる。
【0114】
上述の各構成を組み合わせる場合、可動体は、コントローラ500によって少なくとも5自由度、すなわちy及びzの並進移動とx、y、及びzまわりの回転を制御可能である。可動体を6自由度のすべてにおいて制御するために、追加のアクチュエータが可動体をx方向に駆動するよう追加されてもよい。
【0115】
図11に示されるように、アクチュエータ51がもう1つのコイルアセンブリすなわちコイルアセンブリ60Bを備えてもよい。コイルアセンブリ60Bは、磁性背部40Bに接続されていてもよい。コイルアセンブリ60Bは、駆動力Fy及び支持力Fzに寄与するようマグネットアレイ55と協働する。マグネットアレイ55は、コイルアセンブリ60とコイルアセンブリ60Bの間にある。コイルアセンブリ60Bを追加することによって、所望の駆動力Fy及び所望の支持力Fzのためにコイルアセンブリ60を流れる電流を減らすことができる。あるいは、コイルアセンブリ60及びコイルアセンブリ60Bは、より大きい駆動力Fy及びより大きい支持力Fzを生成するために一緒に使用することもできる。
【0116】
コイルアセンブリ60Bを追加することには別の利点もありうる。可動体がz方向においてコイルアセンブリ60から離れる向きに移動する場合、コイルアセンブリ60とマグネットアレイ55の間のギャップが広がる。ギャップが広くなると、コイルアセンブリ60により駆動力Fyを生成する効率が低下する。しかし、同時に、マグネットアレイ55とコイルアセンブリ60Bとの間のギャップは狭くなる。より小さいギャップは、コイルアセンブリ60Bにより駆動力Fyを生成する効率を高める。そのためコイルアセンブリ60Bを追加することによって、可動体のz方向における移動の副作用が軽減されうる。同様にして、追加のコイルアセンブリ60Cが、コイルアセンブリ60Aとコイルアセンブリ60Cの間にマグネットアレイ55があるように配置されてもよい。追加のコイルアセンブリ60Cは磁性背部40Cに接続されてもよい。
【0117】
図11に示されるように、単一のマグネットアレイ55があり、コイルアセンブリ60に面するマグネットアレイ55の表面は水平である。その結果、支持力Fzは鉛直方向である。
図13から
図15は、支持力Fzを鉛直方向とは異なる方向に提供するマグネットアレイ55の更なる構成を示す。
【0118】
図13は、
図11の可動体を示す。しかし、ここでは、可動体の一方側に2つのマグネットアレイ、すなわちマグネットアレイ55及びマグネットアレイ55Bが備えられている。マグネットアレイ55は、駆動力Fy及び支持力Fzを生成するようコイルアセンブリ60と協働するよう設けられている。マグネットアレイ55Bは、駆動力Fy及び支持力Fzに寄与するようコイルアセンブリ60Bと協働するよう設けられている。可動体の他方側には、マグネットアレイ55A,55Cがある。マグネットアレイ55Aは、更なる駆動力Fy2及び更なる支持力Fz2に寄与するようコイルアセンブリ60Aと協働するよう設けられている。マグネットアレイ55Cは、更なる駆動力Fy2及び更なる支持力Fz2に寄与するようコイルアセンブリ60cと協働するよう設けられている。
【0119】
図14は、可動体の上面と角度αをなすマグネットアレイ55及びマグネットアレイ55Bを示す。1つの支持力Fzに代えて、2つの支持力すなわち支持力Fz1,Fz2がある。支持力Fz1は、+z方向及び−x方向に向けられている。支持力Fz2は、−z方向及び−x方向に向けられている。支持力Fz1,Fz2を制御することによって、可動体をx方向及びz方向の両方に移動することができる。角度αに依存して、支持力Fz1,Fz2の方向を設定することができる。角度αは、45度、または75度、またはその他の適切な任意の角度であってもよい。代案として、マグネットアレイ55及びマグネットアレイ55Bのうち一方のみが角度αをなす。マグネットアレイ55及びマグネットアレイ55Bの他方は水平であってもよい。この代案においては、マグネットアレイ55及びマグネットアレイ55Bのうち角度αをなす一方が支持力Fz及びx方向の力を提供する一方、マグネットアレイ55及びマグネットアレイ55Bのうち水平な他方は支持力Fzを提供しx方向の力を提供しない。マグネットアレイ55,55Bと同様にマグネットアレイ55A,55Cが配置されてもよい。
【0120】
図15は、マグネットアレイ55が水平でありマグネットアレイ55Bが可動体の上面に90度の角度をなす実施の形態を示す。この実施の形態においてはマグネットアレイ55Bが生成する支持力Fzはx方向にのみ向けられており、Fxと表記する。x方向が重力に垂直である場合、力Fxは可動体の重量をまったく支持しない。その代わりに、力Fxは、可動体をx方向に加速するのに使用することができる。マグネットアレイ55,55Bと同様にマグネットアレイ55A,55Cが配置されてもよい。
【0121】
可動体の所望の移動範囲に応じて、
図13から
図15の実施の形態のうちいずれかが選択されてもよい。例えば、x方向に広い移動範囲が求められる場合には、
図13の実施の形態が有利でありうる。なぜなら、マグネットアレイ55,55Bと対応するコイルアセンブリ60,60Cとの間のギャップが変わらないからである。アクチュエータ51の高効率がx方向の移動範囲全体にわたって達成される。
図14及び
図15の実施の形態は、x方向に実質的な力が求められる場合に有利でありうる。角度αのために、マグネットアレイ55,55Bと対応するコイルアセンブリ60,60Cとの間のギャップが可動体のx位置及びz位置に依存する。
【0122】
可動体に例えば2つのマグネットアレイ55,55Bよりも多数を追加することによって、
図13から
図15の実施の形態が組み合わされてもよい。
【0123】
上述の実施の形態におけるコイルアセンブリ60〜60Cは、バランスマスBMに結合されていてもよい。コイルアセンブリ60〜60Cの結合は、バランスマスに直接なされてもよいし、間接的であってもよい。間接的な結合は例えば、磁性背部40〜40Cまたは何らかの他の構成要素を介してもよい。バランスマスは、駆動力Fyまたは支持力Fzに起因する反力の少なくとも一部を、可動体が加速される方向とは反対の方向に加速することによって、吸収しうる。典型的に、バランスマスは、可動体よりも大きく、例えば10倍ないし100倍大きい質量を有する。
【0124】
具体的な適用に際し、バランスマスBMを支持フレームSFに対し角度をなして配置することが望まれる場合がある。すなわち、バランスマスの移動方向は重力方向に垂直ではない。こうしたバランスマスの構成は、「傾斜バランスマス」と称される。マスク支持構造MT及び角度αをなす傾斜バランスマスの一例が
図17に示されている。図示されているマスク支持構造の部分は、ショートストロークSS、ロングストロークLoS、及びバランスマスBMである。これら部分の機能は本書において上述した。しかしながら、こうした構成は、バランスマスBMに作用する重力の負荷を克服するのに消費電力の大きいアクチュエータを必要とするという不利益をもたらしうる。一例として、バランスマスBMの質量が800kg、角度αが30度である場合、総重力負荷はおよそ、F
GC=800・10・sin(30°)=2740Nである。したがって、重力負荷を補償することのできる受動システムを導入することが望まれる。加えて、比較的小型の電磁アクチュエータ(図示せず)が、バランスマスの所望の位置の小さい力変動(すなわちドリフトに起因する)を補償するよう受動システムに追加される。
図18から
図20は、傾斜した受動バランスマス構成の例を示す。
図18においては、バランスマスマグネットシステムがバランスマスBMに接続されている。バランスマスマグネットシステムは、第1極性方向を有する第1バランスマスマグネットシステム75Aと、第2極性方向を有する第2バランスマスマグネットシステム75Bとを備える。第2極性方向は第1極性方向と実質的に反対である。支持フレームマグネットシステムが支持フレームSFに接続されている。支持フレームマグネットシステムは、第1極性方向を有する第1支持フレームマグネットシステム76Aと、第1極性方向と実質的に同様の極性方向を有する第2支持フレームマグネットシステム76Bとを備える。ある実施の形態においては、第1支持フレームマグネットシステム76A及び第2支持フレームマグネットシステム76Bの極性方向は、第2バランスマスマグネットシステム75Bの第2極性方向と実質的に等しい。バランスマスマグネットシステム及び支持フレームマグネットシステムを正確な寸法に設計することにより、重力負荷と概ね等しい受動力が得られうる。
図19及び
図20は、バランスマスに作用する重力負荷を受動的に補正することのできるバランスマスマグネットシステム(各図において、75A,75B、及び、75A,75B,75C)及び支持フレームマグネットシステム(各図において、76A、及び、76A,76B,76C)の代替的な実施の形態を示す。
【0125】
本明細書ではICの製造におけるリソグラフィ装置の使用を例として説明しているが、本書に説明されたリソグラフィ装置は、集積光学システム、磁区メモリ用案内パターンおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造など他の用途にも適用することが可能であるものと理解されたい。当業者であればこれらの他の適用に際して、本書における「ウェーハ」あるいは「ダイ」という用語がそれぞれ「基板」あるいは「目標部分」という、より一般的な用語と同義であるとみなされると理解することができるであろう。本書に言及される基板は、露光前または露光後において例えばトラック(典型的にはレジスト層を基板に塗布し、露光後のレジストを現像する装置)、メトロロジツール、及び/またはインスペクションツールにより処理されてもよい。適用可能であれば、本書の開示はこれらのまたは他の基板処理装置にも適用され得る。また、基板は例えば多層ICを製造するために複数回処理されてもよく、その場合には本書における基板という用語は処理済みの多数の層を既に含む基板をも意味する。
【0126】
本書において「放射」及び「ビーム」という用語は、紫外(UV)放射(例えば約365nm、248nm、193nm、157nm、または126nmの波長を有する)及び極紫外(EUV)放射(例えば5から20nmの範囲の波長を有する)含むあらゆる種類の電磁放射、さらにはイオンビームまたは電子ビーム等の粒子ビームを包含する。
【0127】
本発明の特定の実施形態が上述されたが、説明したもの以外の態様で本発明が実施されてもよい。上述の説明は例示であり、限定を意図しない。よって、後述の特許請求の範囲から逸脱することなく既述の本発明に変更を加えることができるということは、関連技術の当業者には明らかなことである。