【実施例】
【0034】
以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。なお、特に断りがない限り、「%」は「重量%」を表す。
【0035】
以下において採用した分析条件は下記の通りである。
(1)ガスクロマトグラフィー分析(GC分析)
・装置:HP−6890(アジレント社製)
・カラム:ジーエルサイエンス社製 Inert Cap−1、長さ60m、内径0.25mm、膜厚1.5μm
・カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後、40℃で10分間保持
・インジェクション温度:200℃
・キャリヤーガス:窒素
・スプリット比:100/1
・検出器:FID
【0036】
(2)ガスクロマトグラフィー質量分析
・GC部分:HP−6890(アジレント社製)
・カラム:ジーエルサイエンス社製 Inert Cap−1、長さ60m、内径0.25mm、膜厚1.5μm
・カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後、240℃で10分間保持
・MS部分:アジレント社製 5973 NETWORK
・検出器:EI型(加速電圧:70eV)
【0037】
[製造例1]sec−ブチルメチルエーテルの製造
撹拌子を入れた容量500mlのナスフラスコに、さらに2−ブタノール360ml、フレーク状水酸化カリウム(アルドリッチ社製、純度約90%)37.3gを入れ、全容を約2.5時間、50℃で撹拌した。水酸化カリウムが溶解し、均一溶液になったところで、加熱を一旦中止した。その均一溶液に、ヨードメタン84.4gを入れ、ジムロート型コンデンサーを付した状態で、再度、50℃で3時間強撹拌した。ナスフラスコ(反応容器)を室温(約25℃)まで冷却し、上澄み液をガスクロマトグラフィーにて分析したところ、ヨードメタンはほぼ消費され、目的物である2−メトキシブタンと、2−ブタノールの混合物であることが確認された。ナスフラスコ内の内容物から、ヨウ化カリウムをろ別した。ろ別したヨウ化カリウムを少量の水に溶解させ、上層の有機相を分離し、先のろ液と混合した(ろ液混合物)。
得られたろ液混合物を蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長30cm、充填剤「ヘリパックNo.1」)を使って、蒸留を行った。塔頂温度55〜56℃の留分を集め、共沸して留出してくる水を分液ロートで分離、モレキュラーシーブ4Aで乾燥し、38gのsec−ブチルメチルエーテルを得た(収率72%)。
GC−MS(EI−MS):m/z 73、59、41、29
【0038】
[製造例2]sec−ブチルエチルエーテルの製造
撹拌子を入れた容量500mlのナスフラスコに、2−ブタノール240ml、フレーク状水酸化カリウム(アルドリッチ社製、純度約90%)24.8gを入れ、全容を3時間、50℃で撹拌した。水酸化カリウムが溶解し、均一の溶液になったところで、加熱を一旦中止した。その均一溶液に、臭化エチル43gを入れ、ジムロート型コンデンサーを付した状態で、内容物を70℃で4時間激しく撹拌した。ナスフラスコ(反応溶液)を室温(約25℃)まで冷却し、上澄み液をガスクロマトグラフィーにて分析したところ、臭化エチルはほぼ消費され、目的物である2−エトキシブタンと、2−ブタノールの混合物であることが確認された。ナスフラスコ内の内容物から、臭化カリウムをろ別した。ろ別した臭化カリウムを少量の水に溶解させ、上層の有機相を分離、先のろ液と混合した(ろ液混合物)。
得られたろ液混合物を蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長30cm、充填剤「ヘリパックNo.1」)を使って、蒸留を行った。塔頂温度68〜69℃の留分を集め、共沸して留出してくる水を分液ロートで分離し、モレキュラーシーブ4Aで乾燥し、31gのsec−ブチルエチルエーテルを得た(収率51%)。
GC−MS(EI−MS):m/z 87、73、59、45
【0039】
[製造例3]フッ化アセチル(酢酸フルオリド)の製造
攪拌機、滴下ロート、及び捕集トラップを付した、容量500mlのガラス製反応器に、無水酢酸200ml、二フッ化水素カリウム46.9gを入れ、40℃に加温しながら撹拌した。
滴下ロートから塩化アセチル47gを40分間かけて滴下し、滴下終了後、15分ごとに反応器内温を10℃ずつ昇温させた。
最終的に90℃まで加温し、20分間その温度で加温した後、反応を停止した。その間、反応器から留出してくるフッ化アセチルは、氷水で冷却したガラストラップに捕集した。粗収量は47.6g(粗収率128%)であった。(本反応では無水酢酸からもフッ化アセチルが生成するので、収率は100%を超える)
得られた粗フッ化アセチルは単蒸留により、塔頂温度20〜24℃の留分を集め、42.4gのフッ化アセチルが得られた(収率114%)。
【0040】
[製造例4]フッ化プロピオニル(プロピオン酸フルオリド)の製造
攪拌機、滴下ロート、及び捕集トラップを付した、容量500mlのガラス製反応器に、無水プロピオン酸200ml、二フッ化水素カリウム46.8gを入れ、90℃に加温しながら撹拌した。
滴下ロートから塩化プロピオニル55.5gを1時間かけて滴下し、滴下終了後、さらに、15分間撹拌した。その後、15分ごとに反応器を10℃ずつ、110℃まで昇温し、110℃で30分間加温した後、反応を停止させた。その間、反応器から留出してくるフッ化プロピオニルは、氷水で冷却したガラストラップに捕集した。粗収率は132%であった。
得られた粗フッ化プロピオニルを単蒸留して、塔頂温度42〜43℃の留分を集め、46.8gのフッ化プロピオニルを得た(収率103%)。
【0041】
[実施例1]
撹拌子、ジムロート型コンデンサーを付した容量50mlのガラス製反応器に、製造例1で合成したsec−ブチルメチルエーテル3.52g、製造例3で合成したフッ化アセチル2.98g、及び、n−ヘキサン10mlを入れ、0℃に冷却して内容物を撹拌した。ここに、シリンジを用いて、三フッ化ホウ素テトラヒドロフラン錯体0.28gを入れ、0℃に維持したまま3時間撹拌を継続した。内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが24.45面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.18面積%、6.50面積%、及び2.00面積%生成していた。また、原料がアセトキシ化された、2−アセトキシブタンは0.35面積%生成したに過ぎなかった。なお、残りは、溶媒のn−ヘキサン、錯体由来のテトラヒドロフラン、及び酢酸メチルであった。
【0042】
[実施例2]
フッ化アセチルの量を2.23gに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、フッ素化剤のフッ化アセチルはほぼ消失し、目的物である2−フルオロブタン18.92面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.13面積%、4.56面積%、及び1.55面積%生成し、原料のsec−ブチルメチルエーテルは3.84面積%残存していた。また、原料がアセトキシ化された2−アセトキシブタンは0.25面積%生成したに過ぎなかった。
【0043】
[実施例3]
三フッ化ホウ素テトラヒドロフラン錯体0.28gを三フッ化ホウ素ジメチルエーテル錯体0.23gに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが20.24面積%、1−ブテン、(E)−2−ブテン、及び、(Z)−2−ブテンがそれぞれ、0.19面積%、6.07面積%、及び2.43面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.16面積%生成したに過ぎなかった。
【0044】
[実施例4]
三フッ化ホウ素テトラヒドロフラン錯体0.28gを三フッ化ホウ素ジエチルエーテル錯体0.26gに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが20.00面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.18面積%、6.36面積%、及び2.59面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.44面積%生成したに過ぎなかった。
【0045】
[実施例5]
三フッ化ホウ素テトラヒドロフラン錯体0.28gを三フッ化ホウ素t−ブチルメチルエーテル錯体0.31gに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが21.07面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ0.22面積%、7.28面積%、及び3.10面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.66面積%生成したに過ぎなかった。
【0046】
[実施例6]
溶媒のn−ヘキサン10mlをシクロヘキサン10mlに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが21.18面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ0.17面積%、6.15面積%、及び1.85面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.10面積%生成したに過ぎなかった。
【0047】
[実施例7]
溶媒のn−ヘキサン10mlをヘプタン10mlに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが22.48面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ0.17面積%、5.98面積%、及び1.91面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.48面積%生成したに過ぎなかった。
【0048】
[実施例8]
溶媒のn−ヘキサン10mlをトルエン10mlに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、目的物である2−フルオロブタンが9.78面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.19面積%、4.41面積%、及び1.10面積%生成しており、原料のsec−ブチルメチルエーテルが8.00面積%残存していた。また、原料がアセトキシ化された2−アセトキシブタンは 0.34面積%生成したに
過ぎなかった。
【0049】
[実施例9]
原料のsec−ブチルメチルエーテル3.52gを製造例2で合成したsec−ブチルエチルエーテル4.08gに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルエチルエーテルはほぼ消失し、目的物である2−フルオロブタンが18.66面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.11面積%、4.68面積%、及び1.24面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.82面積%生成したに過ぎなかった。
【0050】
[実施例10]
原料のsec−ブチルメチルエーテル3.52gを、製造例2で合成したsec−ブチルエチルエーテル4.08gにし、溶媒のn−ヘキサン10mlをシクロヘキサン10mlに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルエチルエーテルはほぼ消失し、目的物である2−フルオロブタンが18.00面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ0.11面積%、4.62面積%、及び1.24面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンは0.87面積%生成したに過ぎなかった。
【0051】
[実施例11]
原料のsec−ブチルメチルエーテル3.52gをt−ブチルメチルエーテル3.53g(和光純薬工業社製)に変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のt−ブチルメチルエーテルはほぼ消失し、目的物であるt−ブチルフルオリドが17.69面積%、イソブテン2.52面積%生成していた。また、原料がアセトキシ化されたアセトキシt−ブチルは0.72面積%生成したに過ぎなかった。
【0052】
[実施例12]
実施例1において、原料のsec−ブチルメチルエーテル3.52gをt−ブチルエチルエーテル4.02g(東京化成工業社製)に変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のt−ブチルエチルエーテルはほぼ消失し、目的物であるt−ブチルフルオリドが19.10面積%、イソブテンが1.10面積%生成していた。また、原料がアセトキシ化されたアセトキシt−ブチルは0.095面積%生成したに過ぎなかった。
【0053】
[実施例13]
実施例1において、フッ素化剤のフッ化アセチル2.98gを製造例4で合成した、フッ化プロピオニル3.65gに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタンが20.06面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.16面積%、2.03面積%、及び1.69面積%生成していた。また、原料がプロピオニルオキシ化された2−プロピオニルオキシブタンは0.55面積%生成したに過ぎなかった。
【0054】
[実施例14]
実施例8において、フッ素化剤のフッ化アセチルを製造例4で合成した、フッ化プロピオニル3.65gに変更したこと以外は、実施例8と同様にして反応を行った。7時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のsec−ブチルエチルエーテルはほぼ消失し、目的物である2−フルオロブタンが17.43面積%、1−ブテン、
(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ0.14面積%、6.65面積%、及び1.91面積%生成していた。また、原料がプロピオニルオキシ化された2−プロピオニルオキシブタンは1.30面積%生成したに過ぎなかった。
【0055】
[実施例15]
実施例10において、フッ素化剤のフッ化アセチルを製造例4で合成した、フッ化プロピオニル3.65gに変更したこと以外は、実施例10と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、原料のt−ブチルメチルエーテルはほぼ消失し、目的物であるt−ブチルフルオリドが19.96面積%とイソブテンが4.01面積%生成していた。また、原料がプロピオニルオキシ化されたプロピオニルオキシt−ブチルは0.24面積%生成したに過ぎなかった。
【0056】
[比較例1]
実施例1において、溶媒のn−ヘキサンを添加せずに、実施例1と同様にして反応を行った。3時間反応させた後、反応器内に、n−ヘキサン10mlを添加し、ガスクロマトグラフィーにて分析した結果、原料のsec−ブチルメチルエーテルはほぼ消失し、目的物である2−フルオロブタン12.20面積%と1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ0.24面積%、6.32面積%、及び2.64面積%生成していた。また、原料がアセトキシ化された2−アセトキシブタンが9.24面積%生成していた。
【0057】
[比較例2]
溶媒をn−ヘキサン10mlから2−ペンタノン10mlに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、目的物である2−フルオロブタン10.79面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.28面積%、5.87面積%、及び1.59面積%生成し、原料のsec−ブチルメチルエーテルは10.79面積%残存していた。また、原料がアセトキシ化された2−アセトキシブタンが4.01面積%生成の他、構造不明の高沸点成分が、7.01面積%生成していた。
【0058】
[比較例3]
溶媒をn−ヘキサン10mlから酢酸エチル10mlに変更したこと以外は、実施例1と同様にして反応を行った。3時間反応させた後、内容物をガスクロマトグラフィーにて分析した結果、目的物である2−フルオロブタン14.56面積%、1−ブテン、(E)−2−ブテン、及び(Z)−2−ブテンがそれぞれ、0.25面積%、10.03面積%、及び2.47面積%生成し、原料のsec−ブチルメチルエーテルは7.51面積%残存していた。また、原料がアセトキシ化された2−アセトキシブタンは0.24面積%生成していた。
【0059】
これらの結果から、炭化水素系溶媒を使用した場合に比べ、ケトン系、エステル系溶媒を用いる場合には、反応速度が遅く、残存する原料が多いことが分かる。