【実施例】
【0026】
以下に、本発明の実施例として、本発明の好適態様を含む種々の通気性シート(以下、包括的に評価サンプルと称する)を調製し、評価した結果を記載するが、本発明は以下の実施例にのみ限定されるものではなく、形状、配置関係、数値的条件などは、この発明の目的の範囲内で任意好適に設計し得る。まず、実施例として、不織布層となる各種不織布の調製について説明する。
【0027】
(不織布Aの調製方法)
不織布Aの調製方法として、公知の静電紡糸技術による不織布層を作製した。始めに、重量平均分子量20万のポリアクリロニトリルである「ボンネル D122」(三菱レイヨン株式会社製:商品名)を、N,N−ジメチルホルムアミドに濃度16wt%になるように溶解させ、ポリマー溶液(粘度:2000mPa・s)とした。次いで、ケースに周囲を囲われた空間(縦:1000mm、横:1000mm、高:1000mm)内に、ポリマー溶液を吐出できる内径0.41mmの金属製ノズルを直流高電圧装置に接続した状態で配置し、吐出されたポリマー溶液を捕集するための無端ベルトをアースし、ケース内に配置した。この金属製ノズルに17kVの電圧を印加することで、ポリマー溶液を3g/hの速度で吐出させて繊維化し、後段で詳述する目付並びに厚さを有する不織布を得た。ここで、各評価サンプルの構成成分の厚さは、「デジマチック標準外側マイクロメータ MDC−MJ/PJ 1/1000mm」(株式会社ミツトヨ製:商品名)により500g荷重時の測定を5点行い、算術平均値で記録した。このようにして得られた不織布(以下、包括的に不織布Aと称する)の主体となる構成繊維の平均繊維径を電子顕微鏡によって測定したところ、0.4μm(400nm)であった。この不織布Aは、後段で述べる支持層との積層を行う際、複数の不織布Aを重ねることで、目付及び厚さが種々に異なる不織布層を構成し、評価サンプルとした。詳細は、他の不織布を備えた評価サンプルの評価結果とともに後段に示す表1に記載する。
【0028】
(不織布Bの調製方法)
次に、不織布Aと同様な静電紡糸技術を適用するため、ポリアクリロニトリルに代えて、ポリビニルアルコール(和光純薬株式会社製,重合度1000の完全けん化品)を純水に12wt%になるように溶解し、これに無水マレイン酸コポリマー「GANTREZ AN−119」(アシュランド社製:商品名)を12wt%になるように予め水に溶解した不溶化溶液を加え、これら2つの溶液の固形分重量比が4/1の割合になるよう混合し、ポリビニルアルコール1モルに対して無水マレイン酸コポリマー0.07モルの比率でポリマー溶液とした。このポリマー溶液(粘度:300mPa・s)を用い、内径0.33mmの金属製ノズルを用いて、前述と同様に22kVの電圧を印加することで、ポリマー溶液の吐出速度を0.5g/hにて繊維化し、オーブンで160℃、30分間熱処理して不溶化された不織布Bを得た。電子顕微鏡による観察から、当該不織布Bの繊維径は0.1μm(100nm)であった。尚、厚さ等の測定条件は、不織布Aと同一の方法により実施した。
【0029】
(不織布Cの調製方法)
不織布Cとして、市販されているポリエーテルスルホン「スミカエクセル 5200P」(住友化学株式会社製:商品名)を、ジメチルアセトアミドに25wt%になるように溶解させ、このポリマー溶液(粘度:1500mPa・s)を内径0.33mmの金属製ノズルに22kVの印加電圧をかけ、吐出速度1g/hで繊維化した。得られた不織布Cの繊維径は1μm(1000nm)であった。尚、厚さ等の測定条件は、不織布Aと同一の方法により実施した。
【0030】
(不織布Dの調製方法)
次に、不織布Dの調製方法として、湿式技術による不織布層を準備した。市販されている芯鞘型複合繊維(芯成分:ポリプロピレン樹脂(融点:160℃)、鞘成分:高密度ポリエチレン樹脂(融点:120℃)、見掛け繊度:0.8dtex[繊維径:10.5μm]、繊維長:5mm)と、極細繊維(成分:ポリプロピレン樹脂(融点:160℃)、繊維径:2μm、繊維長:3mm)とを用い、芯鞘型複合繊維:極細繊維=80wt%:20wt%の質量比率でスラリーを形成した後、傾斜棚網方式で抄紙し、温度140℃に設定した熱風乾燥機により乾燥した後、熱カレンダーロールにて厚みを調整し、高密度ポリエチレン樹脂成分により繊維同士が融着してなる湿式不織布を得た。尚、厚さ等の測定条件は、不織布Aと同一の方法により実施した。
【0031】
(不織布Eの調製方法)
続いて、不織布Dで用いた市販の芯鞘型複合繊維(芯成分:ポリプロピレン樹脂(融点:160℃)、鞘成分:高密度ポリエチレン樹脂(融点:120℃)、見掛け繊度:0.8dtex[繊維径:10.5μm]、繊維長:5mm)と、他の芯鞘型複合繊維(芯成分:ポリプロピレン樹脂(融点:160℃)、鞘成分:高密度ポリエチレン樹脂(融点:120℃)、見掛け繊度:1.7dtex[繊維径:15.3μm]、繊維長:5mm)とを用い、前記芯鞘型複合繊維:他の芯鞘型複合繊維=20wt%:80wt
%の質量比率で湿式抄造し、不織布Eを調整した。尚、厚さ等の測定条件は、不織布Aと同一の方法により実施した。
【0032】
(不織布Fの調製方法)
次に、不織布Fとして、公知の乾式技術による不織布を準備した。市販されている第1の短繊維(成分:ポリエチレンテレフタレート樹脂(融点:260℃)、繊度:5.6dtex[繊維径:23μm]、繊維長:38mm)と、第2の短繊維(成分:ポリエチレンテレフタレート樹脂(融点:260℃)、繊度:1.25dtex[繊維径:11μm]、繊維長:38mm)を、第1の短繊維:第2の短繊維=40wt%:60wt%の比率で混綿し、カード機でウェブとした後、フラットロールを備えたカレンダーで厚さ調整を行い、ポリエチレンテレフタレート繊維同士が融着した乾式の不織布Fを得た。尚、厚さ等の測定条件は、不織布Aと同一の方法により実施した。
【0033】
(支持層)
支持層として、以下の4種類のステンレス鋼製の金属メッシュ(何れも関西金網株式会社製)を用意した。
70メッシュ:平織り、線径0.15mm、目開きの間隔0.20mm
100メッシュ:平織り、線径0.10mm、目開きの間隔0.15mm
200メッシュ:平織り、線径0.050mm、目開きの間隔0.077mm
400メッシュ:平織り、線径0.028mm、目開きの間隔0.034mm
ここで表記した目開きの間隔とは平織りにおけるワイヤー同士で形成される網目状の開口の一辺の長さに相当する公称値であり、通常、メッシュ数とミリ単位とした線径dにより、以下の式で算出することができる。この計算式は広く知られた算出手法であるが、実際に顕微鏡で観察した結果と極めて高い相関が有ることを確認した。
目開きの間隔=(25.4/メッシュ数)−線径d
【0034】
(評価用の通気性シートの作製)
上述した各不織布、並びに、支持層を組み合わせ、各実施例及び各比較例の通気性シートを作製した。参考例1として不織布層を設けずに金属メッシュのみで構成した評価サンプル、参考例2として支持層を設けずに不織布のみで構成した評価サンプル、参考例3として実施例2の通気性シートの表裏を逆に用いる評価サンプルを準備した。
【0035】
(各評価サンプルを用いた非通気性基材への印刷評価)
非通気性基材として、市販のポリエチレンテレフタレート製フィルム「テトロンフィルムNS」(帝人デュポン株式会社製:商品名,厚さ12μm)を一辺160mmの正方形に裁断、用意し、各評価サンプルで当該非通気性基材を覆った。市販の真空吸着装置として、直径1.5mmの円形の吸引口が20mm間隔で格子状(縦8個、横8個)に合計64個開口され、開口領域の一辺が140mmの矩形平板形状の吸着ステージを装着した。この吸着ステージの開口領域を全て覆うように各評価サンプ
ルを載置し、四方をテープ止めすることによって吸引力の損失を回避し
、その上に非通気性基材を載せた。この状態で、真空吸着装置の真空ポンプを動作させた。この際の真空吸着圧力は−40〜−48kPaの範囲で統一した。
また、評価用の印刷パターンとなるスクリーン製版として、320mm×320mmのメッシュスクリーン中央部78mm角の領域に、0.3mm×1mmの矩
形パターンを0.2mmの間隔で複数画成したものを用いた。このスクリーン製版に導電性成分を含んだインク「HIMEC X7109」(ナミックス株式会社製:商品名)を載せ、ブレード状のスキージにより印刷を実施することで、当該インクを非通気性基材の表面に転写した。尚、この際、クリアランス(非通気性基材を吸着固定し、かつ、スキージを作用させていない状態における非通気性基材の表面とスクリーン版との距離)は1.5mmで統一した。前記スクリーン製版を用いてインクを基材へ印刷する際には、スクリーン印刷機のスキージがスライドする方向と、スクリーン製版におけるインク付与部分の長辺方向が平行を成すように実施した。
【0036】
このよう
な手法で各評価サンプルを用いた印刷を行い、得られたインクパターンを光学顕微鏡「MZ125」(LEICA社製:商品名)で倍率1.6倍にて識別観察した。その結果、
図2〜
図7に示す5つの印刷精度に細分した上で、識別できる場合「○」、識別できない場合「×」、並びに識別できても不適当な状態「△」の3つの水準に当てはめ、評価した。即ち、
「○」:顕微鏡観察上、インクパターンは明瞭に印刷された
「△(網目)」:顕微鏡観察上、インクパターンが、使用メッシュの網目に沿って規則的に歪み、線幅が不均一。
「△(歪み)」:顕微鏡観察上、インクパターンは、不織布層の構成繊維で生じたと考えられる不規則な歪みがあり、線幅が不均一。
「△(吸引口)」:顕微鏡観察上、インクパターンは概ね明瞭に印刷されるが、吸引口に相当する位置にのみ異常な線幅が認められる。
「×」:顕微鏡観察上、インクパターンは隣接したパターンと重なり線幅を識別できない。
とし、その結果は以下の表1に記載した。
【0037】
【表1】
【0038】
(評価結果)
表1並びに
図2に示すとおり、本発明を適用した実施例1〜実施例11の評価サンプルでは、極めて明瞭なインクパターンを印刷付与することができ、水準「○」に分類することができた。これら実施例に係る評価サンプルは、不織布層の主体となる構成繊維の繊維径が0.1μm〜10.5μmの範囲にあり、支持層が70〜400メッシュの範囲内にある。これら実施例の評価サンプルのうちで、実施例3,実施例4、実施例10並びに実施例11では支持層を200メッシュとし、所定の繊維径範囲とすることによって良好な印刷パターンが得られた。これら実施例と同一の支持層で構成した比較例1(
図3参照)並びに比較例2(
図4参照)では、何れも印刷パターンの歪みが認められた。この評価結果の比較から、本発明が適用される不織布層の主たる構成繊維の繊維径には、印刷時の平坦性を期待するため、特に実施例10の不織布Dに選択した10.5μm以下の細さが必要であると考えられた。
また、200メッシュの支持層のみからなる参考例1の評価サンプルでは、
図5に示すとおり、不織布層の繊維径に係る上記条件を満たしていない比較例1並びに比較例2よりも規則的な歪みを生じ、「網目」として結果を分類した。参考例2として示す不織布層のみからなる評価サンプルでは、吸着プレートの吸引口自体のパターンが転写されていた(
図6参照)。これらの結果から、上述した繊維径を所定の細さとした場合であっても明瞭な印刷パターンを得ることはできず、支持層と、所定の繊維径範囲を満たす不織布層との組み合わせによってのみ、実施例1〜11の効果を奏することが理解できる。
さらに、参考例3の結果(
図7参照)からは、吸引口の吸引力が不織布層で分散された後に支持層に及ぶ条件で印刷した場合、薄いフィルムに支持層自体のパターンが転写されている。このことから、実施例2と、同一構成の通気性シートを表裏逆転させた参考例3では、本発明の効果を期待することができなかった。
また、実施例4並びに実施例5の結果から、200ないし400メッシュの比較的目開きが小さい支持層であって、しかも繊維径を0.4μm程度とすることによって、不織布層の目付は5g/m
2でも有効であることが理解できる。
【0039】
(不織布a、不織布a’の調製方法)
次いで、本発明の外延に係る実施例として、各不織布層の帯電防止を図った形態について説明する。また、以下の説明の理解のため、例えば前述した実施例1等に用いた「不織布A」の場合、当該不織布に界面活性剤を添加したサンプルで有ることを明確にするため、不織布名称のアルファベットを小文字に変更し、当該サンプルを不織布aと表記する。
本発明の通気性シートは不織布層と支持層とが積層構成された状態で使用されるが、正確な帯電防止効果の測定を行うため、以下の測定では不織布層のみを被検体として試験実施した。まず、帯電防止は、市販の帯電防止剤であるアニオン系の界面活性剤「ペレックス SS−H」(花王株式会社製:商品名;以下、単に界面活性剤と略記)を用い、2つの手段で添加した。始めに、前述の静電紡糸技術による不織布Aとして説明した実施例6と同一の組成配合に対して、当該界面活性剤の重量固形分がポリマー溶液のポリアクリロニトリルの重量固形分に対し2.0wt%となるように配合したポリマー溶液で紡糸を行い、実施例6とは不織布層への界面活性剤添加の有無のみ異なる実施例12のサンプルを得た。尚、この実施例12は不織布Aのサンプルに対して界面活性剤を所定量添加したものであるが、実質的に目付は同等であった。次いで、第2の界面活性剤の添加手段として、前述した不織布Aを調製後、界面活性剤水溶液を当該不織布に含浸付着させ、0.2MPaの圧力で絞った後、100℃のオーブンで10分間乾燥することで、最終的な界面活性剤の添加量が不織布重量に対して0.25wt%となる実施例13のサンプルを得た。このように界面活性剤を含浸添加したサンプルを不織布a’と表記する。
【0040】
(不織布b、不織布b’の調製方法)
次いで、同様な帯電防止加工を実施例7に施した実施例14(紡糸時添加による不織布b)及び実施例15(含浸添加した不織布b’)を調製した。さらに、不織布Fと不織布Aとを積層構成した実施例11との対比のため、通気性シートとした場合に表面に露出する不織布Aの代わりに不織布a’を備えた実施例16を調製した。
【0041】
(界面活性剤の有無による帯電評価及び印刷評価)
これら界面活性剤の添加の有無による帯電評価サンプルの測定評価手段として、「摩擦帯電圧試験機 EST−7」(カネボウエンジニアリング株式会社製:商品名)を用いた。非通気性基材として、前述の「テトロンフィルムNS」を一辺120mmの正方形に裁断し、試験に供する一辺100mmの不織布層を当該非通気性基材で両面を覆って被検体を調製し、予め、除電ブラシで除電した。この状態で、幅200mm、重さ1.5kgの円柱状の金属棒を沿わせながら被検体の全面を3回、等速で転がすことによって帯電を行った。測定は、被検体から非通気性基材を剥離した後、前述の試験機によって不織布層或いは非通気性基材をそれぞれ測定した。この際、サンプルテーブルと帯電圧センサとの離間距離が50mmとして行った。その測定結果について、下記表2に示す。尚、この表2においては、前述した表1における不織布層の構成、界面活性剤の有無(添加手段と最終的な固形分重量とにより表記)、帯電圧の測定結果のみを記載する。
また、実施例12〜16の各不織布と、先述の支持層(金属メッシュ)とを組み合わせて、通気性シートを作製し、先述の評価手段に基づいて、非通気性基材への印刷評価を行った。
【0042】
【表2】
【0043】
(評価結果)
この表2からも理解できるように、界面活性剤を添加した実施例12〜実施例16の評価サンプル5種では、不織布層の帯電圧が0kVを示し、各々の比較対象となる実施例6、実施例7に較べて、明らかな帯電抑制が確認された。また、非通気性基材での帯電測定結果は表2の表記を省略するが、実際の使用時に非通気性基材と接触する上記各不織布層の帯電圧が0kVの場合、当該基材側でも実質的に0kVであった。さらに、一連のサンプルにおいて、界面活性剤の紡糸時若しくは含浸乾燥後の添加付着量を5wt%にまで増やした場合であっても、帯電防止効果は上記試験結果と同等であった。加えて、湿式法で調製した不織布D(実施例9相当)で試験を行ったところ、不織布層の帯電圧は実質的に0kVであった。この不織布Dの結果から、湿式法で繊維分散に用いられる界面活性剤が帯電防止に効果があるためと考えられる。
さらに、実施例12〜実施例16のいずれに関しても、
図2に示す印刷パターン、すなわち、顕微鏡観察上、明瞭なインクパターンが印刷された。