特許第6465579号(P6465579)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ラム リサーチ コーポレーションの特許一覧

特許6465579チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用
<>
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000002
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000003
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000004
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000005
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000006
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000007
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000008
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000009
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000010
  • 特許6465579-チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6465579
(24)【登録日】2019年1月18日
(45)【発行日】2019年2月6日
(54)【発明の名称】チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用
(51)【国際特許分類】
   H01L 21/3065 20060101AFI20190128BHJP
   H05H 1/46 20060101ALI20190128BHJP
【FI】
   H01L21/302 101G
   H05H1/46 M
   H05H1/46 R
【請求項の数】23
【外国語出願】
【全頁数】35
(21)【出願番号】特願2014-147263(P2014-147263)
(22)【出願日】2014年7月18日
(65)【公開番号】特開2015-29093(P2015-29093A)
(43)【公開日】2015年2月12日
【審査請求日】2017年7月3日
(31)【優先権主張番号】61/858,985
(32)【優先日】2013年7月26日
(33)【優先権主張国】US
(31)【優先権主張番号】14/243,705
(32)【優先日】2014年4月2日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】特許業務法人明成国際特許事務所
(72)【発明者】
【氏名】ジョン・シー.・バルコア・ジュニア
(72)【発明者】
【氏名】ハーミート・シン
(72)【発明者】
【氏名】ヘンリー・ポボルニー
【審査官】 鈴木 聡一郎
(56)【参考文献】
【文献】 特開平10−125660(JP,A)
【文献】 特開2010−021431(JP,A)
【文献】 特開2005−333075(JP,A)
【文献】 特表2008−515197(JP,A)
【文献】 特開2006−019442(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/302
H01L 21/3065
H01L 21/461
H05H 1/00−1/54
(57)【特許請求の範囲】
【請求項1】
モデルエッチング速度に基づいて、エッチング速度のチャンバ間整合を実施するための方法であって、
第1のプラズマシステムの高周波(RF)発生器の出力において測定される電圧及び電流を受信することと、
前記電圧及び電流、及び電力に基づいて、第1のモデルエッチング速度を算出することであって、前記電力は、前記電圧及び電流、及び前記電圧と前記電流との間の位相に基づいて算出される、ことと、
第2のプラズマシステムのRF発生器の出力において測定される電圧及び電流を受信することと、
前記第2のプラズマシステムの前記RF発生器の前記出力における前記電圧及び電流に基づいて、第2のモデルエッチング速度を決定することと、
前記第2のモデルエッチング速度を前記第1のモデルエッチング速度と比較することと、
前記第2のモデルエッチング速度が前記第1のモデルエッチング速度に一致しないことが決定された際に、前記第1のプラズマシステムに関係付けられた前記第1のモデルエッチング速度を実現するために、前記第2のプラズマシステムの前記RF発生器の前記出力における電力を調整することと、
を備え、
プロセッサによって実行される方法。
【請求項2】
請求項1に記載の方法であって、更に、
前記第1のプラズマシステムに関係付けられた前記第1のモデルエッチング速度を実現するために、前記第2のプラズマシステムの前記RF発生器の前記出力における前記電圧又は電流を調整することを備える方法。
【請求項3】
請求項1に記載の方法であって、
前記第1のモデルエッチング速度を算出するために使用される前記電圧及び電流は、電圧振幅、及び電流振幅、及び前記電圧振幅と前記電流振幅との間の位相を含み、前記第1のモデルエッチング速度を算出するために使用される前記電力は、電力振幅を含み、前記電力振幅は、前記電圧振幅と、前記電流振幅と、前記位相との積として算出される、方法。
【請求項4】
請求項1に記載の方法であって、更に、
前記第1のプラズマシステムの前記RF発生器の前記出力において測定される周波数を受信することと、
前記周波数に基づいて、第3のモデルエッチング速度を算出することと、
前記第2のプラズマシステムの前記RF発生器の前記出力において測定される周波数を受信することと、
前記第2のプラズマシステムの前記RF発生器の前記出力において測定される前記周波数に基づいて、第4のモデルエッチング速度を算出することと、
前記第3のモデルエッチング速度を前記第4のモデルエッチング速度と比較することと、
前記第1のプラズマシステムに関係付けられた前記第3のモデルエッチング速度を実現するために、前記第2のプラズマシステムの前記RF発生器の前記出力における前記電力を調整することと、
を備える方法。
【請求項5】
請求項4に記載の方法であって、更に、
前記第1のプラズマシステムに関係付けられた前記第3のモデルエッチング速度を実現するために、前記第2のプラズマシステムの前記RF発生器の前記出力における前記周波数を調整することを備える方法。
【請求項6】
請求項4に記載の方法であって、
前記第1のプラズマシステムの前記RF発生器の前記出力において測定される前記電圧及び電流、及び前記周波数を受信することは、前記第1のプラズマシステムのプラズマチャンバ内でダミーウエハを使用して実施される、方法。
【請求項7】
請求項1に記載の方法であって、
前記第1のプラズマシステムの前記RF発生器は、ケーブルを通じてインピーダンス整合回路に接続され、前記インピーダンス整合回路は、RF伝送路を通じてプラズマチャンバに接続される、方法。
【請求項8】
請求項1に記載の方法であって、
前記第1のプラズマシステムの前記RF発生器の前記出力は、インピーダンス整合回路の入力に接続され、前記出力は、前記インピーダンス整合回路を通じてプラズマチャンバにRF信号を送ることを促すために使用される、方法。
【請求項9】
請求項1に記載の方法であって、
前記第2のプラズマシステムの前記RF発生器の前記出力における前記電力を調整することは、前記第2のプラズマシステムが半導体ウエハをエッチングするために使用されるときに実施される、方法。
【請求項10】
請求項1に記載の方法であって、
前記電力を調整することは、前記第2のプラズマシステムの前記RF発生器の前記出力において測定される前記電力を引き上げる又は引き下げることを含む、方法。
【請求項11】
請求項1に記載の方法であって、
前記第1のプラズマシステムは、前記第2のプラズマシステムのツールと機能的に同一であって前記第2のプラズマシステムの前記ツールと異なる識別情報を有するツールを含む、方法。
【請求項12】
請求項1に記載の方法であって、
前記第1のプラズマシステムは、前記第2のプラズマシステムのツールと構造的に同一であって前記第2のプラズマシステムの前記ツールと異なる識別情報を有するツールを含む、方法。
【請求項13】
請求項1に記載の方法であって、
前記第1のプラズマシステムは、前記第2のプラズマシステムのツールと構造的に及び機能的に同一であって前記第2のプラズマシステムの前記ツールと異なる識別情報を有するツールを含む、方法。
【請求項14】
請求項1に記載の方法であって、
前記第1のモデルエッチング速度を算出することは、テイラー級数である和を算出することを含む、方法。
【請求項15】
モデルエッチング速度に基づいて、エッチング速度のチャンバ内整合を実施するための方法であって、
プラズマシステムの高周波(RF)発生器の出力において第1の時点において測定される電圧及び電流を受信することと、
前記電圧、前記電流、及び電力に基づいて、第1のモデルエッチング速度を算出することであって、前記電力は、前記電圧と前記電流との間の位相に基づいて算出される、ことと、
前記RF発生器の前記出力において第2の時点において測定される電圧及び電流を受信することと、
前記第2の時点で測定される前記電圧、前記第2の時点で測定される前記電流、及び電力に基づいて、第2のモデルエッチング速度を算出することであって、前記電力は、前記第2の時点において測定される前記電圧と前記電流との間の位相に基づいて算出される、ことと、
前記第1のモデルエッチング速度を前記第2のモデルエッチング速度と比較することと、
前記第2のモデルエッチング速度が前記第1のモデルエッチング速度に一致しないことが決定された際に、前記第1のモデルエッチング速度を実現するために、前記RF発生器の前記出力における電力を調整することと、
を備え、
プロセッサによって実行される方法。
【請求項16】
請求項15に記載の方法であって、更に、
前記RF発生器の前記出力において前記第1の時点において測定される周波数を受信することと、
前記周波数に基づいて、第3のモデルエッチング速度を算出することと、
前記RF発生器の前記出力において前記第2の時点において測定される周波数を受信することと、
前記第2の時点において測定される前記周波数に基づいて、第4のモデルエッチング速度を算出することと、
前記第3のモデルエッチング速度を前記第4のモデルエッチング速度と比較することと、
前記第3のモデルエッチング速度が前記第4のモデルエッチング速度に一致しないことが決定された際に、前記第3のモデルエッチング速度を実現するために、前記RF発生器の前記出力における前記電力を調整することと、
を備える方法。
【請求項17】
請求項16に記載の方法であって、更に、
前記第3のモデルエッチング速度を実現するために、前記RF発生器の前記出力における前記電圧又は電流又は周波数を調整することを備える方法。
【請求項18】
請求項16に記載の方法であって、
前記RF発生器の前記出力において前記第1の時点において測定される前記電圧、前記電流、及び前記周波数を受信することは、前記プラズマシステムのプラズマチャンバ内でダミーウエハを使用して実施される、方法。
【請求項19】
請求項15に記載の方法であって、
前記第2の時点は、前記第1の時点の後に起きる、方法。
【請求項20】
請求項15に記載の方法であって、
前記第1のモデルエッチング速度を算出するために使用される前記電圧及び電流は、電圧振幅、及び電流振幅、及び前記電圧振幅と前記電流振幅との間の位相を含み、前記第1のモデルエッチング速度を算出するために使用される前記電力は、電力振幅を含む、方法。
【請求項21】
請求項15に記載の方法であって、
前記RF発生器の前記出力における前記電力を調整することは、前記プラズマシステムが半導体ウエハをエッチングするために使用されるときに実施される、方法。
【請求項22】
第1のプラズマシステムであって、
RF信号を生成するための高周波(RF)発生器であって、前記RF信号の送出を促すための出力を含むRF発生器と、
前記RF信号の電圧及び電流を測定するための、前記出力に接続された複素インピーダンスセンサと、
プラズマを発生するプラズマチャンバと、
RF信号を修正して修正RF信号を生成するための、ケーブルを通じて前記RF発生器に及びRF伝送路を通じて前記プラズマチャンバに接続されたインピーダンス整合回路と、
を備え、
前記プラズマチャンバは、前記インピーダンス整合回路から前記修正RF信号が受信されたときに前記プラズマを発生させるように構成されており、
前記第1のプラズマシステムは、更に、
前記複素インピーダンスセンサに接続されたプロセッサであって、
前記RF発生器の前記出力において測定される前記電圧及び電流を受信するためと、
前記電圧及び電流、及び電力に基づいて、第1のモデルエッチング速度を算出するためであって、前記電力は、前記電圧及び電流、及び前記電圧と前記電流との間の位相に基づいて算出される、ためと、
第2のプラズマシステムのRF発生器の出力において測定される電圧及び電流を受信することと、
前記第2のプラズマシステムの前記RF発生器の前記出力における前記電圧及び電流に基づいて、第2のモデルエッチング速度を決定するためと、
前記第2のモデルエッチング速度を前記第1のモデルエッチング速度と比較するためと、
前記第2のモデルエッチング速度が前記第1のモデルエッチング速度に一致しないことが決定された際に、前記第1のモデルエッチング速度を実現するために、前記第2のプラズマシステムの前記RF発生器の前記出力における電力を調整するためと、
である、プロセッサと、
を備える第1のプラズマシステム。
【請求項23】
請求項22に記載の第1のプラズマシステムであって、
前記プロセッサは、更に、前記第1のモデルエッチング速度を実現するために、前記第2のプラズマシステムの前記RF発生器の前記出力における前記電圧又は前記電流を調整するように構成される、第1のプラズマシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本実施形態は、チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及びその使用に関する。
【背景技術】
【0002】
プラズマチャンバは、例えば、ウエハを洗浄する、ウエハ上に材料を堆積させるなどの多岐にわたるプロセスに使用される。これらのプロセスを実施するために、プラズマが使用される。例えば、プラズマチャンバに送ってプラズマチャンバ内でプラズマを発生させるためのRF信号が、高周波(RF)発生器によって生成される。RF発生器は、2メガヘルツ(MHz)RF発生器、27MHzRF発生器、又は60MHzRF発生器であってよい。
【0003】
別のプロセスの1つは、ウエハをエッチングすることである。しかしながら、プラズマチャンバ内でウエハがエッチングされるときは、ウエハをエッチングする速度がプラズマチャンバ内で時間とともに変動する。例えば、ウエハをエッチングするためにプラズマチャンバにRF電力を供給するために27MHzRF発生器が使用されるときは、0.85%のエッチング速度変化がある。別の例として、ウエハをエッチングするためにプラズマチャンバにRF電力を供給するために60MHzRF発生器が使用されるときは、1.08%のエッチング速度変化がある。
【0004】
更に、複数のプラズマチャンバ内でウエハがエッチングされるときは、ウエハに適用されるエッチング速度が異なるだろう。例えば、ウエハをエッチングするためにプラズマチャンバにRF電力を供給するために27MHzRF発生器が使用されるときは、チャンバ間で3.3%のエッチング速度のばらつきがあるだろう。別の例として、ウエハをエッチングするためにプラズマチャンバにRF電力を供給するために60MHzRF発生器が使用されるときは、チャンバ間で4.8%のエッチング速度のばらつきがあるだろう。
【0005】
本開示で説明される実施形態が生み出されたのは、このような状況においてである。
【発明の概要】
【0006】
本開示の実施形態は、チャンバ内整合及びチャンバ間整合のための、複数パラメータを使用したエッチング速度モデル化及び該モデルの使用のための、装置、方法、並びにコンピュータプログラムを提供する。本実施形態は、例えば、プロセス、装置、システム、デバイス、又はコンピュータ読み取り可能媒体上の方法などの数々の形態で実現可能であることが、理解されるべきである。
【0007】
一部の実施形態では、エッチング速度は、エッチング速度のチャンバ間整合及び/又はチャンバ内整合を促すためにモデル化される。例えば、エッチング速度は、係数、及び電力、及び/又は電圧、及び/又は電流、及び/又は周波数の関数として決定される。決定されたエッチング速度は、1つのプラズマシステム内で又は複数のプラズマシステムに跨って一定のエッチング速度を維持するために使用される。
【0008】
様々な実施形態において、モデルエッチング速度に基づいてエッチング速度のチャンバ間整合を実施するための方法が説明される。方法は、第1のプラズマシステムの高周波(RF)発生器の出力において測定される電圧及び電流を受信することと、これらの電圧及び電流、及び電力に基づいて、第1のモデルエッチング速度を算出することとを含む。電力は、電圧及び電流、及び電圧と電流との間の位相に基づいて算出される。このモデルエッチング速度は、第1のプラズマシステムに関係付けられる。方法は、更に、第2のプラズマシステムのRF発生器の出力において測定される電圧及び電流を受信することと、第2のプラズマシステムのRF発生器の出力におけるこれらの電圧及び電流に基づいて、第2のモデルエッチング速度を決定すること、第2のモデルエッチング速度を第1のモデルエッチング速度と比較することとを含む。方法は、第2のモデルエッチング速度が第1のモデルエッチング速度に一致しないことが決定された際に、第1のプラズマシステムに関係付けられた第1のモデルエッチング速度を実現するために、第2のプラズマシステムのRF発生器の出力における電力を調整することを含む。方法は、プロセッサによって実行される。
【0009】
幾つかの実施形態において、モデルエッチング速度に基づいてエッチング速度のチャンバ内整合を実施するための方法が説明される。方法は、プラズマシステムのRF発生器の出力において第1の時点において測定される電圧及び電流を受信することと、これらの電圧及び電流、及び電力に基づいて、第1のモデルエッチング速度を算出することとを含む。電力は、電圧と電流との間の位相に基づいて算出される。方法は、更に、RF発生器の出力において第2の時点において測定される電圧及び電流を受信することと、これらの電圧及び電流、及び電力に基づいて、第2のモデルエッチング速度を算出することとを含む。電力は、第2の時点において測定される電圧と電流との間の位相に基づいて算出される。方法は、第1のモデルエッチング速度を第2のモデルエッチング速度と比較することと、第2のモデルエッチング速度が第1のモデルエッチング速度に一致しないことが決定された際に、第1のモデルエッチング速度を実現するために、RF発生器の出力における電力を調整することとを含む。方法は、プロセッサによって実行される。
【0010】
一部の実施形態では、第1のプラズマシステムが説明される。第1のプラズマシステムは、RF信号を生成するためのRF発生器を含む。該RF発生器は、RF信号の送出を促すための出力を含む。第1のプラズマシステムは、更に、RF信号の電圧及び電流を測定するための、上記出力に接続された複素インピーダンスセンサと、RF信号を修正して修正RF信号を生成するための、ケーブルを通じてRF発生器に及びRF伝送路を通じてプラズマチャンバに接続されたインピーダンス整合回路とを含む。第1のプラズマシステムは、インピーダンス整合回路から修正RF信号が受信されたときにプラズマを発生させるためのプラズマチャンバを含む。第1のプラズマシステムは、RF発生器の出力において測定される電圧及び電流を受信するための、複素インピーダンスセンサに接続されたプロセッサを含む。該プロセッサは、電圧及び電流、及び電力に基づいて第1のモデルエッチング速度を算出するために使用される。電力は、電圧及び電流、及び電圧と電流との間の位相に基づいて算出される。プロセッサは、第2のプラズマシステムのRF発生器の出力において測定される電圧及び電流を受信することと、第2のプラズマシステムのRF発生器の出力における電圧及び電流に基づいて第2のモデルエッチング速度を決定することと、第2のモデルエッチング速度を第1のモデルエッチング速度と比較することと、のために使用される。プロセッサは、第2のモデルエッチング速度が第1のモデルエッチング速度に一致しないことが決定された際に、第1のモデルエッチング速度を実現するために、第1のプラズマシステムのRF発生器の出力における電力を調整することのために使用される。
【0011】
上述された実施形態の幾つかの利点として、エッチング速度のモデルを提供することが挙げられる。例えば、エッチング速度モデルは、係数、及び電力、及び/又は電圧、及び/又は電流、及び/又は周波数の関数として決定される。モデルは、実現可能なものであり、プロセッサの計算所要時間が短く、例えばプロセッサ及び/又はメモリデバイスの数などのリソース使用量が少なくてすむ。更に、エッチング速度を測定してチャンバ内又はチャンバ間におけるエッチング速度の均一性を実現するために、エッチング速度測定機器(ERMD)を使用する必要が無い。また、チャンバ内又はチャンバ間におけるエッチング速度の均一性は、ウエハをエッチングするためにRF発生器によってプラズマシステムにRF信号が供給される時間に関係なくエッチング速度の確実性を保証する。
【0012】
添付の図面に関連付けてなされる以下の詳細な説明から、その他の態様が明らかになる。
【図面の簡単な説明】
【0013】
本実施形態は、添付の図面に関連付けてなされる以下の詳細な説明を参照にすることによって、最も良く理解されるだろう。
【0014】
図1】本開示で説明される幾つかの実施形態にしたがった、モデルエッチング速度が電力、周波数、電圧、及び電流の関数であることを示すために使用される図である。
【0015】
図2A】本開示で説明される幾つかの実施形態にしたがった、モデルエッチング速度を決定するために使用されるプラズマシステムの一実施形態を示した図である。
【0016】
図2B】本開示で説明される様々な実施形態にしたがった、図2Aのプラズマシステムのツールと同じ又は類似のタイプのツールを含むプラズマシステムの一実施形態を示した図である。
【0017】
図3】本開示で説明される幾つかの実施形態にしたがった、高周波(RF)伝送路の構造の一実施形態を示した図である。
【0018】
図4A】本開示で説明される幾つかの実施形態にしたがった、エッチング速度を決定するために使用される電圧及び電流の係数を決定するためのプラズマシステムの一実施形態を示したブロック図である。
【0019】
図4B】本開示で説明される様々な実施形態にしたがった、エッチング速度を決定するために使用される電圧及び電流の係数を決定するための別のプラズマシステムの一実施形態を示したブロック図である。
【0020】
図5】本開示で説明される幾つかの実施形態にしたがった、zメガヘルツ(MHz)RF発生器が稼働しておりxMHzRF発生器及びyMHzRF発生器が稼働していないときにおける、エッチング速度モデルの平均値対エッチング速度測定機器(ERMD)を使用して決定された測定エッチング速度の平均値のグラフの一実施形態である。
【0021】
図6】本開示で説明される幾つかの実施形態にしたがった、zMHzRF発生器が稼働しておりxMHzRF発生器及びyMHzRF発生器が稼働していないときにおける、エッチング速度モデルの平均値の誤差対平均エッチング速度のグラフの一実施形態である。
【0022】
図7A】本開示で説明される幾つかの実施形態にしたがった、27メガヘルツRF発生器が稼働しているときにおける、測定エッチング速度とモデル化エッチング速度との間の概ね線形の関係を示すための測定エッチング速度対モデル化エッチング速度のグラフの実施形態である。
【0023】
図7B】本開示で説明される幾つかの実施形態にしたがった、60メガヘルツRF発生器が稼働中であるときにおける、測定エッチング速度とモデル化エッチング速度との間の概ね線形の関係を示すための測定エッチング速度対モデル化エッチング速度のグラフの実施形態である。
【発明を実施するための形態】
【0024】
以下の実施形態は、電力制御モードを使用したチャンバ整合のためのシステム及び方法を説明する。本実施形態は、これらの具体的詳細の一部又は全部を伴わずとも実施されうることが明らかである。また、本実施形態を不必要に不明瞭にしないために、周知のプロセス動作の詳しい説明は省略される。
【0025】
図1は、モデルエッチング速度が電圧、及び/又は電流、及び/又は電力、及び/又は周波数の関数であることを示すために使用される図である。一部の実施形態では、エッチング速度は、毎分あたりのナノメートル数を単位として測定される。電圧は、高周波(RF)発生器の出力において測定される。電流は、RF発生器の出力において測定され、電力は、RF発生器の出力において測定され、周波数は、RF発生器の出力において測定される。
【0026】
モデルエッチング速度は、電圧、電流、電力、及び周波数のうちの1つ以上が変更されたときに変化する。
【0027】
一部の実施形態では、電圧は、電圧振幅であり、電流は、電流振幅であり、電力は、電力振幅である。振幅の例として、ゼロ・トゥー・ピーク振幅、ピーク・トゥー・ピーク振幅、及び二乗平均平方根(RMS)振幅が挙げられる。
【0028】
様々な実施形態において、電力は、送達電力であり、これは、RF発生器によってプラズマチャンバに供給される電力と、プラズマチャンバによってRF発生器に向かって反射される電力との差である。一部の実施形態では、電力は、供給電力又は反射電力である。
【0029】
図2Aは、モデルエッチング速度を決定するために使用されるプラズマシステム100の一実施形態の図である。プラズマシステム100は、zメガヘルツ(MHz)高周波(RF)発生器と、yMHzRF発生器と、zMHzRF発生器とを含む。xMHzの例として、2MHz、27MHz、及び60MHzが挙げられる。yMHzの例として、2MHz、27MHz、及び60MHzが挙げられる。zMHzの例として、2MHz、27MHz、及び60MHzが挙げられる。
【0030】
一部の実施形態では、xMHzは、yMHz及びzMHzと異なり、yMHzは、zMHzと異なる。例えば、xMHzが2MHzであるときは、yMHzは27MHzであり、zMHzは60MHzである。
【0031】
一部の実施形態では、RF発生器の出力に接続された複素インピーダンスセンサが一定レベルの精度に較正されることが、留意されるべきである。例えば、xMHzRF発生器の出力102に接続された複素インピーダンスセンサ119は、出力102において測定がなされるたびに、同じ量の電圧、同じ量の電流、及び/又は同じ量の位相を測定する。別の例として、出力102において測定がなされるたびに、複素インピーダンスセンサ119は、出力102における電圧測定閾値内の電圧を測定し、及び/又は出力102における電流測定閾値内の電流を出力102において測定し、及び/又は出力102における位相測定閾値内の位相を出力102において測定する。
【0032】
一部の実施形態では、出力108に別の複素インピーダンスセンサ(不図示)が接続され、出力112に更に別の複素インピーダンスセンサ(不図示)が接続される。
【0033】
多岐にわたる実施形態では、位相が電圧と電流との間の位相であることが、留意されるべきである。例えば、mをゼロよりも大きい整数として、電圧がVmボルトであり、電流がImアンペアであるときに、電圧と電流との間の位相はφm度である。
【0034】
様々な実施形態において、較正済みの複素インピーダンスセンサは、例えば米国標準技術局(NIST)標準などの既定の標準にしたがっている。例えば、RF発生器の出力に接続された使用される較正済みの複素インピーダンスセンサは、NISTトレーサブルである。
【0035】
幾つかの実施形態では、例えば2つや4つなどの任意の数のRF発生器がプラズマシステム100内で使用される。
【0036】
出力102には、RFケーブル106を通じてインピーダンス整合回路104が接続される。同様に、インピーダンス整合回路104は、RFケーブル110を通じてyMHzRF発生器の出力108に接続され、RFケーブル114を通じてzMHzRF発生器の出力112に接続される。インピーダンス整合回路104は、一方の側でインピーダンス整合回路104に接続された負荷のインピーダンスを、他方の側でインピーダンス整合回路104に接続されたソースのインピーダンスに一致させる。例えば、インピーダンス整合回路104は、RF伝送路116及びプラズマチャンバ118のインピーダンスを、xMHzRF発生器、yMHzRF発生器、zMHzRF発生器、RFケーブル106、RFケーブル110、及びRFケーブル114のインピーダンスに一致させる。
【0037】
プラズマチャンバ118は、RF伝送路116を通じてインピーダンス整合回路104に接続される。プラズマチャンバ118は、チャック120と、上部電極122と、例えば上部電極122を取り囲む上部誘電体リング、上部誘電体リングを取り囲む上部電極延長部、チャック120の下部電極を取り囲む下部誘電体リング、下部誘電体リングを取り囲む下部電極延長部、上部プラズマ排除ゾーン(PEZ)リング、下部PEZリングなどの、その他の部分(不図示)とを含む。上部電極122は、チャック120の向かいに相対して位置付けられる。チャック120の上面126上で、ダミーウエハ124が支えられる。下部電極及び上部電極122は、それぞれ、例えばアルミニウム、アルミニウム合金、銅などの金属で作成される。チャック120は、静電チャック(ESC)又は磁気チャックであってよい。
【0038】
一部の実施形態では、ダミーウエハ124は、エッチング速度を決定するために使用される。例えば、ダミーウエハ124は、半導体ではない材料で作成される。半導体ではない材料の例として、ガラス、ソーダ石灰、ホウケイ酸塩、石英、セラミック、カーボンファイバなどが挙げられる。別の例として、ダミーウエハ124は、半導体ウエハよりも安価である。
【0039】
一部の実施形態では、ダミーウエハ124の代わりに半導体ウエハが使用される。生産時には、半導体ウエハに対し、例えば化学気相成長、洗浄、成膜、スパッタリング、エッチング、イオン注入、レジスト剥離などの様々なプロセスが実施される。半導体ウエハ上には、例えば特定用途向け集積回路(ASIC)やプログラマブルロジックデバイス(PLD)などが成長され、これらの集積回路は、例えば携帯電話、タブレット、スマートフォン、コンピュータ、ラップトップ型コンピュータ、ネットワーク機器などの多岐にわたる電子機器に使用される。
【0040】
RFケーブル106、110、114、インピーダンス整合回路104、RF伝送路116、及びプラズマチャンバ118は、プラズマシステム100のツール133の部分である。
【0041】
一部の実施形態では、上部電極122は、中央ガス送り部(不図示)に結合された、例えば穴などの1つ以上のガス入口を含む。中央ガス送り部は、ガス貯蔵器(不図示)から1種以上のプロセスガスを受け取る。プロセスガスの一例として、O2などの酸素含有ガスが挙げられる。プロセスガスのその他の例として、例えば四フッ化メタン(CF4)、六フッ化硫黄(SF6)、六フッ化エタン(C26)などのフッ素含有ガスが挙げられる。上部電極122は、接地される。チャック120は、インピーダンス整合回路104を通じてxMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器に接続される。
【0042】
上部電極122とチャック120との間にプロセスガスが供給され、xMHzRF発生器、及び/又はyMHzRF発生器、及び/又はzMHzRF発生器がインピーダンス整合回路104及びRF伝送路116を通じてチャック120にRF信号を供給するときに、プロセスガスは、プラズマチャンバ118内で励起されてプラズマを発生させる。
【0043】
xMHzRF発生器がRF信号を生成し、そのRF信号を、ダミーウエハ124が上に置かれているチャック120に出力102、RFケーブル106、インピーダンス整合回路104、及びRF伝送路116を通じて提供するときに、複素インピーダンスセンサ119は、出力102における複素電圧・電流を測定する。一部の実施形態では、複素電圧・電流は、電圧振幅、電流振幅、及び電圧振幅と電流振幅との間の位相を含む。複素インピーダンスセンサ119によって測定される複素電圧・電流は、ホストシステム130のメモリデバイス132に記憶させるために、ケーブル127を通じてホストシステム130のプロセッサ128に提供される。プロセッサ128は、ケーブル127を通じて複素インピーダンスセンサ119に接続される。
【0044】
本明細書で言うところのプロセッサとは、中央演算処理装置(CPU)、マイクロプロセッサ、特定用途向け集積回路(ASIC)、プログラマブルロジックデバイス(PLD)などであってよい。メモリデバイスの例として、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、又はそれらの組み合わせが挙げられる。メモリデバイスは、フラッシュメモリ、ストレージディスクの冗長アレイ(RAID)、ハードディスクなどであってよい。
【0045】
同様に、出力108及び出力112に接続された複素インピーダンスセンサ(不図示)もまた、メモリデバイス132に記憶させるために、対応するケーブルを通じて複素電圧・電流の測定値をプロセッサ128に提供する。
【0046】
プロセッサ128は、複素インピーダンスセンサ119から受信された、時刻t1における複素電圧・電流の測定値に基づいて、プラズマシステム100に関係付けられるエッチング速度を算出する。複素電圧・電流は、xMHzRF発生器162が出力102を通じてプラズマチャンバ118に電力を供給するときに生成されて受信される。プロセッサ128は、測定される複素電圧・電流に基づいて、モデルエッチング速度を生成する。例えば、プロセッサ128は、プラズマシステム100に関係付けられるモデルエッチング速度を決定するために、幾つかの項の和を算出する。各項は、係数と、時刻t1において測定される電圧の関数との積である、又は係数と、時刻t1において測定される電流の関数との積である、又は係数と、時刻t1において測定される電圧の関数と、時刻t1において測定される電流の関数との積である。一例として、プロセッサ128は、モデルエッチング速度ER1001を、一次多項式であるC111+C121に等しいものとして算出し、ここで、C111及びC121は、それぞれが項であり、C11及びC12は、係数であり、V1は、時刻t1において複素インピーダンスセンサ119によって測定される電圧振幅であり、I1は、時刻t1において複素インピーダンスセンサ119によって測定される電流振幅である。別の例としては、エッチング速度ER1002が、二次多項式であるC211+C221+C2312+C2411+C2512に等しいものとして算出され、ここで、C211、C221、C2312、C2411、及びC2512は、それぞれが項であり、C21、C22、C23、C24、及びC25は、係数であり、I12は、電流I1の、べき数が2の関数であり、V12は、電圧V1の、べき数が2の関数である。更に別の例としては、エッチング速度ER1003が、三次多項式であるC311+C321+C3312+C3411+C3512+C3613+C37121+C38112+C3913に等しいものとして算出され、ここで、C311、C321、C3312、C3411、C3512、C3613、C37121、C38112、及びC3913は、それぞれが項であり、C31、C32、C33、C34、C35、C36、C37、C38、及びC39は、係数であり、I13は、電流I1の、べき数が3の関数であり、V13は、電圧V1の、べき数が3の関数である。別の例としては、エッチング速度ER1004が、四次多項式であるC411+C421+C4312+C4411+C4512+C4613+C47121+C48112+C4913+C5014+C51131+C521212+C531113+C5414に等しいものとして算出され、ここで、C411、C421、C4312、C4411、C4512、C4613、C47121、C48112、C4913、C5014、C51131、C521212、C531113、及びC5414は、それぞれが項であり、C41、C42、C43、C44、C45、C46、C47、C48、C49、C50、C51、C52、C53、及びC54は、係数であり、I14は、電流I1の、べき数が4の関数であり、V14は、電圧V1の、べき数が4の関数である。
【0047】
「m」をゼロよりも大きい整数として、Vmが例えばゼロ・トゥー・ピーク電圧、ピーク・トゥー・ピーク電圧、及び二乗平均平方根(RMS)電圧などの電圧振幅であること、Imが例えばゼロ・トゥー・ピーク電流、ピーク・トゥー・ピーク電流、及びRMS電流などの電流振幅であることが、留意されるべきである。一部の実施形態では、一次多項式、二次多項式、三次多項式、及び四次多項式がそれぞれテイラー級数展開の一部分であることが、留意されるべきである。一例として、プロセッサ128は、nを整数として、エッチング速度ER100nを、電圧V1の関数と、電流I1の関数と、係数とのn次多項式でもあるテイラー級数展開に等しいものとして算出する。例示すると、プロセッサ128は、nをゼロよりも大きい整数として、エッチング速度ER100nを、一定の値に収束するn次多項式として算出する。
【0048】
更に別の例として、エッチング速度ER1005は、C551e1+C561e2+C571として決定され、ここで、C55、C56、及びC57は、係数であり、e1及びe2は、指数であり、P1は、電圧振幅V1と、電流振幅I1と、電流振幅I1と電圧振幅V1との間の位相であるφ1のコサインとの積である。電力P1は、プロセッサ128によって算出される。別の例として、エッチング速度ER1006は、C551e1+C561e2+C571+C581として決定され、ここで、C58は、係数であり、F1は、周波数である。別の例として、エッチング速度ER1007は、C551e1+C561e2+C571e3+C581e4として決定され、ここで、e3及びe4は、指数である。指数e1の例には、1以上で1.4までの数字がある。更に、指数e2の例には、0.5以上で1までの数字がある。
【0049】
別の例として、エッチング速度ER1008は、C5912+C6012+C611+C62111+C6312+C6411+C6511+C66121+C67121として決定され、ここで、C59、C60、C61、C62、C63、C64、C65、C66、及びC67は、係数である。別の例として、エッチング速度ER1009は、C6811+C691+C7012+C7111+C72112+C73112+C74113+C75113+C76111+C771211+C7812+C7912として決定され、ここで、C68、C69、C70、C71、C72、C73、C74、C75、C76、C77、C78、及びC79は、係数である。様々な実施形態において、エッチング速度は、電圧の非線形関数である、電流の線形関数である、及び送達電力の非線形関数である。
【0050】
一部の実施形態では、複素インピーダンスセンサは、RF発生器の出力におけるRF信号の周波数F1を時刻t1において測定する周波数センサを含む。測定された周波数F1は、エッチング速度モデルを決定するために、ケーブルを通じてプロセッサ128に提供される。
【0051】
様々な実施形態において、周波数センサは、複素インピーダンスセンサとは別個であり、複素インピーダンスセンサが接続されているRF発生器の出力に接続される。
【0052】
幾つかの実施形態では、複素インピーダンスセンサという用語と、複素電圧・電流センサという用語とが、区別なく使用される。
【0053】
様々な実施形態において、エッチング速度モデルにおける項の数は、1から例えば100、1000、10000などの大きな数までの幅がある。例えば、エッチング速度ER1001は、2つの項を含み、エッチング速度ER1002は、5つの項を含み、エッチング速度ER1003は、9つの項を含み、エッチング速度ER1004は、14の項を含む。
【0054】
幾つかの実施形態において、プラズマシステムに関係付けられるエッチング速度モデルを決定するために使用される項の数は、プロセッサ128に接続された例えばマウス、キーボード、タッチペン、タッチ画面などの入力機器(不図示)を通じたユーザによる入力として提供される。様々な実施形態において、プロセッサ128は、エッチング速度モデルの値の収束を実現するために、プラズマシステムに関係付けられるエッチング速度モデルを決定するために使用される項の数を決定する。例えば、プロセッサ128は、プラズマシステムに関係付けられるエッチング速度モデルにおいて収束が得られるまで、該エッチング速度モデルを決定するために使用される項を追加し続ける。
【0055】
様々な実施形態において、プロセッサ128は、プロセッサ128が係数を決定するのと同じやり方で係数を決定する別のプロセッサから、例えばC11、C12、C21、C22、C23、C24、C25、C31、C32、C33、C34、C35、C36、C37、C38、C39、C41、C42、C43、C44、C45、C46、C47、C48、C49、C50、C51、C52、C53、C54、C55、C56、C57、C58、C59、C60、C61、C62、C63、C64、C65、C66、C67、C68、C69、C70、C71、C72、C73、C74、C75、C76、C77、C78、C79などの係数を受信する。係数を決定するやり方は、以下で説明される。
【0056】
一部の実施形態では、ツール133は、幾つかのプラズマシステムの幾つかのツールのうちで、高めの歩留まりを提供するツールである。これら幾つかのツールは、ツール133と同じ又は類似のタイプである。例えば、対応する各種ツールの抵抗、キャパシタンス、インダクタンス、又はそれらの組み合わせなどの特性は、ツール133の特性と同じ又はツール133の特性から一定範囲内である。別の例として、幾つかのツールは、ツール133と同じ構造を有する、及び/又はツール133によって実施されるのと同じ機能を実施する。
【0057】
様々な実施形態において、ツール133は、そのツールがウエハをエッチングするために使用されたときに、
より低歩留りのツールを使用して達成されるよりも高いアスペクト比を達成する場合に、又は、
そのツールを使用した結果、より低歩留りのツールを使用して洗浄されるよりも清浄なウエハが得られた場合に、又は、
そのツールが、より低歩留りのツールを使用して達成されるよりも速いエッチング速度でエッチングを行う場合に、又は、
そのツールが、より低歩留りのツールで達成されるよりも速い速度でウエハを洗浄する場合に、又は、
そのツールが、より低歩留りのツールよりも速いウエハ処理速度を有する場合に、又は、
これらの組み合わせの場合に、
別のプラズマシステムの同じ又は類似のタイプのツールよりも高い歩留まりを有する。
【0058】
様々な実施形態において、ツール133は、ゴールデンツールと呼ばれる。
【0059】
一部の実施形態では、プラズマシステム100に関係付けられたエッチング速度が、時間にかかわらず一定に維持される。例えば、時刻t2において電圧V1の変動及び/又は電流I1の変動があるときは、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を維持するために、xMHzRF発生器の出力102を通じて送達される電力を調整する。時刻t2は、時刻t1よりも後である。電圧V1の変動及び/又は電流I1の変動は、複素インピーダンスセンサ119からプロセッサ128によって受信される。別の例として、時刻t2において電圧V1の変動及び/又は電流I1の変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を維持するために、xMHzRF発生器の出力102において測定される電圧V1及び/又は電流I1を調整する。別の例として、エッチング速度ER1001を決定した後、xMHzRF発生器によって送達されるRF信号の電力に変化があるときに、xMHzRF発生器は、エッチング速度ER1001を実現するために、電力を調整する。別の例として、xMHzRF発生器によってプラズマチャンバ118に送達される電力に揺らぎがあるときは、xMHzRF発生器は、エッチング速度ER1001を実現するために、電力を調整する。
【0060】
一例として、時刻t2において、エッチング速度を決定するために使用される電圧振幅V1及び/又は電流振幅I1及び/又は周波数F1に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を一定に維持するために、その出力における、例えば供給電力、送達電力、反射電力などの電力P1を調整する。例示すると、時刻t2において、電圧振幅V1及び/又は電流振幅I1及び/又は周波数F1に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度ER1007を一定に維持するために、xMHzRF発生器の出力102における電力P1を調整する。別の例として、時刻t2において、電圧振幅V1及び/又は電流振幅I1に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度ER1005を一定に維持するために、xMHzRF発生器の出力102における電力P1を調整する。
【0061】
別の例として、時刻t2において、エッチング速度を決定するために使用される電圧振幅V1及び/又は電流振幅I1及び/又は電力P1に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を一定に維持するために、周波数F1を調整する。更に別の例として、エッチング速度を決定するために使用される電圧振幅V1及び/又は周波数F1及び/又は電力P1に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を一定に維持するために、電流振幅I1を調整する。別の例として、エッチング速度を決定するために使用される電流振幅I1及び/又は周波数F1及び/又は電力P1に変動があるときは、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を一定に維持するために、電圧振幅V1を調整する。
【0062】
別の例として、エッチング速度を決定するために使用される電圧振幅V1、電流振幅I1、周波数F1、及び電力P1のうちの1つ以上に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を一定に維持するために、その出力における電力P1、及び/又は電圧振幅V1、及び/又は電流振幅I1、及び/又は周波数F1のうちの残る1つ以上を調整する。例示すると、時刻t2において、エッチング速度モデルER1005を決定するために使用される電圧振幅V1及び電流振幅I1に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度ER1005を一定に維持するために、その出力における残る電力P1を調整する。別の例として、時刻t2において、エッチング速度モデルER1007を決定するために使用される電圧振幅V1、電流振幅I1、及び周波数F1のうちの1つ以上に変動があるときに、xMHzRF発生器は、プラズマシステム100に関係付けられたエッチング速度を一定に維持するために、その出力における電力P1を調整する。
【0063】
様々な実施形態において、プラズマシステム100に関係付けられたエッチング速度を、ダミーウエハ124を使用して決定した後、該ダミーウエハ124は、半導体ウエハのエッチングのために、半導体ウエハに置き換えられる。チャック120の上面126上に半導体ウエハが置かれたときに、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上は、対応する出力102、108、及び112、対応するRFケーブル106、108、及び114、インピーダンス整合回路104、RF伝送路116を通じてチャック120にRF電力を供給する。RF電力がxMHzRF発生器によって供給されるときは、複素インピーダンスセンサ119は、時刻t2において、出力102における複素電圧・電流を測定する。様々な実施形態において、RF電力がxMHzRF発生器によって供給されるときは、出力102に接続された周波数センサが、時刻t2において、出力102における複素電圧・電流を測定する。
【0064】
一部の実施形態では、ホストシステム130のプロセッサ128は、プラズマシステム100に関係付けられるエッチング速度が決定されて一定のエッチング速度が維持される期間中、プラズマチャンバ118内でプラズマを発生させるためのレシピを経時的に一定に維持する。例えば、プロセッサ128は、プラズマチャンバ118内の圧力、及び/又はプラズマチャンバ118内の温度、及び/又はxMHzRF発生器の周波数、及び/又はyMHzRF発生器の周波数、及び/又はzMHzRF発生器の周波数、及び/又は上部電極122とチャック120との間のギャップ、及び/又はプラズマチャンバ118内の1種以上のプロセスガスの化学的性質を一定に維持する。別の例として、プロセッサ128は、プラズマチャンバ118内の圧力、及び/又はプラズマチャンバ118内の温度、及び/又は上部電極122とチャック120との間のギャップ、及び/又はプラズマチャンバ118内の1種以上のプロセスガスの化学的性質を一定に維持する。更に別の例として、プロセッサ128は、プラズマチャンバ118内の圧力、及び/又はプラズマチャンバ118内の温度、及び/又はxMHzRF発生器の周波数、及び/又はyMHzRF発生器の周波数、及び/又はzMHzRF発生器の周波数、及び/又は上部電極122とチャック120との間のギャップ、及び/又はプラズマチャンバ118内の1種以上のプロセスガスの化学的性質を同様に維持する。別の例として、プロセッサ128は、プラズマチャンバ118内の圧力、及び/又はプラズマチャンバ118内の温度、及び/又は上部電極122とチャック120との間のギャップ、及び/又はプラズマチャンバ118内の1種以上のプロセスガスの化学的性質を同様に維持する。
【0065】
一部の実施形態では、第1の圧力が第2の圧力から一定範囲内であるときに、プラズマチャンバ128内で同様な圧力が維持されている。様々な実施形態において、第1の温度が第2の温度から一定範囲内であるときに、プラズマチャンバ128内で同様な温度が維持されている。様々な実施形態において、第1の周波数が第2の周波数から一定範囲内であるときに、RF発生器の周波数は同様に維持されている。一部の実施形態では、第1のギャップが第2のギャップから一定範囲内であるときに、プラズマチャンバ118内で同様なギャップが維持されている。多岐にわたる実施形態において、プラズマチャンバ118内で各プロセスガスの量が既定の範囲内に維持されているときに及び/又は複数のプロセスガスの組み合わせが既定の範囲内に維持されているときに、プラズマチャンバ118内で同様な化学的性質が維持されている。一部の実施形態では、プラズマチャンバ118内で複数のプロセスガスの組み合わせが既定の範囲内に維持されているときに、プラズマチャンバ118内で同様な化学的性質が維持されている。プロセスガスの種類の例として、酸素含有ガスやフッ素含有ガスが挙げられる。例示すると、フッ素含有ガスは、酸素含有ガスと異なる種類である。一部の実施形態では、第1のプロセスガスが第2のプロセスガスに含まれない化学元素を含むときに、第1のプロセスガスは第2のプロセスガスと異なる種類である。
【0066】
様々な実施形態において、プロセッサ128は、プラズマチャンバ内の圧力を制御するために、ガス貯蔵器(不図示)からプラズマチャンバの上部電極のガス入口へのガスの供給を促すガス供給弁(不図示)を制御する。例えば、プロセッサ128は、プロセスガスの供給を制御するために、弁を一定量開閉させるための電流を供給する例えばトランジスタなどのドライバ(不図示)を制御する。プロセスガスの供給の制御は、ガスが供給されるプラズマチャンバ内の圧力をプロセッサ128が制御することも可能にする。
【0067】
幾つかの実施形態では、プロセッサ128は、プラズマチャンバ内の化学的性質を制御するために、複数のガス貯蔵器(不図示)からプラズマチャンバの上部電極のガス入口への複数のプロセスガスの供給を促す複数のガス供給弁(不図示)を制御する。例えば、プロセッサ128は、第1のガス貯蔵器から上部電極122のガス入口に供給される第1のプロセスガスの供給を制御するために、弁を一定量開閉させるための電流を供給するドライバを制御し、第2のガス貯蔵器からガス入口に供給される第2のプロセスガスの供給を制御するために、別の弁を一定量開閉させるための電流を供給する別のドライバを制御する。様々な実施形態において、第2のプロセスガスは、第1のプロセスガスと異なる。例えば、第1のプロセスガスは、酸素をベースにしたプロセスガスであり、第2のプロセスガスは、フッ素をベースにしたプロセスガスである。別の例として、第1のプロセスガスは、四フッ化メタンであり、第2のプロセスガスは、六フッ化イオンである。
【0068】
一部の実施形態では、プラズマチャンバのチャック内にヒータが含められ、該ヒータは、プラズマチャンバ内の温度を変化させるために、ドライバを通じてプロセッサ128によって制御される。
【0069】
幾つかの実施形態では、プラズマチャンバ内に例えばダクトなどの伝熱機構が提供され、プラズマチャンバ内の温度を変化させるために、弁及びドライバを通じてプロセッサ128によって冷却液の流れが制御される。
【0070】
様々な実施形態において、プラズマチャンバの上部電極は、モータ駆動式のネジ機構(不図示)を使用して上下させられる上部構造(不図示)内に位置付けられる。プロセッサ128は、上部構造を上下させて、上部電極と該上部電極に面したチャックとの間のギャップを変化させるために、ドライバを通じてモータ駆動式ネジ機構を制御する。
【0071】
一部の実施形態では、プロセッサ128は、電力及び/又は電圧及び/又は電流及び/又は周波数を調整してエッチング速度を実現するために、ケーブルを通じてRF発生器のデジタル信号プロセッサ(DSP)に信号を送信する。例えば、プロセッサ128は、RF信号の周波数をRF発生器に送信する。信号を受信すると、RF発生器のデジタル信号プロセッサ(DSP)は、電力振幅及び/又は周波数及び/又は電圧振幅及び/又は電流振幅をRF発生器の駆動・増幅器システム(DAS)に送信する。例えば、RF発生器のDSPは、周波数を受信し、該周波数をRF発生器のDASに送信する。RF発生器のDSPは、エッチング速度を実現するために、電力振幅及び/又は周波数及び/又は電圧振幅及び/又は電流振幅を有するRF信号を生成する。RF信号は、RFケーブル、インピーダンス整合回路104、及びRF伝送路116を通じてプラズマチャンバ118に供給される。
【0072】
なお、一部の実施形態では、任意の数のRF発生器がプラズマシステム100内で使用されうることが、留意されるべきである。
【0073】
図2Bは、ツール133(図2A)と同じ又は同様なタイプのツール152を含むプラズマシステム150の一実施形態の図である。プラズマシステム150には、例えば時刻t1において測定される電力及び/又は電圧及び/又は電流及び/又は周波数を使用して決定されるエッチング速度のような、プラズマシステム100(図2A)を使用して決定されるエッチング速度が、エッチング速度のチャンバ間整合を実施するために適用される。
【0074】
プラズマシステム150は、xMHzRF発生器、yMHzRF発生器、zMHzRF発生器、複素インピーダンスセンサ154、インピーダンス整合回路156、及びプラズマチャンバ158を含む。インピーダンス整合回路156の入力161は、RFケーブル162を通じてxMHzRF発生器の出力160に接続され、インピーダンス整合回路156の入力165は、RFケーブル166を通じてyMHzRF発生器の出力164に接続され、インピーダンス整合回路156の入力167は、RFケーブル170を通じてzMHzRF発生器の出力168に接続される。プラズマチャンバ158は、RF伝送路172を通じてインピーダンス整合回路156に接続される。
【0075】
プラズマチャンバ158は、チャック174と、上部電極176と、上述のようなその他の部分とを含む。上部電極176は、チャック174の向かいに相対して位置付けられ、接地される。チャック174の上面180上で、例えば半導体ウエハなどの被加工物178が支えられる。生産時には、被加工物178に対し、上述のような様々なプロセスが実施される。被加工物上には、集積回路が成長され、これらの集積回路は、例えば携帯電話、タブレット、スマートフォン、コンピュータ、ラップトップ型コンピュータ、ネットワーク機器などの多岐にわたる電子機器に使用される。プラズマチャンバ158の下部電極及び上部電極176は、それぞれ、例えばアルミニウム、アルミニウム合金、銅などの金属で作成される。チャック174は、ESC又は磁気チャックであってよい。
【0076】
様々な実施形態において、プラズマチャンバ158は、プラズマチャンバ118(図2A)と同じ構造を有する。例えば、プラズマチャンバ158は、プラズマチャンバ118内の対応する構造要素と同じ寸法を有する構造要素を含む。プラズマチャンバ118とプラズマチャンバ158とが同じ構造を有する場合の別の例として、プラズマチャンバ158が、プラズマチャンバ118内の対応する構造要素と同じタイプの要素を含むことが挙げられる。例示すると、トランス結合プラズマ(TCP)チャンバは、誘導結合プラズマ(ICP)チャンバの1つ以上の構造要素と異なるタイプの構造要素を1つ以上有し、TCPチャンバ及びICPチャンバは、ともに、電子サイクロトロン共鳴(ECR)プラズマチャンバの1つ以上の構造要素と異なるタイプの構造要素を1つ以上有する。別の例示として、電極としてインダクタを含むプラズマチャンバは、電極としてコンデンサを含むプラズマチャンバと異なるタイプである。
【0077】
プラズマチャンバの構造要素の例には、上部電極、下部電極、上部プラズマ排除ゾーン(PEZ)リング、下部PEZリング、閉じ込めリングアセンブリ、エッジリング、絶縁体層、ガス分布孔、プラズマチャンバ壁、上部電極を取り囲む上部誘電体リング、上部誘電体リングを取り囲む上部電極延長部、下部電極を取り囲む下部誘電体リング、上部電極内又は下部電極内に位置付けられた加熱要素、下部電極又は上部電極内に位置付けられた冷却要素、下部誘電体リングを取り囲む下部電極延長部などがある。様々な実施形態において、下部電極及び下部電極延長部は、例えば陽極酸化アルミニウムやアルミニウム合金などの金属で作成される。また、一部の実施形態では、上部電極及び上部電極延長部は、例えばアルミニウムやアルミニウム合金などの金属で作成される。幾つかの実施形態では、上部電極は、下部電極の向かいに相対して位置付けられ、上部電極延長部は、上部電極の向かいに相対して位置付けられる。
【0078】
構造要素の寸法の例には、要素のサイズ、要素の長さ、要素の深さ、要素の幅、要素の表面積、要素によって占められる体積などがある。
【0079】
異なるタイプの構成要素の例には、板状電極や電気コイル電極などがある。
【0080】
様々な実施形態において、プラズマチャンバ158は、プラズマチャンバ118と構造的に同一であり、プラズマチャンバ118と異なる識別コードを有する。例えば、プラズマチャンバ158は、識別コードaaaaを使用して識別され、プラズマチャンバ118は、識別コードbbbbを使用して識別される。
【0081】
様々な実施形態において、プラズマチャンバ158は、プラズマチャンバ118と構造的に同一であり、プラズマチャンバ118と同じ機能を実施するために使用される。同じ機能の例として、プラズマチャンバ158は、プラズマチャンバ118と同様な、例えばキャパシタンス、抵抗、インダクタンス、それらの組み合わせなどの特性を有する。例示すると、プラズマチャンバ158は、プラズマチャンバ118のインダクタンスから一定範囲内のインダクタンスを有する。別の例示として、プラズマチャンバ158は、プラズマチャンバ118のキャパシタンスから一定範囲内のキャパシタンスを有する。更に別の例示として、プラズマチャンバ158は、プラズマチャンバ118の抵抗から一定範囲内の抵抗を有する。別の例示として、プラズマチャンバ158は、プラズマチャンバ118のインダクタンス、抵抗、及びキャパシタンスの組み合わせから一定範囲内のインダクタンス、抵抗、及びキャパシタンスの組み合わせを有する。プラズマチャンバによって実施される機能の例には、物理気相成長(PVD)、化学気相成長(CVD)、プラズマ式CVD(PECVD)、金属CVD、高密度プラズマCVD(HDP−CVD)機能、フォトレジスト剥離機能、フォトレジスト表面処理、紫外線熱処理(UVTP)などがある。
【0082】
様々な実施形態において、プラズマチャンバ158は、プラズマチャンバ118と構造的に及び機能的に同一であり、プラズマチャンバ118と異なる識別コードを有する。
【0083】
更に、様々な実施形態において、RF伝送路172は、RF伝送路116(図2A)と構造的に及び/又は機能的に同一である。RF伝送路は、図3において更に説明される。
【0084】
図3は、RF伝送路116(図2A)又はRF伝送路172(図2B)の一例であるRF伝送路186の構造の一実施形態を示した図である。RF伝送路186は、インピーダンス整合回路104(図2A)又はインピーダンス整合回路156(図2B)の一例であるインピーダンス整合回路190にボルト留めされた例えばトンネルなどのシリンダ188を含む。インピーダンス整合回路190は、RFケーブル106(図2A)又はRFケーブル162(図2B)の一例であるRFケーブル191に接続される。シリンダ188の空洞内には、絶縁体192及びRFロッド194がある。
【0085】
RF伝送路186は、ボルトB1、B2、B3、及びB4を介してインピーダンス整合回路190に留め付けられる。一実施形態では、RF伝送路186は、任意の数のボルトを介してインピーダンス整合回路190に留め付けられる。一部の実施形態では、RF伝送路186をインピーダンス整合回路190に取り付けるために、ボルトの代わりに又はボルトに加えて、例えば糊やネジなどの任意のその他の形態の取り付け手段が使用される。
【0086】
RF伝送ロッド194は、インピーダンス整合回路190の出力196に結合される。また、RFスプーンとしても知られるRFストラップ198が、RF伝送ロッド194に及びRFロッド202に結合され、その一部分は、例えばシリンダなどのサポート204内に位置付けられる。一実施形態では、シリンダ188と、RFストラップ198と、サポート204と、RFロッド202との組み合わせが、RF伝送路186を形成する。サポート204は、プラズマチャンバ118(図2A)又はプラズマチャンバ158(図2B)の一例であるプラズマチャンバ206の支えを提供する。サポート204は、プラズマチャンバ206のチャック208に取り付けられる。チャック208は、チャック120(図2A)又はチャック174(図2B)の一例である。RF発生器から、RFケーブル191、インピーダンス整合回路190、RFロッド194、RFストラップ198、及びRFロッド202を通じてチャック208にRF信号が供給される。
【0087】
図2Bに戻り、一部の実施形態では、RF伝送路172は、RF伝送路116(図2A)と構造的に同一である。例えば、RF伝送路172は、RF伝送路116と同一の要素を含む。RF伝送路の要素の例には、インピーダンス整合回路に結合されるRFロッド、該RFロッドを取り囲むシリンダ、RFスプーン、RFスプーンに及びチャックに結合されるRFロッド、並びに該RFロッドの少なくとも一部分を取り囲むシリンダがある。
【0088】
様々な実施形態において、RF伝送路172は、RF伝送路116と構造的に同一であり、RF伝送路116と異なる識別コードを有する。
【0089】
幾つかの実施形態では、RF伝送路172は、RF伝送路116と機能的に同一である。例えば、RF伝送路172は、RF伝送路116と同様な特性を有する。例示すると、RF伝送路172は、RF伝送路116のインダクタンスから一定範囲内のインダクタンスを有する。別の例示として、RF伝送路172は、RF伝送路116のキャパシタンスから一定範囲内のキャパシタンスを有する。更に別の例示として、RF伝送路172は、RF伝送路116の抵抗から一定範囲内の抵抗を有する。別の例示として、RF伝送路172は、RF伝送路116のインダクタンスと、抵抗と、キャパシタンスとの組み合わせから一定範囲内のインダクタンスと、抵抗と、キャパシタンスとの組み合わせを有する。
【0090】
一部の実施形態では、RF伝送路172は、RF伝送路116と機能的に同一であり、RF伝送路116と異なる識別コードを有する。
【0091】
一部の実施形態では、RF伝送路172は、RF伝送路116と構造的に及び機能的に同一であり、RF伝送路116と異なる識別コードを有する。
【0092】
同様に、一部の実施形態では、インピーダンス整合回路156は、インピーダンス整合回路104(図2A)と同じ構造を有する。例えば、インピーダンス整合回路156は、インピーダンス整合回路104と同じ数のコンデンサ及び/又はインピーダンス整合回路104と同じ数のインダクタを有する。また、この例では、インピーダンス整合回路104内のコンデンサ及びインピーダンス整合回路156内のコンデンサは、ともに、例えば直接や並列など同じ形式で互いに接続されている。更に、この例では、インピーダンス整合回路104内のインダクタ及びインピーダンス整合回路156内のインダクタは、ともに、例えば直接や並列など同じ形式で互いに接続されている。
【0093】
様々な実施形態において、インピーダンス整合回路156は、インピーダンス整合回路104と構造的に同一であり、インピーダンス整合回路104と異なる識別コードを有する。
【0094】
幾つかの実施形態では、インピーダンス整合回路156は、インピーダンス整合回路104によって実施されるのと同じ機能を実施する。例えば、インピーダンス整合回路156は、インピーダンス整合回路104と同様な特性を有する。例示すると、インピーダンス整合回路156は、インピーダンス整合回路104のインダクタンスから一定範囲内のインダクタンスを有する。別の例示として、インピーダンス整合回路156は、インピーダンス整合回路104のキャパシタンスから一定範囲内のキャパシタンスを有する。別の例示として、インピーダンス整合回路156は、インピーダンス整合回路のインダクタンスとキャパシタンスとの組み合わせから一定範囲内のインダクタンスとキャパシタンスとの組み合わせを有する。
【0095】
様々な実施形態において、インピーダンス整合回路156は、インピーダンス整合回路104によって実施されるのと同じ機能を実施し、インピーダンス整合回路104と異なる識別コードを有する。
【0096】
様々な実施形態において、インピーダンス整合回路156は、インピーダンス整合回路104と同じ構造を有するとともに、インピーダンス整合回路104によって実施されるのと同じ機能を実施し、インピーダンス整合回路104と異なる識別コードを有する。
【0097】
RFケーブル162は、RFケーブル106(図2A)と構造的に同じである。例えば、RFケーブル162及びRFケーブル106は、それぞれ、絶縁体によって取り囲まれた導体を含む。別の例として、RFケーブル162は、RFケーブル106と同じ例えば長さや直径などの寸法を有する。
【0098】
一部の実施形態では、RFケーブル162は、RFケーブル106と同じ構造を有し、RFケーブル106と異なる識別コードを有する。
【0099】
様々な実施形態において、RFケーブル162は、RFケーブル106と同じ機能を実施する。例えば、RFケーブル162は、RFケーブル106と同じ特性を有する。例示すると、RFケーブル162は、RFケーブル106の抵抗から一定範囲内の抵抗を有する、及び/又はRFケーブル106のキャパシタンスから一定範囲内のキャパシタンスを有する、及び/又はRFケーブル106のインダクタンスから一定範囲内のインダクタンスを有する。
【0100】
幾つかの実施形態では、RFケーブル162は、RFケーブル106によって実施されるのと同じ機能を実施し、RFケーブル106と異なる識別コードを有する。
【0101】
幾つかの実施形態では、RFケーブル162は、RFケーブル106と同じ構造を有するとともに、RFケーブル106と同じ機能を実施し、RFケーブル106と異なる識別コードを有する。
【0102】
同様に、RFケーブル166は、RFケーブル110(図2A)と同じ構造を有し、及び/又はRFケーブル110と同じ機能を実施し、及び/又はRFケーブル110と異なる識別コードを有する。更に、RFケーブル170は、RFケーブル114(図2A)と同じ構造を有し、及び/又はRFケーブル114と同じ機能を実施し、及び/又はRFケーブル114と異なる識別コードを有する。
【0103】
RFケーブル162、164、170、インピーダンス整合回路156、RF伝送路172、及びプラズマチャンバ158は、プラズマシステム150のツール152の部分である。
【0104】
様々な実施形態において、ゴールデンツールであるツール133(図2A)は、ツール152によって提供されるよりも高い歩留まりを提供する。
【0105】
xMHzRF発生器は、RF電力を生成し、該RF電力を、エッチングのためにウエハ178が上に置かれているチャック174に、出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じて供給する。更に、yMHzRF発生器は、RF電力を生成し、該RF電力を、出力164、RFケーブル166、インピーダンス整合回路156、及びRF伝送路172を通じてチャック174に供給する。また、zMHzRF発生器は、RF電力を生成し、該RF電力を、出力168、RFケーブル170、インピーダンス整合回路156、及びRF伝送路172を通じてチャック174に供給する。プロセスガスが、ガス供給部からガス送り部及び上部電極176のガス入口を経て上部電極176とチャック174との間の空間に供給され、チャック174が、xMHzRF発生器及び/又はyMHzRF発生器及び/又はzMHzRF発生器によって供給されるRF信号からRF電力を受け取ると、プロセスガスは、プラズマチャンバ158内で励起されてプラズマを発生させる。
【0106】
複素インピーダンスセンサ154は、xMHzRF発生器によって出力160を通じてRF信号が供給されたときにおける、電圧振幅、電流振幅、及び電圧振幅と電流振幅との間の位相を測定する。同様に、出力164に接続された別の複素インピーダンスセンサ(不図示)が、yMHzRF発生器によって出力164を通じてRF信号が供給されたときにおける、電圧振幅、電流振幅、及び電圧振幅と電流振幅との間の位相を測定する。また、出力168に接続された複素インピーダンスセンサ(不図示)が、zMHzRF発生器によって出力168を通じてRF信号が供給されたときにおける、電圧振幅、電流振幅、及び電圧振幅と電流振幅との間の位相を測定する。
【0107】
一部の実施形態では、プラズマシステム150のRF発生器によって該RF発生器の出力を通じてインピーダンス整合回路156に供給されるRF信号の周波数を、同RF発生器の同出力に接続された周波数センサが測定する。様々な実施形態において、プラズマシステム150のRF発生器の出力に接続された周波数センサは、同出力に接続された複素インピーダンスセンサ内に一体化されている。
【0108】
ケーブル212を通じて複素インピーダンスセンサ154に接続されたプロセッサ128は、複素インピーダンスセンサ154によって測定される複素電圧・電流、及び/又は出力160に接続された周波数センサによって測定される周波数を、ケーブル212を通じて受信し、出力164に接続された複素インピーダンスセンサによって測定される複素電圧・電流、及び/又は出力164に接続された周波数センサによって測定される周波数を受信し、出力168に接続された複素インピーダンスセンサによって測定される複素電圧・電流、及び/又は出力168に接続された周波数センサによって測定される周波数を受信する。
【0109】
プロセッサ128は、複素インピーダンスセンサ154から受信された複素電圧・電流に基づいて、及び/又は周波数センサから受信された周波数に基づいて、プラズマシステム150に関係付けられるエッチング速度を決定する。例えば、プロセッサ128は、プラズマシステム100に関係付けられるエッチング速度を決定するのと同様なやり方で、プラズマシステム150に関係付けられるエッチング速度を決定する。別の例として、プロセッサ128は、C112+C122に等しいものとしてエッチング速度ER1501を算出し、ここで、V2は、複素インピーダンスセンサ154によって測定される電圧振幅であり、I2は、複素インピーダンスセンサ154によって測定される電流振幅である。別の例として、エッチング速度ER1502が、C212+C222+C2322+C2422+C2522に等しいものとして算出される。更に別の例として、エッチング速度ER1503が、C312+C322+C3322+C3422+C3522+C3623+C37222+C38222+C3923に等しいものとして算出される。別の例として、エッチング速度ER1504が、C412+C422+C4322+C4422+C4522+C4623+C47222+C48222+C4923+C5024+C51232+C522222+C532123+C5424に等しいものとして算出される。別の例としては、プロセッサ128は、nを整数として、エッチング速度ER150nを、やはりn次多項式であるテイラー級数展開に等しいものとして算出する。例示すると、プロセッサ128は、エッチング速度150nを、一定の値に収束するn次多項式として算出する。
【0110】
別の例として、プロセッサ128は、エッチング速度ER1505を、C552e1+C562e2+C572として決定し、ここで、P2は、電圧振幅V2と、電流振幅I2と、電流振幅I2と電圧振幅V2との間の位相であるφ2との積である。電力P2は、プロセッサ128によって算出される。更に別の例として、エッチング速度ER1506は、C552e1+C562e2+C572+C582として算出され、ここで、F2は、xMHzRF発生器の出力160に接続された周波数センサによって測定される周波数である。一部の実施形態では、出力160に接続された周波数センサは、複素インピーダンスセンサ154内に一体化されている。様々な実施形態において、出力160に接続された周波数センサは、複素インピーダンスセンサ154とは別個であり、複素インピーダンスセンサ154の外にある。周波数F2は、出力160に接続された周波数センサに接続されたケーブルを通じてプロセッサ128によって受信される。
【0111】
更に別の例として、エッチング速度ER1507は、C552e1+C562e2+C572+C582として算出される。別の例として、エッチング速度ER1508は、C5922+C6022+C612+C62222+C6322+C6422+C6522+C66222+C67222として決定される。別の例として、エッチング速度ER1509は、C6822+C692+C7022+C7122+C72222+C73222+C74223+C75223+C76222+C772222+C7822+C7922として決定される。
【0112】
プロセッサ128は、ツール133(図2A)を使用して決定されたエッチング速度が、ツール152を使用して決定されたエッチング速度と同じであるか又はその制限内であるかどうかを決定するために、ツール133を使用して決定されたエッチング速度を、ツール152を使用して決定されたエッチング速度と比較する。例えば、プロセッサ128は、エッチング速度ER1001が、エッチング速度ER1501に一致するか又はその制限内であるかどうかを決定する。別の例として、プロセッサ128は、エッチング速度ER1002が、エッチング速度ER1502に一致するか又はその制限内であるかどうかを決定する。更に別の例として、プロセッサ128は、エッチング速度ER1003が、エッチング速度ER1503に一致するか又はその制限内であるかどうかを決定する。別の例として、プロセッサ128は、エッチング速度ER1004が、エッチング速度ER15014に一致するか又はその制限内であるかどうかを決定する。別の例として、プロセッサ128は、エッチング速度ER1005が、エッチング速度ER1505に一致するか又はその制限内であるかどうかを決定する。更に別の例として、プロセッサ128は、エッチング速度ER1006が、エッチング速度ER1506に一致するか又はその制限内であるかどうかを決定する。別の例として、プロセッサ128は、エッチング速度ER1007が、エッチング速度ER1507に一致するか又はその制限内であるかどうかを決定する。尚も別の例として、プロセッサ128は、エッチング速度ER1008が、エッチング速度ER1508に一致するか又はその制限内であるかどうかを決定する。別の例として、プロセッサ128は、エッチング速度ER1009が、エッチング速度ER1509に一致するか又はその制限内であるかどうかを決定する。別の例として、プロセッサ128は、エッチング速度ER100nが、エッチング速度ER150nに一致するか又はその制限内であるかどうかを決定する。
【0113】
ツール133を使用して決定されたエッチング速度が、ツール152を使用して決定されたエッチング速度と同じである又はその制限内であると決定されなかった際に、プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を調整するために、xMHzRF発生器に信号を送信する。プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を調整して、ツール133を使用して決定されたエッチング速度の実現を促すために、上記信号をxMHzRF発生器に送信する。例えば、エッチング速度ER1501が、エッチング速度ER1001に一致しない又はその制限範囲内でないときに、プロセッサ128は、電圧V2及び/又は電流I2を変化させて、エッチング速度ER1001へのエッチング速度ER1501の一致を促すために、xMHzRF発生器に信号を送信する。別の例として、エッチング速度ER1505が、エッチング速度ER1005に一致しない又はその制限範囲内でないときに、プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2を変化させて、エッチング速度ER1005へのエッチング速度ER1505の一致を促すために、xMHzRF発生器に信号を送信する。更に別の例として、エッチング速度ER1506が、エッチング速度ER1006に一致しない又はその制限範囲内でないときに、プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を変化させて、エッチング速度ER1006へのエッチング速度ER1506の一致を促すために、xMHzRF発生器に信号を送信する。
【0114】
尚も別の例として、エッチング速度ER1507が、エッチング速度ER1007に一致しない又はその制限範囲内でないときに、プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を変化させて、エッチング速度ER1007へのエッチング速度ER1507の一致を促すために、xMHzRF発生器に信号を送信する。別の例として、エッチング速度ER1508が、エッチング速度ER1008に一致しない又はその制限範囲内でないときに、プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を変化させて、エッチング速度ER1008へのエッチング速度ER1508の一致を促すために、xMHzRF発生器に信号を送信する。別の例として、エッチング速度ER150nが、エッチング速度ER100nに一致しない又はその制限範囲内でないときに、プロセッサ128は、電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を変化させて、エッチング速度ER100nへのエッチング速度ER150nの一致を促すために、xMHzRF発生器に信号を送信する。尚も別の例として、エッチング速度ER100nが、エッチング速度ER100n未満である及び/又はエッチング速度ER100nの制限外であるときに、プロセッサ128は、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上によって供給される対応する1つ以上のRF信号の電力を引き上げるために、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上に信号を送信する。電力は、エッチング速度ER100nを実現するために、及び/又はエッチング速度をエッチング速度ER100nの制限内にするために引き上げられる。尚も別の例として、エッチング速度ER100nが、エッチング速度ER100nを超える及び/又はエッチング速度ER100nの制限外であるときに、プロセッサ128は、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上によって供給される対応する1つ以上のRF信号の電力を引き下げるために、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上に信号を送信する。電力は、エッチング速度ER100nを実現するために、及び/又はエッチング速度をエッチング速度ER100nの制限内にするために引き下げられる。
【0115】
線路220を通じてプロセッサ128から信号を受信した際に、xMHzRF発生器は、ツール133を使用して決定されたエッチング速度を実現するために、xMHzRF発生器によって生成される電圧V2及び/又は電流I2及び/又は電力P2及び/又は周波数F2を、例えば増加させる、減少させるなどのように調整する。例えば、エッチング速度100nを実現するために、xMHzRF発生器は、ウエハ178が置かれているプラズマチャンバ158に出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じて送達又は供給される電力の振幅を調整する。別の例として、エッチング速度100nを実現するために、xMHzRF発生器は、プラズマチャンバ158からRF伝送路172、インピーダンス整合回路156、RFケーブル162、及び出力160を通じてxMHzRF発生器に向かって反射される電力の振幅を調整する。別の例として、エッチング速度100nを実現するために、xMHzRF発生器は、出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じてプラズマチャンバ158に供給されるRF信号の電圧の振幅及び/又は同RF信号の電流の振幅を調整する。別の例として、エッチング速度100nを実現するために、xMHzRF発生器は、出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じてプラズマチャンバ158に供給されるRF信号の周波数を調整する。
【0116】
更に別の例として、エッチング速度ER1505からエッチング速度1005を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の電圧の振幅、並びに/又はウエハ178が置かれているプラズマチャンバ158に出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じてRF信号の形で送達若しくは供給される電力の振幅を調整する。別の例として、エッチング速度ER1505からエッチング速度1005を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の電圧の振幅、並びに/又はプラズマチャンバ158からRF伝送路172、インピーダンス整合回路156、RFケーブル162、及び出力160を通じてxMHzRF発生器に向かって反射される電力の振幅を調整する。
【0117】
別の例として、エッチング速度ER1506からエッチング速度ER1006を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の周波数、並びに/又は同RF信号の電圧の振幅、並びに/又はウエハ178が置かれているプラズマチャンバ158に出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じてRF信号の形で送達若しくは供給される電力の振幅を調整する。別の例として、エッチング速度ER1506からエッチング速度1006を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の周波数、並びに/又は同RF信号の電圧の振幅、並びに/又はプラズマチャンバ158からRF伝送路172、インピーダンス整合回路156、RFケーブル162、及び出力160を通じてxMHzRF発生器に向かって反射される電力の振幅を調整する。
【0118】
別の例として、エッチング速度ER1507からエッチング速度ER1007を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の周波数、並びに/又は同RF信号の電圧の振幅、並びに/又はウエハ178が置かれているプラズマチャンバ158に出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じてRF信号の形で送達若しくは供給される電力の振幅を調整する。別の例として、エッチング速度ER1507からエッチング速度1007を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の周波数、並びに/又は同RF信号の電圧の振幅、並びに/又はプラズマチャンバ158からRF伝送路172、インピーダンス整合回路156、RFケーブル162、及び出力160を通じてxMHzRF発生器に向かって反射される電力の振幅を調整する。
【0119】
別の例として、エッチング速度ER1508からエッチング速度ER1008を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の周波数、並びに/又は同RF信号の電圧の振幅、並びに/又はウエハ178が置かれているプラズマチャンバ158に出力160、RFケーブル162、インピーダンス整合回路156、及びRF伝送路172を通じてRF信号の形で送達若しくは供給される電力の振幅を調整する。別の例として、エッチング速度ER1508からエッチング速度1008を実現するために、xMHzRF発生器は、出力160を通じて供給されるRF信号の電流の振幅、並びに/又は同RF信号の周波数、並びに/又は同RF信号の電圧の振幅、並びに/又はプラズマチャンバ158からRF伝送路172、インピーダンス整合回路156、RFケーブル162、及び出力160を通じてxMHzRF発生器に向かって反射される電力の振幅を調整する。
【0120】
ツール152を使用して決定されたエッチング速度が、ツール133を使用して決定されたエッチング速度に一致する又はその制限内であると決定されたときに、エッチング速度のチャンバ間整合が達成される。例えば、エッチング速度ER150nが、エッチング速度ER100nに等しい又はその制限内であるときに、プロセッサ128は、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上によって供給される対応する1つ以上のRF信号の電力を維持するために、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器のうちの1つ以上に信号を送信する。電力は、エッチング速度ER100nを実現するために、及び/又はエッチング速度をエッチング速度ER100nの制限内にするために維持される。
【0121】
一部の実施形態では、ホストシステム130のプロセッサ128は、プラズマチャンバ118内及びプラズマチャンバ158内で一定のエッチング速度が維持される期間中、プラズマチャンバ118内及びプラズマチャンバ158内でプラズマを発生させるためのレシピを経時的に一定に維持する。例えば、プロセッサ128は、プラズマチャンバ118内及びプラズマチャンバ158内で圧力を同じ又若しくは同様に維持する、並びに/又はプラズマチャンバ118内及びプラズマチャンバ158内で温度を同じ若しくは同様に維持する、並びに/又はプラズマチャンバ118内及びプラズマチャンバ158内でxMHzRF発生器の周波数を同じ若しくは同様に維持する、並びに/又はプラズマチャンバ118内及びプラズマチャンバ158内でyMHzRF発生器の周波数を同じ若しくは同様に維持する、並びに/又はプラズマチャンバ118内及びプラズマチャンバ158内でzMHzRF発生器の周波数を同じ若しくは同様に維持する、並びに/又はプラズマチャンバ118内及びプラズマチャンバ158内で1種以上のプロセスガスの化学的性質を同じ若しくは同様に維持する、並びに/又は上部電極122とチャック120(図2A)との間の第1のギャップ及び上部電極176とチャック174との間の第2のギャップを同じ若しくは同様な大きさに維持する。この例では、圧力が互いの一定範囲内であるときに、プラズマチャンバ118内の圧力は、プラズマチャンバ158内の圧力と同様である。更に、この例では、温度が互いの一定範囲内であるときに、プラズマチャンバ118内の温度は、プラズマチャンバ158内の温度と同様である。また、この例では、周波数が互いの一定範囲内であるときに、プラズマシステム100のxMHzRF発生器の周波数は、プラズマシステム150のxMHzRF発生器の周波数と同様であり、周波数が互いの一定範囲内であるときに、プラズマシステム100のyMHzRF発生器の周波数は、プラズマシステム150のyMHzRF発生器の周波数と同様であり、周波数が互いの一定範囲内であるときに、プラズマシステム100のzMHzRF発生器の周波数は、プラズマシステム150のzMHzRF発生器の周波数と同様である。更に、この例では、第1のギャップ及び第2のギャップが互いの一定範囲内であるときに、第1のギャップは、第2のギャップと同様な大きさである。
【0122】
多岐にわたる実施形態では、プラズマチャンバ118及びプラズマチャンバ158のそれぞれにおける各プロセスガスの量が既定の範囲内に維持されるときに、並びに/又はプラズマチャンバ118及びプラズマチャンバ158のそれぞれにおける複数のプロセスガスの組み合わせが既定の範囲内に維持されるときに、プラズマチャンバ118内とプラズマチャンバ158内とで同様な化学的性質が維持される。一部の実施形態では、プラズマチャンバ118及びプラズマチャンバ158のそれぞれにおける複数のプロセスガスの組み合わせが既定の範囲内に維持されるときに、プラズマチャンバ118内とプラズマチャンバ158内とで同様な化学的性質が維持される。
【0123】
一部の実施形態では、プラズマシステム150において任意の数のRF発生器が使用されることが、留意されるべきである。
【0124】
図4Aは、エッチング速度を決定するために使用される、電圧及び電流及び/若しくは電力の係数、並びに/又は電圧及び電流及び/若しくは電力の指数、並びに/又は周波数を決定するための、プラズマシステム250の一実施形態のブロック図である。プラズマシステム250は、プラズマシステム100(図2A)と、エッチング速度測定機器(ERMD)252とを含む。ERMD252は、ケーブル254を通じてプロセッサ128に接続され、プラズマチャンバ118の窓256を通る見通し線を有する。該見通し線は、プラズマチャンバ118内でプラズマが発生する空間内へ方向付けられる。例えば、ERMD252は、プラズマによって発せられて窓256を通る放射の強度を測定するために、プラズマチャンバ118内のプラズマを監視する分光光度計を含む。一部の実施形態では、窓256は、プラズマによって発せられた光が通過することを可能にする例えばガラスなどの透明材料で作成される。様々な実施形態において、窓256は、半透明窓である。強度は、プラズマによって消耗されるダミーウエハ124の層のエッチング速度に正比例する。プロセッサ128は、測定された強度をケーブル254を通じて受信し、強度に正比例するものとしてエッチング速度を決定する。別の例として、レシピが既知である場合は、ERMD252は、時刻tm1においてダミーウエハ124の厚さを測定し、時刻tm1の後で且つダミーウエハ124のエッチングの後である時刻tm2においてダミーウエハ124の厚さを測定する。ERMD252は、ダミーウエハ124のエッチング速度ER2501を、時刻tm2における厚さと時刻tm1における厚さとの差を時刻tm2と時刻tm1との差で割った比率として決定する。エッチング速度ER2501は、ケーブル254を通じてERMD252によってプロセッサ128に提供される。一部の実施形態では、ERMD252がエッチング速度ER2501を決定する代わりに、プロセッサ128が、測定された強度からエッチング速度ER2501を決定し、該エッチング速度ER2501を、記憶させるためにメモリデバイス132に提供する。既知のレシピの例は、プラズマチャンバ118内で維持される圧力、プラズマチャンバ118内で維持される温度、上部電極122とチャック120との間のギャップ、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器によって供給される電力の大きさ、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器の周波数、又はそれらの組み合わせを含む。
【0125】
上述のように、複素インピーダンスセンサ119は、複素電圧・電流の測定値をケーブル127を通じてプロセッサ128に提供する。プロセッサ128は、複素電圧・電流の測定値を受信し、該測定値から電圧振幅V3及び電流振幅I3及び/又は電力振幅P3を抽出し、これらの電圧振幅V3及び電流振幅I3及び電力振幅P3を、記憶させるためにメモリデバイス132に提供する。例えばプロセッサ128は、電力振幅P3を、電圧振幅V3と、電流振幅I3と、電圧振幅V3と電流振幅I3との間の位相であるφ3とを乗じた積として算出する。一部の実施形態では、電圧振幅V3は電圧振幅V1と同じであり、電流振幅I3は電流振幅I1と同じであり、電力振幅P3は電力振幅P1と同じであり、位相φ3はプラズマシステム100を使用して決定される位相φ1と同じである。一部の実施形態では、出力102に接続された周波数センサが、xMHzRF発生器によって供給されるRF信号の周波数F3を測定し、該周波数F3を、周波数センサをプロセッサ128に接続しているケーブルを通じてプロセッサ128に提供する。様々な実施形態において、周波数F3は、周波数F1と同じである。
【0126】
一部の実施形態では、エッチング速度を決定するために使用される、電圧及び電流及び/若しくは電力の係数、並びに/又は電圧及び電流及び/若しくは電力の指数、並びに/又は周波数を決定するために、プラズマシステム100に代わって別のプラズマシステムが使用される。例えば、インピーダンス整合回路104と同じ構造及び/若しくは同じ機能を有する、並びに/又はインピーダンス整合回路104と異なる識別番号を有するインピーダンス整合回路が、インピーダンス整合回路104に代わって使用される。別の例として、ケーブル106と同じ構造及び/若しくは同じ機能を有する、並びに/又はケーブル106と異なる識別番号を有するケーブルが、ケーブル106に代わって使用される。更に別の例として、RF伝送路116と同じ構造及び/若しくは同じ機能を有する、並びに/又はRF伝送路116と異なる識別番号を有するRF伝送路が、RF伝送路116に代わって使用される。別の例として、プラズマチャンバ118と同じ構造及び/若しくは同じ機能を有する、並びに/又はプラズマチャンバ118と異なる識別番号を有するプラズマチャンバが、プラズマチャンバ118に代わって使用される。
【0127】
様々な実施形態において、プラズマチャンバ118内のプラズマの強度を測定するために、及び出力102における複素電圧・電流の測定値を測定するために、xMHzRF発生器、yMHzRF発生器、及び/又はzMHzRF発生器がRF信号を生成するときに、プラズマシステム250において、ダミーウエハ124に代わって半導体ウエハが使用される。
【0128】
幾つかの実施形態において、プラズマシステム250は、任意の数のRF発生器を含む。
【0129】
図4Bは、エッチング速度を決定するために使用される、電圧及び電流及び/若しくは電力の係数、並びに/又は電圧及び電流及び/若しくは電力の指数、並びに/又は周波数を決定するための、プラズマシステム270の一実施形態のブロック図である。プラズマシステム270は、プラズマチャンバ158において半導体ウエハ178(図2B)の代わりにダミーウエハ276が使用されることを除き、プラズマシステム150(図2B)と同じである。更に、プラズマシステム270は、エッチング速度ER2701を測定するERMD272を含む。エッチング速度ER2701は、ERMD272によってケーブル274を通じてプロセッサ128に提供される。
【0130】
様々な実施形態において、エッチング速度ER2071を決定する代わりに、ERMD272は、プラズマチャンバ158内で発生するプラズマによって発せられる光の強度を窓273を介して測定し、該測定された強度を、ケーブル274を通じてプロセッサ128に提供する。ケーブル274は、ERMD272をプロセッサ128に接続している。一部の実施形態では、プロセッサ128は、エッチング速度ER2701を、測定された強度に正比例するものとして決定し、該エッチング速度ER2701を、記憶させるためにメモリデバイス132に提供する。
【0131】
プロセッサ128は、また、複素インピーダンスセンサ154によって出力160において測定される複素電圧・電流の測定値を受信し、該複素電圧・電流から電圧振幅V4及び電流振幅I4及び/又は電力振幅P4を抽出し、これらの電圧振幅V4及び電流振幅I4及び/又は電力振幅P4を、記憶させるためにメモリデバイス132に提供する。一部の実施形態では、電圧V4振幅は、電圧振幅V2と同じであり、電流振幅I4は、電流振幅I2と同じであり、電力振幅P4は、電力振幅P2と同じである。
【0132】
一部の実施形態では、出力160に接続された周波数センサが、xMHzRF発生器によって供給されるRF信号の周波数F4を測定する。一部の実施形態では、周波数F4は、周波数F2と同じである。
【0133】
一部の実施形態では、エッチング速度の例えば係数や指数などの未知の値を決定するために、任意の数のプラズマシステムが使用される。例えば、未知の値の数は、これらの未知の値を決定するために使用されるプラズマシステムの数に等しい。更に別の例では、プロセッサ128は、プラズマシステム250(図4A)を使用して決定されるエッチング速度ER2501と、エッチング速度ER2701と、電圧V3及びV4と、電流I3及びI4とに基づいて、電圧V1の及び電流I1の係数を決定する。例示すると、プロセッサ128は、C113+C123に等しいエッチング速度ER2501及びC114+C124に等しいエッチング速度ER2701において係数C11及びC12について解くことによって、係数C11及びC12を決定する。
【0134】
別の例として、プロセッサ128は、プラズマシステム250(図4A)を使用して決定されるエッチング速度ER2501と、エッチング速度ER2701と、追加の3つのプラズマシステムを使用して決定される追加の3つのエッチング速度と、電圧V3及びV4と、追加の3つのプラズマシステムを使用して決定される追加の3つの電圧V5及びV6及びV7と、電流I3及びI4と、追加の3つのプラズマシステムを使用して決定される追加の3つの電流I5及びI6及びI7とに基づいて、電圧V1の及び電流I1の係数C21、C22、C23、C24、及びC25を決定する。例示すると、プロセッサは、C213+C223+C2332+C2433+C2532に等しいエッチング速度ER2501、C214+C224+C2342+C2444+C2542に等しいエッチング速度ER2701、追加の3つのエッチング速度のうちでC215+C225+C2352+C2455+C2552に等しい第1のエッチング速度、追加の3つのエッチング速度のうちでC216+C226+C2362+C2466+C2562に等しい第2のエッチング速度、及び追加の3つのエッチング速度のうちでC217+C227+C2372+C2477+C2572に等しい第3のエッチング速度において、係数C21、C22、C23、C24、及びC25について解くことによって、係数C21、C22、C23、C24、及びC25を決定する。
【0135】
尚も別の例では、プロセッサ128は、電圧V1の係数C55、電力P1の係数C56、電流I1の係数C57、電圧V1の指数e1、及び電力P1の指数e2を決定する。プロセッサ128は、プラズマシステム250(図4A)を使用して決定されるエッチング速度ER2501と、エッチング速度ER2701と、追加の3つのプラズマシステムを使用して決定される追加の3つのエッチング速度と、電圧振幅V3及びV4と、追加の3つのプラズマシステムを使用して決定される追加の3つの電圧振幅V5及びV6及びV7と、電流振幅I3及びI4と、追加の3つのプラズマシステムを使用して決定される追加の3つの電流振幅I5及びI6及びI7と、電力振幅P3及びP4と、追加の3つのプラズマシステムを使用して決定される追加の3つの電力振幅P5及びP6及びP7とに基づいて、係数C55、C56、及びC57と、指数e1及びe2とを決定する。
【0136】
別の例として、プロセッサ128は、電圧V1の係数C55、電力P1の係数C56、電流I1の係数C57、周波数F1の係数C58、電圧V1の指数e1、電力P1の指数e2、及び電流I1の指数e3を決定する。プロセッサ128は、プラズマシステム250(図4A)を使用して決定されるエッチング速度ER2501と、エッチング速度ER2701と、追加の6つのプラズマシステムを使用して決定される追加の6つのエッチング速度と、電圧振幅V3及びV4と、追加の6つのプラズマシステムを使用して決定される追加の6つの電圧振幅V5及びV6及びV7及びV8及びV9及びV10と、電流振幅I3及びI4と、追加の6つのプラズマシステムを使用して決定される追加の6つの電流振幅I5及びI6及びI7及びI8及びI9及びI10と、電力振幅P3及びP4と、追加の6つのプラズマシステムを使用して決定される追加の6つの電力振幅P5及びP6及びP7及びP8及びP9及びP10と、周波数F3及びF4と、追加の6つのプラズマシステムを使用して決定される追加の6つの周波数F5及びF6及びF7及びF8及びF9及びF10とに基づいて、係数C55、C56、C57、及びC58と、指数e1、e2、及びe3とを決定する。
【0137】
一部の実施形態では、エッチング速度を決定するために使用される、電圧振幅の係数及び/若しくは指数、並びに/又は電流振幅の係数及び/若しくは指数、並びに/又は電力振幅の係数及び/若しくは指数、並びに/又は周波数の係数及び/若しくは指数を決定するために、プラズマシステム270に代わって別のプラズマシステムが使用される。例えば、インピーダンス整合回路156と同じ構造及び/若しくは同じ機能を有する、並びに/又はインピーダンス整合回路156と異なる識別番号を有するインピーダンス整合回路が、インピーダンス整合回路156に代わって使用される。別の例として、ケーブル162と同じ構造及び/若しくは同じ機能を有する、並びに/又はケーブル162と異なる識別番号を有するケーブルが、ケーブル162に代わって使用される。更に別の例として、RF伝送路172と同じ構造及び/若しくは同じ機能を有する、並びに/又はRF伝送路172と異なる識別番号を有するRF伝送路が、RF伝送路172に代わって使用される。別の例として、プラズマチャンバ158と同じ構造及び/若しくは同じ機能を有する、並びに/又はプラズマチャンバ158と異なる識別番号を有するプラズマチャンバが、プラズマチャンバ158に代わって使用される。
【0138】
様々な実施形態において、プラズマチャンバ158内のプラズマの強度を測定するために、及び出力160における複素電圧・電流の測定値を測定するために、xMHzRF発生器、yMHzRF発生器、及び/又はzMHzRF発生器がRF信号を生成するときに、プラズマシステム270において、ダミーウエハ276に代わって半導体ウエハが使用される。
【0139】
図5は、zMHzRF発生器が例えば電力を供給している、作動している、機能しているなどのように稼働しており、xMHzRF発生器及びyMHzRF発生器が例えば電力を供給していないなどのように稼働していないときにおける、例えば二次多項式エッチング速度、三次多項式エッチング速度、四次多項式エッチング速度などのエッチング速度モデルの平均値対ERMDを使用して決定された測定エッチング速度の平均値のグラフの一実施形態290である。ERMDを使用して決定された平均測定エッチング速度は、x軸に沿ってプロットされ、平均エッチング速度モデルは、y軸に沿ってプロットされる。グラフ290の各平均エッチング速度モデルの各点を通るように、最良適合直線が引かれてよい。図に示されるように、グラフ290における二次多項式平均エッチング速度モデルは、0.998の決定係数(R2)を有し、グラフ290における三次多項式平均エッチング速度モデルは、0.9999のR2を有し、グラフ290における四次多項式平均エッチング速度モデルは、0.9997のR2を有する。R2が大きいほど、エッチング速度モデルの平均値の正確さが増す。
【0140】
図6は、zMHzRF発生器が稼働しておりxMHzRF発生器及びyMHzRF発生器が稼働していないときにおける、エッチング速度モデルの平均値の誤差対ERMDを使用して測定された平均エッチング速度のグラフの一実施形態292である。グラフ292における「x」、星印「*」、及び頂点が右を指している三角形は、2つ以上の異なるツールが使用されたときにおける、エッチング速度モデルの平均値の誤差対測定エッチング速度の平均値を表している。グラフ292における丸印、四角形、及び頂点が左を差している三角形は、上記2つ以上の異なるツールではない独立ツールが使用されたときにおける、エッチング速度モデルの平均値の誤差対測定エッチング速度の平均値を表している。
【0141】
図7Aは、グラフの実施形態302及び304を示している。グラフ302及びグラフ304は、それぞれ、yMHzRF発生器が稼働しておりxMHzRF発生器及びzMHzRF発生器が稼働していないときにおける、ERMDを使用して測定された平均エッチング速度対モデル化エッチング速度をプロットしたものである。測定エッチング速度は、y軸にプロットされ、モデル化エッチング速度は、x軸にプロットされている。グラフ302における星印「*」は、3つの異なるツールが使用されたときにおける、平均測定エッチング速度対モデル化エッチング速度を表している。グラフ302における丸印は、上記3つのツールではない独立ツールが使用されたときにおける、測定エッチング速度対モデル化エッチング速度を表している。なお、グラフ302における星印「*」が概ね直線に適合することが、留意されるべきである。グラフ304は、グラフ302の一部分を拡大したものである。
【0142】
図7Bは、グラフの実施形態306及び308を示している。グラフ306及びグラフ308は、それぞれ、zMHzRF発生器が稼働しておりxMHzRF発生器及びyMHzRF発生器が稼働していないときにおける、ERMDを使用して測定された平均エッチング速度対モデル化エッチング速度をプロットしたものである。グラフ306における星印「*」は、3つの異なるツールが使用されたときにおける、測定エッチング速度対モデル化エッチング速度を表している。グラフ306における丸印は、上記3つのツールではない独立ツールが使用されたときにおける、測定エッチング速度対モデル化エッチング速度を表している。なお、グラフ306における星印「*」が概ね直線に適合することが、留意されるべきである。グラフ308は、グラフ306の一部分を拡大したものである。
【0143】
一部の実施形態では、複素インピーダンスセンサをRF発生器の出力に接続する代わりに、複素インピーダンスセンサは、RF発生器の出力に接続されたインピーダンス整合回路の入力に接続される。これらの実施形態では、上記インピーダンス整合回路の入力に、周波数センサが接続される。
【0144】
一部の実施形態では、複素インピーダンスセンサをRF発生器の出力に接続する代わりに、複素インピーダンスセンサは、RF発生器の出力に接続されたインピーダンス整合回路の出力に接続される。これらの実施形態では、上記インピーダンス整合回路の出力に、周波数センサが接続される。
【0145】
上述された実施形態は、エッチング速度の観点から説明されているが、様々な実施形態において、エッチング速度の代わりにスパッタリング速度を使用することが可能である。例えば、一部の実施形態では、スパッタリング速度とエッチング速度とが、本明細書において区別なく使用される。
【0146】
上記の実施形態は、RF発生器の出力における複素電圧・電流に言及して説明されているが、上記の実施形態は、インピーダンス整合回路104(図2A図2B)の入力における複素電圧・電流にも、並びにインピーダンス整合回路156(図4A図4B)の入力における複素電圧・電流にも等しく適用されることが、留意されるべきである。例えば、出力102において測定される複素電圧・電流は、インピーダンス整合回路104の入力161における複素電圧・電流と同じである(図2A図4A)。別の例として、出力160(図2B図4B)において測定される複素電圧・電流は、インピーダンス整合回路104の入力161(図2B図4B)における複素電圧・電流と同じである。更に別の例として、出力102において決定される複素電圧・電流に基づいて決定されるモデルエッチング速度は、入力161におけるモデルエッチング速度と同じである。
【0147】
更に、上述された動作は、例えば容量結合プラズマチャンバなどの平行平板プラズマチャンバに言及して説明されているが、一部の実施形態では、上述された動作は、例えばICPリアクタ、TCPリアクタ、導体ツール、誘電体ツールを含むプラズマチャンバや、ECRリアクタを含むプラズマチャンバなどの、その他のタイプのプラズマチャンバにも適用されることが、留意されるべきである。例えば、xMHzRF発生器、yMHzRF発生器、及びzMHzRF発生器は、ICPプラズマチャンバ内で導体に接続される。
【0148】
また、上記の動作は、プロセッサ128(図2A図2B図4A、及び図4B)によって実施されるものとして説明されているが、一部の実施形態では、上記の動作は、ホストシステム130の1つ以上のプロセッサによって、又は複数のホストシステムの複数のプロセッサによって、又はRF発生器のDSPとホストシステムのプロセッサとの組み合わせによって実施されてよいことが、留意されるべきである。
【0149】
上述された実施形態は、プラズマチャンバのチャックの下部電極にRF信号を提供すること、及びプラズマチャンバの上部電極を接地することに関連しているが、幾つかの実施形態では、RF信号が上部電極に提供される一方で下部電極が接地されることが、留意されるべきである。
【0150】
本明細書で説明される実施形態は、ハンドヘルドデバイス、マイクロプロセッサシステム、マイクロプロセッサベースの若しくはプログラム可能な家庭用電子機器、ミニコンピュータ、メインフレームコンピュータなどを含む様々なコンピュータシステム構成で実施されてよい。これらの実施形態は、また、ネットワークを通じてリンクされた遠隔処理装置によってタスクを実施される分散コンピューティング環境のなかでも実施することができる。
【0151】
上記の実施形態を念頭におくと、これらの実施形態は、コンピュータシステムに記憶されたデータを伴う様々なコンピュータ実行動作を利用できることが、理解されるべきである。これらの動作は、物理量の物理的操作を必要とする動作である。本明細書で説明されて実施形態の一部を構成しているいずれの動作も、有用なマシン動作である。実施形態は、これらの動作を実施するためのデバイス又は装置にも関する。装置は、特殊用途コンピュータ用に特別に構築されてよい。特殊用途コンピュータとして定義されるときは、そのコンピュータは、特殊用途のために動作可能でありつつも、特殊用途の一部ではないその他の処理、プログラム実行、又はルーチンも実施することができる。或いは、動作は、コンピュータメモリやキャッシュに記憶された又はネットワークを通じて得られる1つ以上のコンピュータプログラムによって選択的にアクティブにされる又は構成される汎用コンピュータによって処理されてよい。ネットワークを通じてデータが得られるときは、そのデータは、例えばコンピューティングリソースのクラウドなどの、ネットワーク上のその他のコンピュータによって処理されてよい。
【0152】
1つ以上の実施形態を、非一時的なコンピュータ可読媒体上のコンピュータ可読コードとして作成することも可能である。非一時的なコンピュータ可読媒体は、コンピュータシステムによって後ほど読み取り可能なデータを記憶させることができる例えばメモリデバイスなどの任意のデータストレージハードウェアユニットである。非一時的なコンピュータ可読媒体の例には、ハードドライブ、ネットワーク接続ストレージ(NAS)、ROM、RAM、コンパクトディスクROM(CD−ROM)、一度のみ記録可能なCD(CD−R)、書き換え可能なCD(CD−RW)、磁気テープ、並びにその他の光及び非光データストレージハードウェアユニットがある。非一時的なコンピュータ可読媒体としては、コンピュータ可読コードが分散方式で記憶及び実行されるようにネットワーク結合コンピュータシステムに分散されたコンピュータ可読有形媒体が挙げられる。
【0153】
方法動作は、特定の順序で説明されたが、オーバーレイ動作の処理が所望の形で実施される限り、動作と動作の間にハウスキーピング動作が実施されてもよいこと、僅かに異なる時点において発生するように動作が調整されてよいこと、又は処理に関連付けられた様々な間隔での処理動作の発生を可能にするシステムのなかに動作が分散されてよいことが、理解されるべきである。
【0154】
いずれの実施形態からの1つ以上の特徴も、本開示に記載された様々な実施形態で説明される範囲から逸脱することなくその他の実施形態の1つ以上の特徴と組み合わされてよい。
【0155】
以上の発明は、理解を明瞭にする目的で、幾らか詳細に説明されてきたが、添付の特許請求の範囲内で、特定の変更及び修正が可能であることが明らかである。したがって、これらの実施形態は、例示的且つ非限定的であると見なされ、これらの実施形態は、本明細書で与えられた詳細に限定されず、添付の特許請求の範囲及びそれらの均等物の範囲内で変更されてよい。
図1
図2A
図2B
図3
図4A
図4B
図5
図6
図7A
図7B