特許第6523601号(P6523601)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クリー インコーポレイテッドの特許一覧

<>
  • 特許6523601-強化型ドハティ増幅器 図000002
  • 特許6523601-強化型ドハティ増幅器 図000003
  • 特許6523601-強化型ドハティ増幅器 図000004
  • 特許6523601-強化型ドハティ増幅器 図000005
  • 特許6523601-強化型ドハティ増幅器 図000006
  • 特許6523601-強化型ドハティ増幅器 図000007
  • 特許6523601-強化型ドハティ増幅器 図000008
  • 特許6523601-強化型ドハティ増幅器 図000009
  • 特許6523601-強化型ドハティ増幅器 図000010
  • 特許6523601-強化型ドハティ増幅器 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6523601
(24)【登録日】2019年5月10日
(45)【発行日】2019年6月5日
(54)【発明の名称】強化型ドハティ増幅器
(51)【国際特許分類】
   H03F 1/07 20060101AFI20190527BHJP
   H03F 1/02 20060101ALI20190527BHJP
【FI】
   H03F1/07
   H03F1/02 188
【請求項の数】27
【全頁数】20
(21)【出願番号】特願2013-558027(P2013-558027)
(86)(22)【出願日】2012年2月28日
(65)【公表番号】特表2014-511166(P2014-511166A)
(43)【公表日】2014年5月12日
(86)【国際出願番号】US2012026850
(87)【国際公開番号】WO2012125279
(87)【国際公開日】20120920
【審査請求日】2014年7月24日
【審判番号】不服2017-5766(P2017-5766/J1)
【審判請求日】2017年4月21日
(31)【優先権主張番号】13/049,312
(32)【優先日】2011年3月16日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】592054856
【氏名又は名称】クリー インコーポレイテッド
【氏名又は名称原語表記】CREE INC.
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【弁理士】
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100162846
【弁理士】
【氏名又は名称】大牧 綾子
(72)【発明者】
【氏名】ペンゲリー,レイモンド・シドニー
【合議体】
【審判長】 北岡 浩
【審判官】 吉田 隆之
【審判官】 衣鳩 文彦
(56)【参考文献】
【文献】 国際公開第2010/003865(WO,A1)
【文献】 特開2004−173231(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03F
(57)【特許請求の範囲】
【請求項1】
強化型ドハティ増幅器であって、
入力信号を受け取り、前記入力信号を、キャリア側スプリッタ出力部から供給されるキャリア信号と、ピーキング側スプリッタ出力部から供給されるピーキング信号とに分割するように構成されるパワー・スプリッタと、
ドハティ組み合わせノードと、
キャリア電力増幅器回路と、前記キャリア側スプリッタ出力部と前記キャリア電力増幅器回路との間に結合されるキャリア入力回路網と、前記キャリア電力増幅器回路と前記ドハティ組み合わせノードに結合されるキャリア出力回路網とを含むキャリア経路と、
ピーキング電力増幅器回路と、前記ピーキング側スプリッタ出力部と前記ピーキング電力増幅器回路との間に結合されるピーキング入力回路網と、前記ピーキング電力増幅器回路と前記ドハティ組み合わせノードに結合されるピーキング出力回路網とを含むピーキング経路と
を含み、
前記キャリア入力回路網は、前記キャリア信号の位相を進めるように構成され、前記ピーキング入力回路網は、前記ピーキング信号の位相を遅らせるように構成され、それによって前記キャリア信号と前記ピーキング信号とがそれぞれ前記キャリア電力増幅器回路と前記ピーキング電力増幅器回路へ印加されたときに、前記ピーキング信号が前記キャリア信号から約90度遅れるようにし、前記キャリア出力回路網と前記ピーキング出力回路網とは、それぞれ、前記キャリア電力増幅器回路により増幅されたキャリア信号と前記ピーキング電力増幅器回路により増幅されたピーキング信号がドハティ組み合わせノードへ送られて、前記ドハティ組み合わせノードにおいて出力信号が生成されるように、補償済キャリア位相オフセット及び補償済ピーキング位相オフセットを与えるように構成され、前記補償済キャリア位相オフセットは、前記キャリア入力回路網により与えられた位相シフトを負にしたものから、キャリア位相オフセットを減算したものであり、前記補償済ピーキング位相オフセットは、前記ピーキング入力回路網により与えられた位相シフトを負にしたものから、ピーキング位相オフセットを減算したものであり、前記キャリア位相オフセットは、位相シフトであり、前記ピーキング位相オフセットは、位相シフトである、強化型ドハティ増幅器
【請求項2】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア入力回路網および前記キャリア出力回路網と、前記ピーキング入力回路網および前記ピーキング出力回路網とは、少なくとも二次の回路網である、強化型ドハティ増幅器。
【請求項3】
請求項2に記載の強化型ドハティ増幅器であって、前記キャリア入力回路網および前記キャリア出力回路網と、前記ピーキング入力回路網および前記ピーキング出力回路網とは、集中素子を含む集中素子回路網である、強化型ドハティ増幅器。
【請求項4】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア入力回路網および前記キャリア出力回路網と、前記ピーキング入力回路網および前記ピーキング出力回路網とは、集中素子を含む集中素子回路網である、強化型ドハティ増幅器。
【請求項5】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア入力回路網および前記キャリア出力回路網と、前記ピーキング入力回路網および前記ピーキング出力回路網とのそれぞれは、望まれる位相シフトを提供するように構成される伝送線を含まない、強化型ドハティ増幅器。
【請求項6】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア入力回路網は前記キャリア信号の位相を約45度進め、前記ピーキング入力回路網は前記ピーキング信号の位相を約45度遅らせ、前記キャリア信号と前記ピーキング信号とがそれぞれ前記キャリア電力増幅器回路と前記ピーキング電力増幅器回路とへ印加されたときに、前記ピーキング信号の位相が前記キャリア信号の位相より約90度遅れているようにする、強化型ドハティ増幅器。
【請求項7】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア入力回路網は前記キャリア信号の位相を約45度進め、前記ピーキング入力回路網は前記ピーキング信号の位相を約45度遅らせ、前記キャリア信号と前記ピーキング信号とがそれぞれ前記キャリア電力増幅器回路と前記ピーキング電力増幅器回路とへ印加されたときに、前記ピーキング信号の位相が前記キャリア信号の位相より約90度遅れているようにする、強化型ドハティ増幅器。
【請求項8】
請求項1に記載の強化型ドハティ増幅器であって、前記パワー・スプリッタは、前記入力信号を受け取り、前記入力信号を、均等に、前記キャリア信号と前記ピーキング信号とに分割し、前記キャリア信号と前記ピーキング信号とがほぼ同じパワーと関連するように構成される、強化型ドハティ増幅器。
【請求項9】
請求項1に記載の強化型ドハティ増幅器であって、前記パワー・スプリッタは、前記入力信号を受け取り、前記入力信号を、不均等に、前記キャリア信号と前記ピーキング信号とに分割し、前記キャリア信号と前記ピーキング信号とがほぼ同じパワーと関連しないように構成される、強化型ドハティ増幅器。
【請求項10】
請求項9に記載の強化型ドハティ増幅器であって、前記キャリア信号は約−1.7dBの分割と関連し、前記ピーキング信号は約−4.7dBの分割と関連する、強化型ドハティ増幅器。
【請求項11】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア電力増幅器回路は、A/B級増幅器およびB級増幅器のうちの1つであり、前記ピーキング電力増幅器回路はC級増幅器である、強化型ドハティ増幅器。
【請求項12】
請求項1に記載の強化型ドハティ増幅器であって、
前記キャリア入力回路網は、前記キャリア側スプリッタ出力部と前記キャリア電力増幅器回路との間でのインピーダンス整合を提供し、
前記キャリア出力回路網は、前記キャリア電力増幅器回路と前記ドハティ組み合わせノードとの間でのインピーダンス整合を提供し、
前記ピーキング入力回路網は、前記ピーキング側スプリッタ出力部と前記ピーキング電力増幅器回路との間でインピーダンス整合を提供し、
前記ピーキング出力回路網は、前記ピーキング電力増幅器回路と前記ドハティ組み合わせノードとの間でのインピーダンス整合を提供する、
強化型ドハティ増幅器。
【請求項13】
請求項1に記載の強化型ドハティ増幅器であって、前記強化型ドハティ増幅器の周波数応答が、第1周波数範囲の第1通信帯域のための第1通過帯域と、前記第1通過帯域から分離している第2周波数範囲の第2通信帯域のための第2通過帯域とを提供するように構成される、強化型ドハティ増幅器。
【請求項14】
請求項13に記載の強化型ドハティ増幅器であって、前記入力信号のレベルが所定の閾値より下である第1領域では、前記キャリア電力増幅器回路のみをターンオンし、前記入力信号のレベルが前記所定の閾値以上である第2領域では、前記キャリア電力増幅器回路と前記ピーキング電力増幅器回路をターンオンするように構成される、強化型ドハティ増幅器。
【請求項15】
請求項13に記載の強化型ドハティ増幅器であって、前記周波数応答は、前記第1通過帯域と前記第2通過帯域との間に低下部分を提供する、強化型ドハティ増幅器。
【請求項16】
請求項13に記載の強化型ドハティ増幅器であって、前記第1通信帯域は、PCS帯域とUMTS帯域とGSM帯域とのうちの1つであり、前記第2通信帯域は、LTE帯域とWiMax帯域とのうちの1つである、強化型ドハティ増幅器。
【請求項17】
請求項13に記載の強化型ドハティ増幅器であって、前記第1通信帯域は、所与の通信標準に対する1つの通信帯域であり、前記第2通信帯域は、前記所与の通信標準に対する別の通信帯域である、強化型ドハティ増幅器。
【請求項18】
請求項1に記載の強化型ドハティ増幅器であって、前記所与の通信標準は、GSM、PCS、UMTS、LTE、およびWiMaxの標準のうちの1つである、強化型ドハティ増幅器。
【請求項19】
請求項13に記載の強化型ドハティ増幅器であって、前記第1通信帯域と前記第2通信帯域との双方における無線周波数信号を増幅するときに、前記強化型ドハティ増幅器により、少なくとも15%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での45%より高い効率とが提供される、強化型ドハティ増幅器。
【請求項20】
請求項19に記載の強化型ドハティ増幅器であって、前記第1通信帯域と前記第2通信帯域とは少なくとも300MHz分離されている、強化型ドハティ増幅器。
【請求項21】
請求項1に記載の強化型ドハティ増幅器であって、無線周波数信号を増幅するときに、前記強化型ドハティ増幅器により、少なくとも15%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での40%より高い効率とが提供される、強化型ドハティ増幅器。
【請求項22】
請求項1に記載の強化型ドハティ増幅器であって、無線周波数信号を増幅するときに、前記強化型ドハティ増幅器により、少なくとも20%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での35%より高い効率とが提供される、強化型ドハティ増幅器。
【請求項23】
請求項1に記載の強化型ドハティ増幅器であって、無線周波数信号を増幅するときに、前記強化型ドハティ増幅器により、少なくとも20%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での40%より高い効率とが提供される、強化型ドハティ増幅器。
【請求項24】
請求項1に記載の強化型ドハティ増幅器であって、無線周波数信号を増幅するときに、前記強化型ドハティ増幅器により、少なくとも10%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での45%より高い効率とが提供される、強化型ドハティ増幅器。
【請求項25】
請求項1に記載の強化型ドハティ増幅器であって、無線周波数信号を増幅するときに、前記強化型ドハティ増幅器により、少なくとも250MHzの瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での40%より高い効率とが提供される、強化型ドハティ増幅器。
【請求項26】
請求項1に記載の強化型ドハティ増幅器であって、前記キャリア位相オフセットは、前記キャリア電力増幅器回路の出力におけるインピーダンスによる位相シフトであり、前記インピーダンスは、前記キャリア電力増幅器回路の出力と、前記ドハティ組み合わせノードとの間に結合される無効成分により生成される、強化型ドハティ増幅器。
【請求項27】
請求項1に記載の強化型ドハティ増幅器であって、前記ピーキング位相オフセットは、前記ピーキング電力増幅器回路の出力におけるインピーダンスによる位相シフトであり、前記インピーダンスは、前記ピーキング電力増幅器回路の出力と、前記ドハティ組み合わせノードとの間に結合される無効成分により生成される、強化型ドハティ増幅器
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 本開示は電力増幅器に関し、より特定的には、より広い帯域にわたって従来のドハティ増幅器よりも効率的に動作することができるドハティ増幅器に関する。
【背景技術】
【0002】
[0002] 現在のモバイル通信システムは進化し、新たな通信システムが開発されているので、より広い周波数範囲にわたって動作でき且つより強力で効率的である電力増幅器が必要とされている。これらの通信システムの多くは、モバイル・デバイスと、バッテリ給電型の基地局などのようなアクセス・ポイントとを用いる。そのような通信デバイスでは、より効率的な電力増幅器を用いることにより、バッテリ充電までの間の動作時間を長くすることができる。
【0003】
[0003] 更に、モバイル・デバイスと、特にアクセス・ポイントとは、それらのサイズが小型化されてきたが、小型化と同時にそれらの伝送パワー・レベルは増加し続けている。パワー・レベルが増加すると、一般に、増幅中に生成される熱の量が増加する。従って、設計者は、小型化された通信デバイスから多量の熱を放散すること、または通信デバイス内の電力増幅器により生成される熱の量を低減することの問題に直面する。より効率的な電力増幅器が好ましい。なぜなら、そのような電力増幅器が生成する熱は、効率の低い電力増幅器が対応するパワー・レベルで生成する熱よりも少ないからであり、従って、動作中に放散する熱の量を低減するからである。
【0004】
[0004] 効率に対しての要求が高くなっているので、ドハティ増幅器が、モバイル通信での応用、特に基地局での応用において、一般的に使用される電力増幅器となった。ドハティ増幅器は、その競争相手となる増幅器よりも効率が高いが、動作帯域が比較的に限定されたものとなっている。例えば、良好に設計されたドハティ増幅器は、5パーセントの瞬時帯域幅を提供し、これは2GHzの信号に関しては約100MHzに対応し、信号通信帯域をサポートするために一般的には十分である。例えば、ユニバーサル・モバイル・テレコミュニケーションズ・システム(Universal Mobile Telecommunications System)(UMTS)のデバイスは、2.11GHzから2.17GHzの間の帯域で動作し、従って、60MHzの瞬時帯域幅(2.17GHz−2.11GHz)を必要とする。ドハティ増幅器は、UMTSの帯域に対する60MHzの瞬時帯域幅をサポートするように構成できる。従って、1つの通信帯域のみをサポートする必要のある通信デバイスに関して、ドハティ増幅器の動作帯域が限定されていることが問題にはならない。
【0005】
[0005] しかし、現在の通信デバイスは、広い範囲の動作周波数にわたって様々な変調技術を用いる様々な通信標準をサポートすることを要求される場合が多い。それらの標準には、Global System for Mobile Communications(GSM)、Personal Communication Service(PCS)、Universal Mobile Telecommunications Systems(UMTS)、Worldwide Interoperability for Microwave Access(WiMAX)、Long Term Evolution(LTE)などがあるが、これらには限定されない。
【0006】
[0006] これらの標準の動作帯域は、消費者用の電気通信の応用に対しては約800MHzないし4GHzであり、軍事的な応用に対しては20MHzないし6GHzである。GSM標準のみでも、約800MHzないし2GHzの範囲の帯域を用いる。例えば、GSM−850は824〜894MHzの帯域を使用し、GSM−900は890〜960MHzの帯域を使用し、GSM−1800は1710〜1880MHzの帯域を使用し、GSM−1900は1850〜1990MHzの帯域を使用する。UMTSは2.11〜2.17GHzの帯域を使用する。LTEは2.6〜2.7GHzの帯域を使用し、WiMAXは2.3、2.5、3.3、および3.5GHzを中心とする帯域を使用する。従って、複数の通信帯域をサポートする必要のあるデバイスに対して、ドハティ増幅器は不十分である。
【0007】
[0007] 異なる通信帯域にわたって複数の標準をサポートする通信デバイスに関して、設計者は、様々な通信帯域のそれぞれに対して複数の電力増幅器のチェーンを用いることが多いが、これは通信デバイスの寸法、費用、および複雑性を増加させる。従って、現在の設計のドハティ電力増幅器が有する効率を維持しつつ、広い周波数範囲にわたって分かれている複数の通信帯域をサポートするために、ドハティ電力増幅器の有効動作範囲を増加させる必要がある。
【発明の概要】
【0008】
[0008] 本開示は、従来のドハティ増幅よりも性能を大幅に向上させた強化型のドハティ増幅器に関する。強化されたドハティ増幅器は、パワー・スプリッタと、組み合わせノードと、キャリア経路(carrier path)と、ピーキング経路(peaking path)とを含む。パワー・スプリッタは、入力信号を受け取り、その入力信号を、キャリア側スプリッタ出力部から供給するキャリア信号と、ピーキング側スプリッタ出力部から供給するピーキング信号とに分割するように構成される。キャリア経路は、キャリア電力増幅器回路と、キャリア側スプリッタ出力部とキャリア電力増幅器回路との間に結合されるキャリア入力回路網と、キャリア電力増幅器回路とドハティ組み合わせノードとの間に結合されるキャリア出力回路網とを含む。ピーキング経路は、ピーキング電力増幅器回路と、ピーキング側スプリッタ出力部とピーキング電力増幅器回路との間に結合されるピーキング入力回路網と、電力増幅器回路とドハティ組み合わせノードとの間に結合されるキャリア出力回路網とを含む。
【0009】
[0009] 1つの実施形態では、キャリア入力回路網とピーキング入力回路網とは、キャリア信号とピーキング信号とがそれぞれキャリア電力増幅器回路とピーキング電力増幅器回路とへ印加されたときに、ピーキング信号をキャリア信号より約90度遅れさせる位相シフトを行うように構成される。キャリア出力回路網とピーキング出力回路網とは、更なる位相シフトを行い、ピーキング信号とキャリア信号とが、ドハティ組み合わせノードへ到達して反応性の組み合わせ(reactive combining)を行って出力信号を生成するように、構成される。キャリア入力回路網およびキャリア出力回路網と、ピーキング入力回路網およびピーキング出力回路網とは、集中定数素子(lumped element)を含むことができ、伝送線を含む必要はない。従って、これらの回路網は、強化されたドハティ増幅器の全体にわたる改善された性能特性を提供するための1つのグループとして総合的に扱うことができる。
【0010】
[0010] 当業者であれば、以下の詳細な説明を添付の図面と関連させて読んだ後に、本開示の範囲を理解でき、本開示の更なる面を認識できる。
【0011】
[0011] ここでの詳述に含まれ、その一部を形成する添付の図面は、本開示における幾つかの構成を示すものであり、以下の説明と共に、ここで開示する原理を説明するために用いる。
【図面の簡単な説明】
【0012】
図1図1は、従来のドハティ増幅器の概略図である。
図2図2は、従来のドハティ増幅器のキャリア増幅器回路とピーキング増幅器回路との入力パワー対出力パワーのグラフである。
図3図3Aは、典型的な(ドハティではない)電力増幅器の効率対出力パワーのグラフである。図3Bは、従来のドハティ増幅器の効率対出力パワーのグラフである。
図4図4Aは、広帯域の(ドハティではない)電力増幅器の利得対周波数のグラフである。図4Bは、広帯域増幅器を用いる従来のドハティ増幅器の利得対周波数のグラフである。
図5図5は、本開示の1つの実施形態に従った、強化型ドハティ増幅器の概略図である。
図6A図6Aは、第1の構成の図5の強化型ドハティ増幅器の効率対周波数のグラフである。
図6B図6Bは、第1の構成の図5の強化型ドハティ増幅器のピーク出力パワー対周波数のグラフである。
図7A図7Aは、第2の構成の図5の強化型ドハティ増幅器の効率対周波数のグラフである。
図7B図7Bは、第2の構成の図5の強化型ドハティ増幅器のピーク出力パワー対周波数のグラフである。
図8図8は、本開示の別の実施形態に従った、強化型ドハティ増幅器の概略図である。
【発明を実施するための形態】
【0013】
[0024] 以下で説明する実施形態は、ここで開示されたものを当業者が実施できるようにするために必要な情報であり、開示されたものを実施する際の最適の実施形態を例示する。当業者であれば、添付の図面を参照して以下の説明を読むことにより、本開示の概念を理解し、それらの概念の、ここでは特定的に説明しない応用についても認識するであろう。それらの概念および応用は、本開示および特許請求の範囲の範囲内にあることを理解すべきである。
【0014】
[0025] 本開示は、ドハティ電力増幅器の動作帯域を増加させることと関連する。ドハティ電力増幅器の動作の帯域幅を増加させるための変更についての詳細を探求する前に、図1を参照して従来のドハティ電力増幅器10を概略的に説明する。示されているように、変調されたRF入力信号RFINが、ウィルキンソン(Wilkinson)・スプリッタなどのようなパワー・スプリッタ12へ供給され、パワー・スプリッタは、RF入力信号RFINを、「キャリア経路」と「ピーキング経路」とに沿って供給されるように分割する。伝統的には、RF入力信号RFINは均等に分割され、キャリア経路とピーキング経路とは、RF入力信号RFINの元の入力パワーの半分(−3dB)を受け取る。
【0015】
[0026] 一般に、キャリア経路は、キャリア電力増幅器回路(PA)14と、それに続く第1伝送線(TL)16とを含み、この伝送線は、動作帯域の中心周波数またはその近くで90度の位相シフトを提供するサイズとされている。キャリア経路はドハティ組み合わせノード18で終わり、ドハティ組み合わせノード18は変成器(transformer)24と結合され、変成器24は最終的にアンテナ(示さず)と結合される。ピーキング経路は第2伝送線(TL)20を含み、この伝送線は、動作帯域の中心周波数またはその近くで90度の位相シフトを提供するサイズとされており、この伝送線の後にはピーキング電力増幅器回路(PA)が続く。従って、キャリア経路とピーキング経路との双方に沿って供給されたRF入力信号RFINは、それぞれにキャリア電力増幅器回路14とピーキング電力増幅器回路22とで増幅されたときに、互いに位相が90度ずれている。キャリア経路と同様に、ピーキング経路はドハティ組み合わせノード18で終わる。注目すべきこととして、パワー・スプリッタ12は、それ自体が、ピーキング経路への供給を行う脚部により90度の位相シフトを提供することもできる。その場合、第2伝送線20は含まれない。
【0016】
[0027] 従来のドハティ様式では、キャリア電力増幅器回路14はA/B(またはB)級増幅器を提供し、ピーキング電力増幅器回路22はC級増幅器を提供する。動作中、RF入力信号RFINは分割され、キャリア経路とピーキング経路とに沿って、それぞれにキャリア電力増幅器回路14とピーキング電力増幅器回路22とへ送られる。注目すべきこととして、第2伝送線20は、RF入力信号RFINのピーキング経路内にある部分を、ピーキング電力増幅器回路22へ到達する前に90度遅延させる。
【0017】
[0028] 一般に、ドハティ増幅器は、2つの動作領域を有するものと考えられている。第1領域では、キャリア電力増幅器回路14のみがターンオンされ、RF入力信号RFINを増幅するように動作する。第2領域では、キャリア電力増幅器回路14とピーキング電力増幅器回路22との双方が動作して、キャリア経路とピーキング経路とのそれぞれにおいてRF入力信号RFINを増幅する。2つの領域の間の閾値は、キャリア電力増幅器回路14が飽和するキャリア経路内のRF入力信号RFINの大きさに対応する。第1領域では、RF入力信号RFINのレベルは閾値未満である。第2領域では、RF入力信号RFINのレベルは閾値以上である。
【0018】
[0029] RF入力信号RFINのレベルが所与の閾値より下である第1領域において、キャリア電力増幅器回路14は、RF入力信号RFINのキャリア経路内にある部分を増幅する。RF入力信号RFINが所与の閾値より下であるとき、ピーキング電力増幅器回路22はターンオフされており、その消費電力は僅かなものである。従って、キャリア電力増幅器回路14のみが、増幅されたRF入力信号RFINをドハティ組み合わせノード18および変成器24へ供給して、RF出力信号RFOUTを提供する。ドハティ増幅器の全体的な効率は、主に、キャリア電力増幅器回路14のAB(またはB)級増幅器の効率により決まる。
【0019】
[0030] RF入力信号RFINが所与の閾値以上である第2領域において、キャリア電力増幅器回路14は飽和し、その最大パワーを、第1伝送線16を介してドハティ組み合わせノード18へ送る。更に、RF入力信号RFINが所与の閾値より高くなるので、ピーキング電力増幅器回路22がターンオン状態となり、RF入力信号RFINのピーキング経路に沿って流れる部分の増幅を開始する。RF入力信号RFINが所与の閾値より高くなり続けると、ピーキング電力増幅器回路22は、ピーキング電力増幅器回路22が飽和するまで、より多くのパワーをドハティ組み合わせノード18へ送る。
【0020】
[0031] 第2領域では、キャリア電力増幅器回路14とピーキング電力増幅器回路22との双方が、増幅された信号をドハティ組み合わせノード18へ送る。キャリア経路とピーキング経路とにおいて第1伝送線16と第2伝送線20とを用いることにより、それぞれの経路内の増幅された信号は、同相でドハティ組み合わせノード18へ到達して反応的に組み合わされる(reactively combined)。組み合わされた信号は、次に、変成器24により段階的に増大または減少させられて、増幅されたRF出力信号RFOUTが生成される。
【0021】
[0032] 図2のグラフは、キャリア電力増幅器回路14と、ピーキング電力増幅器回路22と、ドハティ増幅器10全体との出力パワー(P)対入力パワー(P)を描いたものである。示されているように、キャリア電力増幅器回路14は、飽和するまで、第1領域R1全体において線形的に動作する。キャリア電力増幅器回路14が飽和状態に達すると、第2領域R2へ入る。第2領域R2では、ピーキング電力増幅器回路22がターンオンとなり、RF入力信号RFINの増幅を開始する。第2領域R2におけるドハティ増幅器の全体的な出力パワーは、事実上、キャリア電力増幅器回路14とピーキング電力増幅器回路22との出力パワーの和である。
【0022】
[0033] 第2領域R2において動作するとき、ピーキング電力増幅器回路22により供給されるパワーは、事実上、キャリア電力増幅器回路14に対する見掛け負荷インピーダンスを低下させる。見掛け負荷インピーダンスを低下させることにより、キャリア電力増幅器回路14が、飽和状態にとどまりながらも、より多くのパワーを負荷へ送ることを可能とされる。その結果、キャリア電力増幅器回路14の最大効率が維持され、ドハティ増幅器10の全体的効率は、ピーキング電力増幅器回路22が飽和状態になるまで、第2領域R2全体を通して高い状態で維持される。
【0023】
[0034] 図3Aおよび図3Bのグラフは、典型的な電力増幅器と典型的なドハティ増幅器とのそれぞれの効率対出力パワーを描いたものである。図3Aを参照すると、典型的な電力増幅器の効率ηは、電力増幅器が飽和してその最大出力パワーPMAXに到達するまで、出力パワーPに比例して増加する。図3Bに示すように、ドハティ増幅器10のキャリア電力増幅器回路14も同様に動作する。第1領域R1を通しての動作では、ピーキング電力増幅器回路22はオフの状態であり、RF入力信号RFINは、キャリア電力増幅器回路14が飽和する点へ向けて増加していく。第1領域R1全体において、キャリア電力増幅器回路14の効率、従って、ドハティ増幅器10の全体的効率ηは、キャリア電力増幅器回路14が所与の出力パワー・レベルにおいて飽和状態となるまで、出力パワーPに比例して増加していく。所与の出力パワー・レベルを、ここでは閾値パワー・レベルPTHと呼び、例示を目的として、ドハティ増幅器10の最大出力パワーPMAXの1/9の位置(1/9PMAX)に示している。
【0024】
[0035] RF入力信号RFINが、キャリア電力増幅器回路14が飽和状態となる点を超えて増加すると、ドハティ増幅器は第2領域R2へ入る。第2の領域へ入ると、ピーキング電力増幅器回路22がRF入力信号RFINの増幅を開始する。キャリア電力増幅器回路14は飽和状態を維持し、RF入力信号RFINの増幅を続ける。RF入力信号RFINが更に増加すると、ピーキング電力増幅器回路22は、ドハティ増幅器10の最大出力パワーPMAXのところで飽和状態になるまで、更に多くのパワーを送り出す。第2領域R2全体において、ドハティ増幅器10の全体的効率ηは高い状態で維持され、キャリア電力増幅器回路14の飽和状態が始まる第2領域R2の最初の部分と、ピーキング電力増幅器回路22が飽和状態となる第2領域R2の最後の部分とがピークとなる。図3Aおよび図3Bに明確に示されているように、ドハティ増幅器10では、閾値パワー・レベルPTHあたりから最大出力パワーPMAXまでのバックオフ・パワー・レベルでの、パワーを付加された効率が、典型的な電力増幅器と比べて大きく改善されている。
【0025】
[0036] 図1に戻る。例示されているドハティ増幅器10は、キャリア経路の第3伝送線26とピーキング経路の第4伝送線28とを有するものとして示されている。ピーキング電力増幅器回路22の変化する出力インピーダンスをキャリア電力増幅器回路14の出力インピーダンスへ適切にロードするようにするため、またはその逆のことを行う目的で、第3伝送線26と第4伝送線28とは、キャリア経路とピーキング経路との出力において位相のオフセットをもたらすために使用することができる。
【0026】
[0037] 上記で示したように、従来のドハティ増幅器10は、大きくバックオフされたパワー・レベルと最大パワー・レベルとの双方において非常に効率が高い。しかし残念ながら、従来のドハティ増幅器10の帯域は比較的限定されたものであり、使用可能な瞬時帯域幅は動作周波数の5%のみである。例えば、送信される信号の中心が約2.1GHzとなるように設計されたドハティ増幅器10では、使用可能な帯域幅は最大でも約105MHzである。
【0027】
[0038] 注目すべきこととして、キャリア電力増幅器回路14とピーキング電力増幅器回路22とは、従来のドハティ増幅器10の帯域幅を限定しない。たとえ、これらのキャリア電力増幅器回路14とピーキング電力増幅器回路22とが、広帯域増幅器として設計され、幾つかのオクターブの帯域幅を個々にサポートするとしても、従来のドハティ増幅器10の全体としての瞬時帯域幅は、なおも動作周波数の約5%に限定されるであろう。例えば、キャリア電力増幅器回路14とピーキング電力増幅器回路22とのそれぞれが、個々に使用可能な帯域幅を2GHzから4GHzの間とするように設計されたとしても、全体としてのドハティ増幅器10の瞬時帯域幅は、なおも動作周波数の約5%(2GHzでは100MHz、6GHzでは400MHz)に制限されるであろう。即ち、従来のドハティ増幅器10においてキャリア電力増幅器回路14とピーキング電力増幅器回路22との動作範囲をどのように広くしても、使用可能な帯域幅は、従来のドハティ増幅器10の他のコンポーネントにより制限される。
【0028】
[0039] 図4Aおよび図4Bは上記の概念を示す。図4Aは広帯域増幅器の利得対周波数を描き、図4Bは従来のドハティ増幅器10の利得対周波数を描くものであり、このドハティ増幅器10では、キャリア電力増幅器回路14とピーキング電力増幅器回路22との双方に同じ広帯域増幅器を使用している。示されているように、従来のドハティ増幅器10は、キャリア電力増幅器回路14とピーキング電力増幅器回路22とに広帯域増幅器を用いた場合でも、その帯域幅が、スタンドアローンの広帯域増幅器の帯域幅よりも大幅に限定されている。即ち、ドハティ増幅器10において単に広帯域増幅器を使用するだけでは、ドハティ増幅器10の帯域幅を必ずしも増加させるというものではない。
【0029】
[0040] 従来のドハティ増幅器10の帯域幅を限定させる主なコンポーネントは、パワー・スプリッタ12と、90度の位相シフトを提供する第1伝送線16および第2伝送線20と、位相オフセットを提供する第3伝送線26および第4伝送線28と、変成器24とであることが発見されている。本開示は、従来のドハティ増幅器10の全体としての帯域幅を大幅に増加させるための、従来のドハティ増幅器10の様々なコンポーネントの置換または変更のための技術を提供する。
【0030】
[0041] 強化されたドハティ増幅器30の一例を図5に示す。特定的には、変調されたRF入力信号RFINが、ウィルキンソン・スプリッタなどのようなパワー・スプリッタ32へ供給され、パワー・スプリッタ32は、RF入力信号RFINを、キャリア経路とピーキング経路とに沿って流れるように分割する。この例では、RF入力信号RFINは不均等に分割され、キャリア経路は、1.7dB減衰されたRF入力信号RFINの入力パワーを受け取り、ピーキング経路は、4.7dB減衰されたRF入力信号RFINの入力パワーを受け取る。このように不均等に分割することにより、均等に分割する場合と比べて、強化型ドハティ増幅器30の効率が更に高くなる。なお、均等に分割する場合、RF入力信号RFINは、キャリア経路とピーキング経路とで均等に分割される(−3dB)。
【0031】
[0042] キャリア経路は、キャリア入力回路網34と、キャリア電力増幅器回路(PA)36と、キャリア出力回路網38とを含む。キャリア経路はドハティ組み合わせノード40で終わり、ドハティ組み合わせノード40は更に変成器42へ結合され、変成器42は最終的にアンテナ(示さず)へ結合される。ピーキング経路は、ピーキング入力回路網44と、ピーキング電力増幅器回路(PA)46と、ピーキング出力回路網48とを含む。ピーキング経路はドハティ組み合わせノード40で終わる。
【0032】
[0043] この例では、パワー・スプリッタ32により供給される分割されたRF入力信号RFINは、実質的に同相で、キャリア入力回路網34とピーキング入力回路網44とへ供給される。換言すると、この例では、パワー・スプリッタは、ピーキング経路へ供給されるRF入力信号RFINへ90度の位相シフトを与えない。しかし、キャリア電力増幅器回路36とピーキング電力増幅器回路46とのそれぞれの入力へ供給されるRF入力信号RFINは、約90度シフトされる必要がある。一般に、ピーキング電力増幅器回路46の入力へ供給されるRF入力信号RFINは、キャリア電力増幅器回路36の入力へ供給されるRF入力信号RFINよりも約90度遅れている。
【0033】
[0044] 1つの実施形態では、キャリア入力回路網34とピーキング入力回路網44とは集中定数素子回路網であり、それらは、ピーキング電力増幅器回路46の入力へ供給されるRF入力信号RFINがキャリア電力増幅器回路36の入力へ供給されるRF入力信号RFINよりも約90度遅れることを確実なものとするように、設計されている。集中定数素子回路網は、一次のフィルタリングおよび位相シフトのためのコンポーネントとして、インダクタ、キャパシタ、および抵抗を含むものである。例示の実施形態では、キャリア入力回路網34は、キャリア経路内のRF入力信号RFINを45度(+45度)進め、ピーキング入力回路網44は、ピーキング経路内のRF入力信号RFINを45度(−45度)遅らせる。キャリア経路内のRF入力信号RFINを45度進め、ピーキング経路内のRF入力信号RFINを45度(−45度)遅らせることにより、ピーキング電力増幅器回路46の入力へ供給されるRF入力信号RFINは、キャリア電力増幅器回路36の入力へ供給されるRF入力信号RFINよりも約90度遅れる。
【0034】
[0045] キャリア入力回路網34とピーキング入力回路網44とのそれぞれにおける+45度と−45度との位相シフトについて説明したが、別の組み合わせの位相シフトも可能である。例えば、キャリア入力回路網34とピーキング入力回路網44とのそれぞれにおいて、+60度と−30度との位相シフトや、−50度と+40度との位相シフトなどを用いることもできる。
【0035】
[0046] 図5のキャリア入力回路網34は、直列キャパシタC、分路インダクタL、および直列キャパシタCを含むものとして示されている。ピーキング入力回路網44は、直列インダクタL、分路キャパシタC、および直列インダクタLを含むものとして示されている。当業者には理解できるように、これらの回路網は単なる例であり、これよりも高次(二次や三次)の様々な構成の回路網で実施することもできる。
【0036】
[0047] 図5の参照を続けると、キャリア出力回路網38は、キャリア電力増幅器回路36とドハティ組み合わせノード40との間に結合されている。同様に、ピーキング出力回路網48は、ピーキング電力増幅器回路46とドハティ組み合わせノード40との間に結合されている。キャリア出力回路網38とピーキング出力回路網48との主な機能は、キャリア入力回路網34とピーキング入力回路網44とにより与えられた位相シフトを取り除き、望まれる性能の計量値(metric)を達成するために必要と考えられる任意の位相オフセットを与えることである。キャリア出力回路網38とピーキング出力回路網48とを通過した後、キャリア経路およびピーキング経路からの増幅されたRF入力信号RFINは、位相が整合されてドハティ組み合わせノード40へ供給され、それにより、信号は、効率的に組み合わされ、変成器42により段階的に増大または減少させられる。増幅の後、ピーキング出力回路網48へ供給されるRF入力信号RFINは、キャリア出力回路網38へ供給されるRF入力信号RFINよりも約90度遅れている。示されている実施形態では、キャリア出力回路網38は、補償済キャリア位相シフトφC−COMPだけ、キャリア経路内のRF入力信号RFINを実効的にシフトする。
【0037】
[0048] 補償済キャリア位相シフトφC−COMPは、キャリア入力回路網34により与えられる位相シフト(φC−IP)を負にしたものから、キャリア位相オフセットφC−POを減算したものであり、φC−COMP=−φC−IP−φC−POとなる。この例では、キャリア入力回路網34により与えられる位相シフト(φC−IP)は+45度である。キャリア位相オフセットφC−POは、意図された動作周波数の範囲(1以上の範囲)でキャリア電力増幅器回路36の出力へ与えられるインピーダンスの無効成分に対応する。このインピーダンスは、実際には、意図された動作周波数の範囲(1以上の範囲)でキャリア出力回路網38、および変成器42により与えられる合成インピーダンスである。目的は、意図された動作周波数の範囲(1以上の範囲)でキャリア電力増幅器回路36の出力へ実質的な実インピーダンス(純粋な抵抗)を与えることである。
【0038】
[0049] 同様に、ピーキング出力回路網48は、ピーキング経路内のRF入力信号RFINを、補償済ピーキング位相シフトφP−COMPだけ実質的にシフトする。補償済ピーキング位相シフトφP−COMPは、ピーキング入力回路網44により与えられる位相シフト(φP−IP)を負にしたものから、ピーキング位相オフセットφP−POを減算したものであり、φP−COMP=−φP−IP−φP−POとなる。この例では、ピーキング入力回路網44により与えられる位相シフト(φP−IP)は−45度である。ピーキング位相オフセットφP−POは、意図された動作周波数の範囲(1以上の範囲)でピーキング電力増幅器回路46の出力へ与えられるインピーダンスの無効成分に対応する。このインピーダンスは、実際には、意図された動作周波数の範囲(1以上の範囲)でピーキング出力回路網48、および変成器42により与えられる合成インピーダンスである。目的は、意図された動作周波数の範囲(1以上の範囲)でピーキング電力増幅器回路46の出力へ実質的な実インピーダンス(純粋な抵抗)を与えることである。キャリア出力回路網38とピーキング出力回路網48とのそれぞれにおける+45度(φC−IP)と−45度(φP−IP)という基準の位相シフトについて説明したが、これらの位相シフトは、単に、キャリア入力回路網34とピーキング入力網44とのそれぞれにおいて与えられた位相シフトを反映させているだけである。上記のように、他の組み合わの位相シフトも可能である。
【0039】
[0050] 図5において、キャリア出力回路網38は、直列インダクタL、分路キャパシタC、および直列インダクタLを含むものとして示されている。ピーキング出力回路網48は、直列キャパシタC、分路インダクタL、および直列キャパシタCを含むものとして示されている。当業者には理解できるように、これらの回路網は単なる例であり、これよりも高次の様々な構成の回路網で実施することもできる。
【0040】
[0051] 示した実施形態では、キャリア電力増幅器回路36はA/B(またはB)級増幅器を提供し、ピーキング電力増幅器回路46はC級増幅器を提供する。これらの増幅器のそれぞれは、一般に、1以上のトランジスタから形成される。選択した実施形態では、増幅器は、窒化ガリウム(GaN)を用いる高電子移動度トランジスタ(HEMT)、ガリウム砒素(GAAs)または炭化シリコン(SiC)を用いる金属半導体電界効果トランジスタ(MESFET)、および横方向拡散金属酸化物半導体(laterally diffused metal oxide semiconductor)(LDMOS)のうちの1つから形成される。なお、当業者は、他の適用可能なトランジスタおよび材料系を適用できることを理解するであろう。
【0041】
[0052] 強化型ドハティ増幅器30の動作中、RF入力信号RFINはパワー・スプリッタ32により分割され、キャリア経路とピーキング経路とに沿って、キャリア電力増幅器回路36とピーキング電力増幅器回路46とのそれぞれへ送られる。キャリア経路内で、RF入力信号RFINは、キャリア電力増幅器回路36へ供給される前に、キャリア入力回路網34により45度進められる。ピーキング経路内で、RF入力信号RFINは、ピーキング電力増幅器回路46へ供給される前に、ピーキング入力回路網44により45度遅らされる。
【0042】
[0053] 上記のように、ドハティ増幅器は、特徴的に、2つの領域で動作する。第1領域では、キャリア電力増幅器回路36のみがターンオンされ、RF入力信号RFINを増幅するように動作する。第2領域では、キャリア電力増幅器回路36とピーキング電力増幅器回路46との双方が動作して、キャリア経路とピーキング経路とのそれぞれにおいてRF入力信号RFINを増幅する。2つの領域の間の閾値は、キャリア経路のRF入力信号RFINの大きさに対応し、その大きさのところでキャリア電力増幅器回路36は飽和する。第1領域では、RF入力信号RFINのレベルは閾値未満である。第2領域では、RF入力信号RFINのレベルは閾値以上である。
【0043】
[0054] RF入力信号RFINのレベルが所与の閾値より下である第1領域R1において、キャリア電力増幅器回路36は、RF入力信号RFINのキャリア経路内にある部分を増幅する。増幅されたRF入力信号RFINは、キャリア出力回路網38により補償済キャリア位相シフトφC−COMPたげシフトされ、ドハティ組み合わせノード40へ送られる。注目すべきこととして、RF入力信号RFINが所与の閾値より下であるとき、第1領域R1では、実際に、ピーキング経路を介してドハティ組み合わせノード40へ信号が提供されない。第1領域R1では、ピーキング電力増幅器回路46はターンオフされており、強化型ドハティ増幅器30の全体的な効率は、主に、キャリア電力増幅器回路36の効率により決まる。
【0044】
[0055] RF入力信号RFINが所与の閾値以上である第2領域において、キャリア電力増幅器回路36は飽和し、その最大パワーを、キャリア出力回路網38を介してドハティ組み合わせノード40へ送る。ここでも、増幅されたRF入力信号RFINは、キャリア出力回路網38により補償済キャリア位相シフトφC−COMPだけシフトされ、ドハティ組み合わせノード40へ送られる。
【0045】
[0056] 更に、RF入力信号RFINが所与の閾値より高くなるので、ピーキング電力増幅器回路46がターンオンされ、RF入力信号RFINのピーキング経路に沿って流れる部分の増幅を開始する。RF入力信号RFINが所与の閾値より高くなり続けると、ピーキング電力増幅器回路46は、ピーキング電力増幅器回路46が飽和するまで、より多くのパワーをドハティ組み合わせノード40へ送る。注目すべきこととして、ピーキング出力回路網48は、補償済ピーキング位相シフトφP−COMPだけ、ピーキング経路内のRF入力信号RFINを実際にシフトする。従って、キャリア経路とピーキング経路とのそれぞれからドハティ組み合わせノード40へ到達するRF入力信号RFINは、ドハティ組み合わせノード40において反応的に組み合わされ、次に、変成器24により段階的に増大または減少させられて、RF出力信号RFOUTが生成される。
【0046】
[0057] 従来のドハティ増幅器10(図1)と比較すると、強化型ドハティ増幅器30(図5)では、キャリア経路とピーキング経路との双方において、伝送線16、20、26、28を、入力回路網34、44および出力回路網38、48と効果的に置換している。キャリア経路およびピーキング経路において、集中定数素子ベースの入力回路網34、44および出力回路網38、48を用いることにより、強化型ドハティ増幅器30をバンドパス・フィルタとして見ること、およびバンドパス・フィルタとして統合する(synthesize)ことを可能とする。従って、個々の回路網と、パワー・スプリッタ32および変成器42とは、望まれる性能特性を得るために、バンドパス・フィルタが統合される場合と同様の様式で、強化型ドハティ増幅器30の一部として統合することができる。強化型ドハティ増幅器30の性能特性における主な関心事は、帯域、終端インピーダンス、パワー利得、および出力パワーを含む。
【0047】
[0058] 入力回路網34、44および出力回路網38、48は、伝送線16、20、26、28の振幅および位相の応答をエミュレートするように統合することができるが、そうした場合、強化型ドハティ増幅器30の性能を、従来のドハティ増幅器10の性能に限定することになる。性能を強化するために、入力回路網34、44および出力回路網38、48のオーダーおよび構成を、キャリア経路とピーキング経路との位相差を最適な状態に近づけるように、および入力と出力との整合性が更に良くなるように統合して、最大パワー・レベルおよびバックオフ・パワー・レベルにおいて望まれる性能特性を達成させる。注目すべきこととして、強化型ドハティ増幅器30の有効帯域幅は、従来のドハティ増幅器10で達成されたものよりも劇的に増加し、なおも、最大パワー・レベルおよびバックオフ・パワー・レベルにおいて高効率を維持する。
【0048】
[0059] 帯域幅が増加することを利用して、1つの強化型ドハティ増幅器30が、異なる周波数帯域の複数の通信帯域をカバーすることや、所与の通信帯域に対しての使用可能な帯域幅を増加させて、高いデータ・レートおよび追加のチャンネルをサポートすることや、これらの両方を可能とすることができる。上記のように、従来のドハティ増幅器10の帯域幅は比較的限定されたものであり、使用可能な瞬時帯域幅は動作周波数の5%のみである。例えば、UMTSには、2.11および2.17GHzの周波数帯が割り当てられており、60MHzの最小帯域を必要とする。従来のドハティ増幅器10は、105MHzの帯域をサポートできるので、UMTS帯域に対処することができる。しかし、同じ増幅器回路を用いて、2.11から2.17GHzの間のUMTS帯域と、2.6から2.7GHzのLTE帯域とに対応する必要がある場合、本質的に600MHzの帯域幅が必要であり、明らかに、このような帯域幅の要求に対して従来のドハティ増幅器10は適合しない。強化型ドハティ増幅器30は、これらの要求に適合するように設計することができ、なおも、望ましい効率、利得、および出力パワーの要求を満たすことができる。
【0049】
[0060] 以下では、多くの例の中の2つの例を提供するが、それらの例では、強化型ドハティ増幅器30は、2.11ないし2.17GHzの帯域にあるUMTS帯域と、2.6ないし2.7GHzの帯域にあるLTE帯域との双方に対応するように構成される。第1の例では、強化型ドハティ増幅器30は、2.11から2.17GHzの間の600MHzの帯域を通して比較的均一な利得とバックオフ・パワー効率とを提供するように統合され、UMTS帯域とLTE帯域との双方をカバーする。図6Aは、6dBのバックオフ・パワー・レベルでの効率対周波数のグラフであり、図6Aに示されているように、強化型ドハティ増幅器30は、バックオフ・パワー・レベルにおいて、2.11ないし2.17GHzの周波数範囲の全体で効率が比較的均一となるように、統合することができる。しかし、増幅器の設計における帯域に関する能力は、最終的には、効率、利得、および出力パワーの競合する特性により決まるので、それらの特性の中でのバランス(compromise)が、常に、帯域に関する能力を決めることになる。この例では、バランスの結果として、LTE帯域(2.6〜2.7GHz)におけるピーク出力パワーが、UMTS帯域におけるピーク出力パワーと比較して、顕著に低下している。なお、この低下は許容可能なものである。この低下は、ピーク出力パワー対周波数が描かれている図6Bに示している。
【0050】
[0061] 第2の例も、UMTS帯域とLTE帯域との双方をサポートする必要があると想定しているが、UMTS帯域とLTE帯域との双方で動作しているときに、LTE帯域における追加の出力パワーと高い効率とが望まれている。更に、UMTS帯域とLTE帯域との間での効率、理解、および出力パワーは重要ではないか、またはUMTS帯域とLTE帯域との間(≒2.12ないし2.5GHz)の利得を意図的に低減することが望まれていると、想定する。入力回路網34、44および出力回路網38、48、そして可能性としてパワー・スプリッタ32および変成器42を適切に統合することにより、調整された応答を得ることができる。図7Aは、6dBのバックオフ・パワー・レベルでの効率対周波数を描いており、図7Aに示されているように、強化型ドハティ増幅器30は、UMTS帯域およびLTE帯域に対して最適化された効率的な応答を提供するように、統合することができる。従って、効率は、UMTS帯域とLTE帯域とのあたりでピークとなり、UMTS帯域とLTE帯域との間の使用しない周波数帯で大幅に落ちる。
【0051】
[0062] 同様に、図7Bに示されているように、UMTS帯域およびLTE帯域の周波数の関数としてのピーク出力パワー応答も最適化される。効率と同様に、UMTS帯域およびLTE帯域のピーク出力パワーは、第1の例(図6B)と比較して高められており、UMTS帯域とLTE帯域との間ではピーク出力パワー(そしておそらくは利得)が下降するようにされるか、またはゼロにされる。この下降部分も調整することができ、帯域間でのノイズや干渉を低減する手助けをすることができる。本質的には、強化型ドハティ増幅器30は、広帯域にわたる均一なパワーおよび効率と交換に、広い周波数範囲により分離された選択された通過帯域において格別の周波数およびピーク出力パワー応答を手に入れるように、調整することができる。
【0052】
[0063] UMTS帯域およびLTE帯域を例示したが、様々な標準のための別の通信帯域に関しても、同様の様式で考慮することができる。例えば、第1の通信帯域を、PCS帯域とUMTS帯域とGSM帯域とのうちの1つとし、第2の帯域を、LTE帯域とWiMax帯域とのうちの1つとすることができる。更に、これらの概念は、同じ標準における異なる通信帯域に対しても適用できる。例えば、1つの強化型ドハティ増幅器30を、2.5GHzのWiMax帯域と3.5GHzのWiMax帯域との双方をサポートするために使用することができる。また、所与の通過帯域を広げて、比較的近い通信帯域、例えば、1.8GHzのPCSと2.1GHzのUMTSとをサポートすることもできる。第2の例では2つの通信帯域のみを示したが、強化型ドハティ増幅器30は、3以上の帯域を同様の様式でサポートするように統合することができ、その様式では、望まれる場合に、また、望まれるように、バックオフのパワー効率、利得、または出力パワーにおける低下部分を提供できる。
【0053】
[0064] 入力回路網34、44および出力回路網38、48もまた、異なる通信帯域に対して異なる効率、利得、または出力パワーを有する応答が得られるように、統合することができる。例えば、200MHz、250MHz、300MHz、400MHz、500MHz、1GHz、または1GHzより大きい周波数だけ分離された通信帯域に関して、強化型ドハティ増幅器30は、高いバックオフ・パワー効率およびピーク出力パワーで、150MHz幅の低いほうの帯域をサポートし、僅かに低いバックオフ・パワー効率およびピーク出力パワーで、250MHz幅の高いほうの帯域をサポートすることができる。本質的に、強化型ドハティ増幅器30は、応答を多様に設定することを可能とし、なおも、広い周波数範囲にわたって、また、広い周波数範囲により分離された異なる通信帯域に対して、バックオフ・パワー・レベルおよび最大パワー・レベルにおいて効率を格別なものとする。従って、1つの電力増幅器のトポロジを用いて、複数の異なる通信帯域を効率的にサポートすることができる。
【0054】
[0065] 強化型ドハティ増幅器30はモジュール型であり、従って、高パワーでの応用では、1以上の他の強化型ドハティ増幅器30と並列にして使用することができる。図8に、例示的なモジュール型ドハティ構成50を示す。モジュール型ドハティ構成50では、上記と同様の利益と設定能力(configurability)とが得られる。モジュール型ドハティ構成50は、2つの強化型ドハティ・モジュール52A、52Bを含み、それらは図5のドハティ増幅器30に対応する。
【0055】
[0066] RF入力信号RFINが、ウィルキンソン・スプリッタなどのようなパワー・スプリッタ54へ供給され、パワー・スプリッタ54は、RF入力信号RFINを2つの経路に沿って流れるように分割する。第1の経路はパワー・スプリッタ32Aへと導くものであり、第2の経路はパワー・スプリッタ32Bへと導くものである。この実施形態では、RF入力信号RFINは2つの経路に対して均等に分割され、ドハティ・モジュール52A52Bのそれぞれは、それぞれのパワー・スプリッタ32A、32Bを介して、3dB減衰したRF入力信号RFINの入力パワーを受け取る。
【0056】
[0067] パワー・スプリッタ32A、32Bは、強化型ドハティ・モジュール52A52Bのそれぞれのキャリア経路とピーキング経路とに沿うように、RF入力信号RFINを分割する。この例では、RF入力信号RFINはパワー・スプリッタ32A、32Bにより不均等に分割され、キャリア経路は、更に1.7dB減衰したRF入力信号RFINの入力パワーを受け取り、ピーキング経路は、更に4.7dB減衰したRF入力信号RFINの入力パワーを受け取る。上記で説明したように、このように不均等に分割することにより、均等に分割した場合と比較して、強化型ドハティ増幅器の効率が更に向上する。
【0057】
[0068] 強化型ドハティ・モジュール52A、52Bのキャリア経路は、それぞれ、キャリア入力回路網34A、34Bと、キャリア電力増幅器回路(PA)36A、36Bと、キャリア出力回路網38A、38Bとを含む。キャリア経路はドハティ組み合わせノード40A、40Bで終わり、ドハティ組み合わせ40A、40Bは更にそれぞれ変成器42A、42Bへ結合される。ピーキング経路は、ピーキング入力回路網44A、44Bと、ピーキング電力増幅器回路(PA)46A、46Bと、ピーキング出力回路網48A、48Bとを含む。ピーキング経路は、それぞれ、ドハティ組み合わせノード40A、40Bで終わる。
【0058】
[0069] パワー・スプリッタ32A、32Bにより提供される分割されたRF入力信号RFINは、キャリア入力回路網34A、34Bおよびピーキング入力回路網44A、44Bへ、実質的に同相で供給される。1つの実施形態では、キャリア入力回路網34A、34Bおよびピーキング入力回路網44A、44Bは集中定数素子回路網であり、それらは、ピーキング電力増幅器回路46A、46Bの入力へ供給されるRF入力信号RFINがキャリア電力増幅器回路36A、36Bの入力へ供給されるRF入力信号RFINよりも約90度遅れることを確実なものとするように、設計されている。例示の実施形態では、キャリア入力回路網34A、34Bは、キャリア経路内のRF入力信号RFINを45度(+45度)進め、ピーキング入力回路網44A、44Bは、ピーキング経路内のRF入力信号RFINを45度(−45度)遅らせる。キャリア経路内のRF入力信号RFINを45度進め、ピーキング経路内のRF入力信号RFINを45度(−45度)遅らせることにより、ピーキング電力増幅器回路46A、46Bの入力へ供給されるRF入力信号RFINは、キャリア電力増幅器回路36A、36Bの入力へ供給されるRF入力信号RFINよりも約90度遅れる。キャリア入力回路網34A、34Bとピーキング入力回路網44A、44Bとのそれぞれにおける+45度と−45度との位相シフトについて説明したが、別の組み合わせの位相シフトも可能である。
【0059】
[0070] キャリア出力回路網38A、38Bは、それぞれ、キャリア電力増幅器回路36A、36Bとドハティ組み合わせ40A、40Bとの間に結合される。同様に、ピーキング出力回路網48A、48Bは、それぞれ、ピーキング電力増幅器回路46A、46Bとドハティ組み合わせ40A、40Bとの間に結合される。キャリア出力回路網38、A38Bとピーキング出力回路網48A、48Bとの主な機能は、キャリア入力回路網34A、34Bとピーキング入力回路網44A、44Bとにより与えられた位相シフトを取り除き、望まれる性能の計量値(metric)を達成するために必要と考えられる任意の位相オフセットを与えることである。キャリア出力回路網38A、38Bとピーキング出力回路網48A、48Bとを通過した後、キャリア経路およびピーキング経路からの増幅されたRF入力信号RFINは、位相が整合されてそれぞれにドハティ組み合わせノード40A、40Bへ供給され、それにより、信号は、効率的に組み合わされ、それぞれの変成器42A、42Bにより段階的に増大または減少させられる。
【0060】
[0071] 増幅の後、ピーキング出力回路網48A、48Bへ供給されるRF入力信号RFINは、キャリア出力回路網38A、38Bへ供給されるRF入力信号RFINよりも約90度遅れている。示されている実施形態では、キャリア出力回路網38A、38Bは、補償済キャリア位相シフトφC−COMPだけ、キャリア経路内のRF入力信号RFINを実効的にシフトする。同様に、ピーキング出力回路網48A、48Bは、ピーキング経路内のRF入力信号RFINを、補償済ピーキング位相シフトφP−COMPだけ実効的にシフトする。キャリア入力回路網34A、34Bおよびピーキング入力回路網44A、44Bは、二次、三次、または更に高次の回路網とすることもできる。
【0061】
[0072] それぞれのキャリア経路とピーキング経路とからの信号がドハティ組み合わせノード40A、40Bで組み合わされると、強化型ドハティ・モジュール52A、52Bのそれぞれから結果として出力される信号は、カプラ56を介して組み合わされてRF出力信号RFOUTが生成される。
【0062】
[0073] ドハティ・モジュール52A、52Bのそれぞれは、強化型ドハティ増幅器30に関して上記で説明したように、2つの領域で動作する。第1領域では、キャリア電力増幅器回路36A、36Bのみがターンオンされ、RF入力信号RFINを増幅するように動作する。第2領域では、キャリア電力増幅器回路36、A36Bとピーキング電力増幅器回路46A、46Bとが動作して、それぞれのキャリア経路とピーキング経路とのRF入力信号RFINを増幅する。2つの領域の間の閾値は、キャリア電力増幅器回路36A、36Bが飽和するキャリア経路内のRF入力信号RFINの大きさに対応する。第1領域では、RF入力信号RFINのレベルは閾値未満である。第2領域では、RF入力信号RFINのレベルは閾値以上である。
【0063】
[0074] 上記から理解できるように、ここで開示した強化型ドハティ増幅器(30、50)は、従来のドハティ増幅器と比べて、性能が大幅に改善されている。更に、強化型ドハティ増幅器(30、50)は設定が可能であるので、相対的に異なる周波数範囲にある複数の通信帯域をサポートすることを可能にする。帯域に関するこれらの改善は、キャリア経路とピーキング経路との間のインピーダンスの追跡を更に良好なものとする能力と、キャリア経路とピーキング経路との増幅器と関連して入力と出力との整合性を改善する能力とに基づいて、なされるものである。更に、大きくバックオフしたパワー・レベルと最大パワー・レベルとの双方での信号の入力および出力の戻りの大きい損失(large signal input and output return losses)を、従来の設計と比べて大幅に改善することができる。
【0064】
[0075] 無数の動作に対する構成が可能であるが、以下に示すのは幾つかの例示的構成であり、この例示的構成を上記の通信帯域の何れかにおいて提供するように強化型ドハティ増幅器(30、50)は構成される。
【0065】
・同じまたは異なる通信標準を用いる2つの異なる通信帯域(即ち、通信帯域が300MHzだけ分離されている場合)のうちの何れかの通信帯域の無線周波数信号を増幅するときに、少なくとも15%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での45%より高い効率、
・無線周波数信号を増幅するときに、少なくとも15%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での40%より高い効率、
・無線周波数信号を増幅するときに、少なくとも20%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での35%より高い効率、
・無線周波数信号を増幅するときに、少なくとも20%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での40%より高い効率、
・無線周波数信号を増幅するときに、少なくとも10%の瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での45%より高い効率、
・無線周波数信号を増幅するときに、少なくとも250MHzの瞬時帯域幅と、6dBのバックオフ・パワーとピーク最大出力パワーとの間での40%より高い効率
【0066】
[0076] 当業者は、ここで開示したものに関する実施形態についての改善および変更について理解するであろう。そのような改善および変更の全ては、ここで開示した概念および特許請求の範囲内にあると考えられる。
図1
図2
図3
図4
図5
図6A
図6B
図7A
図7B
図8