【実施例】
【0027】
図1乃至
図3は本発明の一実施例としての半導体製造工程における研削加工装置を示すもので、
図1はその研削加工装置の平面図、
図2はその研削加工装置の要部を模式的に示した平面図、
図3は
図2中のA−A位置で切断した研削加工装置の概略断面図である。
【0028】
図1及び
図2において、研削加工装置10は、チャックテーブル11と、砥石1
2と、砥石台13と、チルト機構14、センサ15、スラリー供給機構としてのクーラント供給機構17等で構成されている。
【0029】
前記チャックテーブル11は、前記チルト機構14を介して、回転軸線Oを中心として時計まわり方向(
図1中の矢印31の方向)に回転可能に配設されており、チルト機構14は回転軸線Oの傾きをX−Y方向に調整可能に形成されている。そのチャックテーブル11上には、
図1に示すように基板16上にテープ(図示せず)で貼着することによりマウントされた、概略円板状のウエハ(ワーク)Wが、その中心を回転軸線Oに合わせて基板16と共に載置され、そのチャックテーブル11でエアチャックされている。
【0030】
前記砥石12は、円板状に形成されている。その砥石12は、砥石台13に時計回り方向(
図1中の矢印32の方向)に回転可能に支持されている。そして、砥石12は
図1及び
図2に示すように、ウエハWの一部、すなわち片側半円部分Waの範囲(
図2のA−A線位置の上側)を覆った状態で回転軸線Oの片側に、片側半円部分Waと対向して配設されており、また砥石台13と共に上下方向(紙面と直交する方向)に移動可能になっている。
【0031】
前記センサ15は、非接触で検出可能な光学式のセンサであり、アーム状をしたセンサ移動機構18に取り付けられている。そのセンサ移動機構18は、
図1及び
図2に示すように、一端側が装置本体10aの駆動軸19に、その駆動軸19を支点として回転可能に取り付けられており、他端側に前記センサ15を取り付けている。そして、センサ移動機構18は駆動軸19を支点として水平面(装置本体10aの上面)に沿って旋回され、その旋回によりセンサ15が、砥石12に対向する前記ウエハWの半円部分Waと反対側に位置している部分である片側の半円部分Wbの範囲上を、ワーク外周位置P1(
図1中に実線で示す位置)から回転軸線Oに向かって、前記砥石12と干渉しない手前の位置P2(
図1中に点線で示す位置)上まで移動して、そのウエハWの形状をスキャンし、そのスキャンによりウエハWの形状を測定し得るようになっている。
【0032】
前記クーラント供給機構17は、砥石12とウエハWとの間にノズルから研削水(冷却水)を供給ためのものである。なお、クーラント供給機構17は、ウエハWの回転方向(チャックテーブル11の回転方向)において、砥石12の上流側に配設され、砥石12の下流側にセンサ15を配設している。したがって、クーラント供給機構17から供給された研削水のほとんどは砥石12の部分で払拭されるので、例え研削を行っているオンラインの状態でセンサ15が測定を行ったとしても、研削水が下流側のセンサ15の測定に与える影響は少なくなる。
【0033】
図4は、研削加工装置10の駆動を制御する制御系の構成ブロック図である。同図において、研削加工装置10の制御系は、研削加工装置10の全体を予め決められた手順で制御する制御手段としての主制御部21と、前記チャックテーブル11の回転及びチャックの開閉動作を制御するチャックテーブル制御部22と、砥石12の回転を制御する砥石回転駆動制御部23と、センサ移動機構18の旋回動作を制御するセンサ移動機構駆動制御部24と、チルト機構14を制御するチルト機構制御部25などを備えている。
【0034】
主制御部21は、メインの制御部であり、例えばコンピュータである。主制御部21は、研削加工装置10の全体を予め決められた手順で制御する制御系のプログラムを有するメモリ21aと、既存のウエハWの形状データが電子化されてデータパターンとして予め記憶されているマップなどを含む各種のデータを読み書き可能に格納するメモリ21bと、メモリ21a、21b及びセンサ15から入力されるデータを演算処理するCPU(演算処理装置)21cなどで構成されている。
【0035】
また、主制御部21では、センサ15が前記ワーク外周位置P1から砥石12と干渉しない手前の前記位置P2上まで移動してウエハWの形状をスキャンして得られた結果と、既存のウエハWの形状をデータ化して予め記憶しているマップ22b内のデータパターンを参照して、例えば今回スキャンして得られた結果が、既存のウエハWから得られたどのパターンに対応しているかを判定し、ウエハW上における残りの位置P2から中心軸線Oまでの範囲における形状を演算して予測することができるようになっている。そして、主制御部21では、その予測に基づいてチルト機構制御部25を介してチルト機構14を制御し、チャックテーブル11の傾きを調整することができるようになっている。
【0036】
図5は研削加工装置10の動作手順の一例を示す図である。その研削加工装置10の動作を、
図5の(a)〜(f)の順に説明する。
(a) まず、ウエハWが載置される前のチャックテーブル11の形状が測定され、その測定結果が主制御部21のメモリ21bなどに予め格納される。
(b) 次いで、砥石12が上方に、砥石台13と共に移動された状態において、チャックテーブル11上に研削前のウエハWがエアチャックして取り付けられる。また、チャックテーブル11がウエハWと一体に回転するとともに、砥石12が回転しながらウエハWの表面と接触するまで砥石台13と共に下降し、クーラント供給機構17から研削水を供給しながらウエハWの粗研削を行う。ウエハWの粗研削後、クーラント供給機構17による研削水の供給を停止するとともに、砥石12はチャックテーブル11の傾斜、すなわちチルト機構14によるチャックテーブル11のチルト制御の邪魔にならない位置まで、上方に砥石台13と共に移動される。
(c) その後、センサ15によるウエハWの形状の測定が行われる。この形状の測定では、センサ15がセンサ移動機構18と共に駆動軸19を支点として水平に旋回し、
図1及び
図2に示すワーク外周位置P1から砥石12と干渉しない手前の位置P2まで移動してウエハWの形状をスキャンし、そのウエハWの形状を測定する。そして、センサ15の測定の結果がデータとして主制御部21に入力される。
(d) 主制御部21では、センサ15が測定したデータとデータマップ22b内に予め格納されているデータパターンを参照し、どのデータパターンと対応しているかを判定し、ウエハW上における残りの位置P2から中心軸線Oまでの範囲における形状を演算して予測する。
(e) そして、主制御部21では、その予測値に基づいてチルト機構制御部25を介してチルト機構14を制御し、チャックテーブル11の回転軸線Oの傾きを調整する。すなわち、ウエハWと砥石52との相対位置関係を調節する。
(f) 次いで、チャックテーブル51がウエハWと一体に回転し、また砥石52が回転しながらウエハWの表面と接触するまで、砥石台53と共に下降し、クーラント供給機構17から研削水を供給しながらウエハWに対する精研削が行われる。これにより、ウエハWは厚みが均一になるように精研削され、ウエハWの粗研削から精研削までの一連の処理が完了する。この研削手順では、ウエハW間のバラツキを抑え、高精度、かつ、厚みの均一性が得られる。
【0037】
したがって、本実施形態に係る研削加工装置10によれば、ウエハ(ワーク)Wの形状を測定するセンサ15は、ワーク外周位置P1から砥石12と干渉しない回転軸線Oの手前の位置P2まで移動し、残りの回転軸線O手前の位置P2から回転軸線Oまでの形状(
図2中に示す範囲S2内の形状)は、既存のウエハWで予め測定されたデータマップ22b内のデータパターンを参照して予測し、実際のスキャンは行わない。これにより、センサ15は、ウエハWと砥石12との間を横切る形でスキャンして測定を行うことがないので、回転軸線Oの位置までセンサを移動させていた従来装置においては、測定を行う都度、砥石を上方の退避位置に大きく移動させて隙間を作る必要があったが、本実施形態の研削加工装置10ではその必要はない。このため、砥石の上下移動量が少なくなり、また粗研削加工から精研削加工まで、加工をほぼ連続して行うことができるので、研削加工処理時間の短縮を可能にする。さらに、ウエハWの研削を高精度に行うことができると共に厚みが均一なワークが容易に得られ、品質の向上に寄与する。
【0038】
なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。