特許第6543007号(P6543007)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クラレの特許一覧

特許6543007非水電解質電池電極用増粘安定剤、並びに、それを含むバインダー組成物、非水電解質電池電極用スラリー組成物、非水電解質電池電極及び非水電解質電池
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6543007
(24)【登録日】2019年6月21日
(45)【発行日】2019年7月10日
(54)【発明の名称】非水電解質電池電極用増粘安定剤、並びに、それを含むバインダー組成物、非水電解質電池電極用スラリー組成物、非水電解質電池電極及び非水電解質電池
(51)【国際特許分類】
   H01M 4/62 20060101AFI20190628BHJP
【FI】
   H01M4/62 Z
【請求項の数】5
【全頁数】19
(21)【出願番号】特願2018-561369(P2018-561369)
(86)(22)【出願日】2018年1月9日
(86)【国際出願番号】JP2018000205
(87)【国際公開番号】WO2018131572
(87)【国際公開日】20180719
【審査請求日】2019年4月11日
(31)【優先権主張番号】特願2017-5051(P2017-5051)
(32)【優先日】2017年1月16日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2017-94146(P2017-94146)
(32)【優先日】2017年5月10日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000001085
【氏名又は名称】株式会社クラレ
(74)【代理人】
【識別番号】100067828
【弁理士】
【氏名又は名称】小谷 悦司
(74)【代理人】
【識別番号】100115381
【弁理士】
【氏名又は名称】小谷 昌崇
(74)【代理人】
【識別番号】100162765
【弁理士】
【氏名又は名称】宇佐美 綾
(72)【発明者】
【氏名】田中 俊充
(72)【発明者】
【氏名】太田 有紀
(72)【発明者】
【氏名】岩崎 秀治
【審査官】 結城 佐織
(56)【参考文献】
【文献】 国際公開第2016/067843(WO,A1)
【文献】 国際公開第2014/051043(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00−4/62
(57)【特許請求の範囲】
【請求項1】
α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩及びポリアミン類を含有する、非水電解質電池電極用増粘安定剤。
【請求項2】
請求項1に記載の増粘安定剤と粒子状結着剤とを含有する、非水電解質電池電極用バインダー組成物。
【請求項3】
請求項2に記載のバインダー組成物と活物質と水とを含有する、非水電解質電池電極用スラリー組成物。
【請求項4】
請求項2に記載のバインダー組成物と活物質とを含有する混合層を集電体に結着してなる、非水電解質電池電極。
【請求項5】
請求項4に記載の非水電解質電池電極を有する、非水電解質電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解質電池電極用増粘安定剤、並びに、それを含むバインダー組成物、非水電解質電池電極用スラリー組成物、非水電解質電池電極及び非水電解質電池に関する。
【背景技術】
【0002】
近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。
【0003】
リチウムイオン二次電池等の非水電解質電池は、正極と負極とをセパレーターを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。
【0004】
上記負極および正極は、通常、バインダー組成物として結着剤および増粘安定剤を水に溶解、または分散させ、これに活物質や、必要に応じて導電助剤(導電付与剤)などを混合して得られる電極用スラリー(以下、単にスラリーということがある)を集電体に塗布して、水を乾燥することにより、混合層として結着させて形成される。より具体的には、例えば、負極であれば、活物質であるリチウムイオン吸蔵・放出可能な炭素質材料、および、必要に応じて導電助剤のアセチレンブラックなどを、銅などの集電体に二次電池電極用バインダーにより相互に結着させて形成する。一方、正極は、活物質であるLiCoOなど、および、必要に応じて負極と同様の導電助剤を、アルミニウムなどの集電体に二次電池電極用バインダーを用いて相互に結着させて形成する。
【0005】
これまでの技術では、水媒体用の増粘安定剤として、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロポキシセルロース、カルボキシメチルセルロース・ナトリウム塩(CMC−Na)などのセルロース誘導体が提案・使用されている(例えば、特許文献1)。特にこの中でCMC−Naがよく用いられている(例えば、特許文献2)。
【0006】
しかしながら、これらセルロース誘導体は絶縁体であり活物質間の導電性を遮断することや、Liイオン移送性を持たないことから内部抵抗が増大し、電池容量の低下が避けられない(特許文献3)。最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、電池の高容量化(低抵抗化)、寿命(サイクル特性)、充電速度(レート特性)の向上が急務となっているなか、特に障害となっている。
【0007】
抵抗増大に寄与するのは活物質表面に吸着した結着剤および増粘安定剤であることから、低抵抗化には増粘安定剤であるセルロース誘導体の使用量を抑えることが有効である。しかしながら、増粘安定剤の量を少なくすると、スラリー中の活物質分散性が低下し、凝集物が発生する。こうした凝集体は電池容量の低下を促すだけでなく、塗工電極に隆起もしくは欠点を形成することから、電極収率の低下をもたらすだけでなく、電池の短絡原因であるLiデンドライトが析出し、安全性を著しく損なうおそれもある。また、集電極と電極材および電極内の活物質間の結着性が低下することで、電極として脆く電極収率が低下することに加え、長時間の使用に対する耐久性(電池寿命)が著しく低下するおそれもある。こうしたことから、これまで集電極と電極材の結着性を保持したまま低抵抗化を図ることは困難であった。
【0008】
本発明は上記課題事情に鑑みてなされたものであり、増粘安定剤としての機能、すなわち、活物質分散性を損なうことなく、集電極との結着性の向上及び非水電解質電池における電池の内部抵抗の低減を図ることを目的とする。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2008−288214号公報
【特許文献2】特開2011−192610号公報
【特許文献3】特開2013−257978号公報
【発明の概要】
【0010】
本発明者らは、上記課題を解決すべく鋭意研究した結果、下記構成の非水電解質電池用増粘安定剤を使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。
【0011】
本発明の一局面に係る増粘安定剤は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩およびポリアミン類を含有することを特徴とする。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0013】
本実施形態において、非水電解質電池用「増粘安定剤」とは、特に限定されるものではないが、水に溶解または分散して機能を発現するものであり、塗工に適したスラリー粘度域に調整する粘度調整剤としての機能と、溶媒中に活物質を均質分散させる分散剤としての機能とを有するものをいう。
【0014】
本実施形態の非水電解質電池用増粘安定剤は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩およびポリアミン類を含有することを特徴とする。
【0015】
このような構成の非水電解質電池電極用増粘安定剤を用いることによって、電極用スラリー中における活物質分散性を損なうことなく、結着性と低抵抗性を備えた非水電解質電池用バインダー組成物を得ることができる。さらにそれを用いて、非水電解質電池の内部抵抗低減を実現することができる。
【0016】
本実施形態において、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体は、α−オレフィンに基づく単位(A)とマレイン酸類に基づく単位(B)とからなり、(A)および(B)の各成分は(A)/(B)=1/1〜1/3(モル比)を満足することが好ましい。また、平均分子量が10,000〜500,000である線状ランダム共重合体であることが好ましい。
【0017】
本実施形態において、α−オレフィン類に基づく単位(A)とは一般式−CHCR−(式中、RおよびRは同じであっても互いに異なっていてもよく、水素、炭素数1〜10のアルキル基、アルケニルまたはアリール基、エーテル基、シリル基を表わす)で示される構成を意味する。また本実施形態で使用するα−オレフィンとは、α位に炭素−炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。特に、炭素数2〜12とりわけ2〜8のオレフィンが好ましい。使用し得る代表的な例としては、エチレン、プロピレン、n−ブチレン、イソブチレン、n−ペンテン、イソプレン、2−メチル−1−ブテン、3−メチル−1−ブテン、n−ヘキセン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、2−エチル−1−ブテン、1,3−ペンタジエン、1,3−ヘキサジエン、2,3−ジメチルブタジエン、2,5−ペンタジエン、1,4−ヘキサジエン、2,2,4−トリメチル−1−ペンテン、スチレン、αメチルスチレン、パラメチルスチレン、メチルビニルエーテル、エチルビニルエーテル等が挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、イソブチレン、エチレン、メチルビニルエーテルが好ましい。ここでイソブチレンとは、イソブチレンを主成分として含む混合物、例えば、BB留分(C4留分)をも包含する。これ等のオレフィン類は単独で用いても2種以上組合せて用いても良い。
【0018】
本実施形態において、マレイン酸類に基づく単位(B)としては、無水マレイン酸、マレイン酸、マレイン酸モノエステル(例えば、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸フェニル等)、マレイン酸ジエステル(例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジフェニル等)等の無水マレイン酸誘導体、マレイン酸イミドまたはそのN−置換誘導体(例えば、マレイン酸イミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−n−ブチルマレイミド、N−t−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−置換アルキルマレイミドN−フェニルマレイミド、N−メチルフェニルマレイミド、N−エチルフェニルマレイミド等のN−置換アルキルフェニルマレイミド、あるいはN−メトキシフェニルマレイミド、N−エトキシフェニルマレイミド等のN−置換アルコキシフェニルマレイミド)、更にはこれ等のハロゲン化物(例えばN−クロルフェニルマレイミド)、無水シトラコン酸、シトラコン酸、シトラコン酸モノエステル(例えば、シトラコン酸メチル、シトラコン酸エチル、シトラコン酸プロピル、シトラコン酸フェニル等)、シトラコン酸ジエステル(例えば、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、シトラコン酸ジフェニル等)等の無水シトラコン酸誘導体、シトラコン酸イミドまたはそのN−置換誘導体(例えば、シトラコン酸イミド、2−メチル−N−メチルマレイミド、2−メチル−N−エチルマレイミド、2−メチル−N−プロピルマレイミド、2−メチル−N−n−ブチルマレイミド、2−メチル−N−t−ブチルマレイミド、2−メチル−N−シクロヘキシルマレイミド等のN−置換アルキルマレイミド2−メチル−N−フェニルマレイミド、2−メチル−N−メチルフェニルマレイミド、2−メチル−N−エチルフェニルマレイミド等の2−メチル−N−置換アルキルフェニルマレイミド、あるいは2−メチル−N−メトキシフェニルマレイミド、2−メチル−N−エトキシフェニルマレイミド等の2−メチル−N−置換アルコキシフェニルマレイミド)、更にはこれ等のハロゲン化物(例えば2−メチル−N−クロルフェニルマレイミド)が好ましく挙げられる。これらの中では、入手性、重合速度、分子量調整の容易さという観点から、無水マレイン酸の使用が好ましい。また、これらのマレイン酸類は単独で使用しても、複数を混合して使用してもよい。マレイン酸類は、上述のように、アルカリ塩により中和され、生成したカルボン酸およびカルボン酸塩は、1,2−ジカルボン酸または塩の形を形成する。この形は、正極より溶出する重金属を補足する機能を有する。
【0019】
本実施形態の共重合体における上記各構造単位の含有割合は、(A)/(B)がモル比で1/1〜1/3の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。特に、(A)/(B)のモル比にあっては1/1またはそれに近い値であることが望ましく、その場合にはα−オレフィンに基づく単位、すなわち−CHCR−で示される単位と、マレイン酸類に基づく単位が交互に繰り返された構造を有する共重合体となる。
【0020】
本実施形態の共重合体を得るための、α−オレフィン類及びマレイン酸類の仕込み混合比は目的とする共重合体の組成により変わるが、マレイン酸類モル数の1〜3倍モル数のα−オレフィンを用いるのがマレイン酸類の反応率を高めるために有効である。
【0021】
本実施形態の共重合体を製造する方法については、特に限定はなく、例えば、ラジカル重合により共重合体を得ることができる。その際、使用する重合触媒としてはアゾビスイソブチロニトリル、1,1−アゾビスシクロヘキサン−1−カルボニトリル等のアゾ触媒、ベンンゾイルパーオキサイド、ジクミルパ−オキサイド等の有機過酸化物触媒が好ましい。前記重合触媒の使用量は、マレイン酸類に対し0.1〜5モル%となる範囲を必要とするが、好ましくは0.5〜3モル%である。重合触媒およびモノマーの添加方法として重合初期にまとめて添加しても良いが、重合の進行にあわせて遂次添加する方法が望ましい。
【0022】
本実施形態の共重合体の製造方法において、分子量の調節は主にモノマー濃度、触媒使用量、重合温度によって適宜行なうことができる。例えば、分子量を低下させる物質として周期律表第I、IIまたはIII族の金属の塩、水酸化物、第IV族の金属のハロゲン化物、一般式N≡、HN=、HN−もしくはHN−で示されるアミン類、酢酸アンモニウム、尿素等の窒素化合物、あるいはメルカプタン類等を、重合の初期または重合の進行中に添加することによって共重体の分子量を調節することも可能である。重合温度は40℃〜150℃であることが好ましく、特に60℃〜120℃の範囲であることがより好ましい。重合温度が高すぎると生成する共重合物がブロック状になり易く、また重合圧力が著しく高くなるおそれがある。重合時間は、通常1〜24時間程度であることが好ましく、より好ましくは2〜10時間である。重合溶媒の使用量は、得られる共重合物濃度が5〜40重量%あることが好ましく、より好ましくは10〜30重量%となる様に調節することが望ましい。
【0023】
上述したように、本実施形態の共重合体は、通常、10,000〜500,000の平均分子量を有することが好ましい。より好ましい平均分子量は、15,000〜450,000である。本実施形態の共重合体の平均分子量が10,000未満となると、結晶性が高く、粒子間の接着強度が小さくなるおそれがある。一方、500,000を超えると、水や溶媒への溶解度が小さくなり、容易に析出する場合がある。
【0024】
本実施形態の共重合体の平均分子量は、例えば、光散乱法や粘度法によって測定することができる。粘度法を用いて、ジメチルホルムアミド中の極限粘度(〔η〕)を測定した場合、本実施形態の共重合体は極限粘度が0.05〜2の範囲にあることが好ましい。なお、本実施形態の共重合体は通常16〜60メッシュ程度の粒のそろった粉末状で得られる。
【0025】
本実施形態において、共重合体の中和塩とは、マレイン酸類から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和物となっているものであることが好ましい。本実施形態で使用するα−オレフィン−マレイン酸類共重合体の中和物においては、結着性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。
【0026】
中和度としては特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、通常、マレイン酸類から生成するカルボン酸1モルに対し、0.3〜1モルの範囲にあることが好ましく、より好ましくは、0.4〜1モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、本実施形態のバインダー組成物のpHを所定の範囲に調整することが可能となり、さらに酸性度が低く電解液分解抑制という利点がある。
【0027】
本実施形態において、中和度は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬を使用することが出来る。
【0028】
本実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、マレイン酸類共重合体中のマレイン酸単位1モル当り0.1〜2モルとなる量であることが好ましい。このような使用量であれば、本実施形態のバインダー組成物のpHを所定の範囲に調整することが可能となると考えられる。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位1モル当り0.6〜2.0モル、より好ましくは0.7〜2.0モルとなる量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。
【0029】
α−オレフィン−マレイン酸類共重合体と、一価の金属を含む塩基性物質および/またはアンモニア等のアミン類との反応は、常法に従って実施できるが、水の存在下に実施し、α−オレフィン−マレイン酸類共重合体の中和物を水溶液として得る方法が簡便であり、好ましい。
【0030】
本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。アンモニア等のアミン類としては、アンモニア、メチルアミン、エチルアミン、ブチルアミン、オクチルアミンなどの1級アミン、ジメチルアミン、ジエチルアミン、ジブチルアミンなどの2級アミン、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの3級アミン、エチレンジアミン、ブチレンジアミン、ジエチレンイミン、トリエチレンイミン、ポリエチレンイミンなどのポリアミン等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、リチウムイオン二次電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、α−オレフィン−マレイン酸類共重合体の中和物を調製してもよい。
【0031】
次に、本実施形態において、共重合体の開環率とは、マレイン酸類として無水マレイン酸を用いた場合の、α−オレフィン類と重合する無水マレイン酸類部位の加水分解率を表す。本実施形態の共重合体において、好ましい開環率は、60〜100%であり、より好ましくは、70%〜100%、更に好ましくは、80〜100%である。開環率が低すぎると、共重合体の構造的自由度が小さくなり、伸縮性に乏しくなるため、接着する極材粒子を接着する力が小さくなるおそれがあり、好ましくない。さらに、水に対する親和性が低く、溶解性が乏しいという問題点を生じるおそれがある。開環率は、例えば、無水マレイン酸のα位に位置する水素を基準として、開環したマレイン酸のα位の水素を1H−NMRで測定して比率を求めることも出来るし、マレイン酸のカルボニル基と開環した無水マレイン酸に由来するカルボニル基をIR測定によって比率を決定することも出来る。
【0032】
また、本実施形態において、マレイン酸類が無水マレイン酸である場合、共重合体の中和塩とは、無水マレイン酸の開環で生成したカルボニル酸の活性水素が、上述したような塩基性物質と反応し、塩を形成して中和物となっているものである。この場合の中和度としては、特に限定されるものではないが、増粘安定剤として使用する場合に、電解液との反応性を考慮して、通常、開環により生成するカルボニル酸1モルに対し、0.5〜1モルの範囲であることが好ましく、より好ましくは、0.6〜1モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。なお、無水マレイン酸を用いた場合の共重合体の中和度は、上述した方法と同様の方法により測定することができる。
【0033】
上述の共重合体の中和塩に加えて、本実施形態の増粘安定剤はポリアミン類を含有し、架橋構造を形成する。架橋化することにより、結着性を付与することができる。
【0034】
本実施形態で使用されるポリアミン類としては、電気化学的に安定であれば限りはないが、分子量300未満の低分子量体または/および分子量300以上の高分子量体が挙げられる。
【0035】
ポリアミン類低分子量体の具体例としては、脂肪族ポリアミン類、芳香族ポリアミン類、および複素環族ポリアミン類が挙げられる。好ましい具体例として、例えば、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、グアニジン等の脂肪族ポリアミン類;フェニレンジアミン等の芳香族ポリアミン類;ピペラジン、N−アミノエチルピペラジン等の複素環族ポリアミン類等が挙げられる。
【0036】
ポリアミン類高分子量体の具体例としてはアミノ基含有ポリマーが挙げられ、その好ましい具体例として、例えば、ポリエチレンイミン、ポリテトラメチレンイミン、ポリビニルアミン、ポリアリルアミン、ジシアンジアミド−ホルマリン縮合物、ジシアンジアミド−アルキレン(ポリアミン)縮合物等が挙げられる。これらは単独で使用しても、複数を使用しても構わない。入手性、経済性を考慮すると、ポリエチレンイミンの使用が好ましい。
【0037】
これらのポリアミン類の分子量は特に限定されるものではなく、平均分子量として50〜200,000の範囲、より好ましくは、100〜180,000の範囲、最も好ましくは200〜100,000の範囲である。
【0038】
また、本実施形態の増粘安定剤中におけるポリアミン類の添加量としては、特に限定されるものではないが、通常、α−オレフィン−マレイン酸類共重合体(固形分)100重量部に対して、0.01重量部から10重量部、より好ましくは、0.02重量部〜6重量部の範囲である。多すぎる添加量は、α−オレフィン−マレイン酸類共重合体との錯塩を形成し、多架橋による強度のゲル化が進行し、水を激しく拘束、乾燥し難くなるため好ましくない。一方、少なすぎる添加量は、十分な結着性を付与できないため好ましくない。
【0039】
本実施形態において、ポリアミン類は、α−オレフィン−マレイン酸類共重合体と一価の金属を含む塩基性物質を反応させると同時に添加することもできるし、α−オレフィン−マレイン酸類共重合体と一価の金属を含む塩基性物質を反応させた後に添加することもできる。通常、架橋反応を促進する温度は特に限定されるものではないが、20℃以上、好ましくは30℃以上で加熱することにより架橋反応が速やかに進行する。架橋反応収束に必要な時間は、温度に依存するため、限定されるものではないが、通常0.1時間から2カ月程度で架橋反応が収束する。
【0040】
本実施形態の増粘安定剤の粘度は、100〜30000cPの範囲、より好ましくは1000〜10000cPの範囲である。100cP以下の粘度ではスラリー粘度の大幅な低下により塗工性が大幅に悪化する。また30000cP以上の粘度では、スラリー調液時において活物質または導電助剤のへの濡れ性が悪く、スラリー中での活物質または導電助剤分散性が大幅に低下する。
【0041】

次に、本実施形態の非水電解質電池電極用バインダー組成物について説明する。前記バインダー組成物は、通常、上述した本実施形態の増粘安定剤及び粒子状結着剤を含む。
【0042】

本実施形態で使用できる粒子状結着剤は、粒子状であり、かつ、後述する活物質及び/又は集電体に対し相互に結着性を有するものであれば特に制限はない。好適な粒子状結着剤としては、分散媒への分散性に優れる分散型結着剤が挙げられる。具体的な分散型結着剤として、例えば、フッ素系重合体、ジエン系重合体、ビニル芳香族・共役ジエンランダムまたはブロック共重合体、アクリル系重合体、ポリイミド、ポリアミド、ポリウレタン系重合体等の高分子化合物が挙げられる。
【0043】

ジエン系重合体は、共役ジエンの単独重合体もしくはビニル芳香族、共役ジエンを含む単量体混合物を重合して得られるランダムまたはブロック共重合体、またはそれらの水素添加物である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
【0044】

アクリル系重合体は、アクリル酸エステルもしくはメタクリル酸エステルの単独重合体またはこれらと共重合可能な単量体との共重合体である。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素−炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N−メチロールアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β−不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート等のヒドロキシアルキル基含有化合物等が挙げられる。
【0045】

これらのなかでも、アクリル系重合体、SBR、NBR、水素添加SBRを用いることが好ましく、アクリル系重合体、SBR、水素添加SBRを用いることがより好ましい。
【0046】

なお、本実施形態の結着剤において、「粒子状」とは、主に上述の重合体を構成する単量体を乳化重合して得られるポリマー微粒子、または、重合後に乳化、エマルション化したポリマー微粒子を指す。乳化重合法としては特に限定は無く、従来公知の乳化重合法を採用すればよい。粒子状結着剤の粒子径は0.01〜0.5μmが好ましく、0.01〜0.3μmが更に好ましい。粒子径が0.01μm以下であると、スラリー粘度増加が著しく塗工性の悪化を招く。また、粒子径が0.5μm以上であると、電極内でのバインダー分散性が低下し、接着性が低下する。
【0047】

また、本実施形態の結着剤において、上述のポリマー微粒子を安定化させるために、保護コロイドを添加しても良い。本発明において用いる保護コロイドとは、疎水コロイドを電解質に対して安定化する目的で加えられる親水コロイドをいう。この安定化作用は親水コロイド粒子が疎水コロイド粒子を包んで全体として親水コロイドの性質が表れる為と考えられる。保護コロイドとして、例えばポリビニルアルコール、変性ポリビニルアルコール;メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロースなどの水溶性セルロース誘導体;(メタ)アクリル酸エステル−不飽和カルボン酸系共重合体の水溶性塩;スチレン−無水マレイン酸共重合体塩、マレイン化ポリブタジエン塩、ナフタレンスルホン酸塩、ポリアクリル酸塩などが挙げられる。これらの保護コロイドは1種、または2種以上を用いることもできる。これらの中でも、本発明においては、保護コロイドとして、(メタ)アクリル酸エステル−不飽和カルボン酸系共重合体の水溶性塩及び/又はポリビニルアルコールを用いるのが好ましく、(メタ)アクリル酸エステル−不飽和カルボン酸系共重合体の水溶性塩を用いることが極めて好ましい。
【0048】

また、本実施形態の非水電解質電池用バインダー組成物は、通常、上述のバインダー組成物に加えて、さらに活物質と水とを含有する、非水電解質電池電極用スラリー組成物(以下、単にスラリー組成物とも称する)として使用されることが好ましい。すなわち、本実施形態のスラリー組成物は、上述した本実施形態の増粘安定剤及び粒子状結着剤と、活物質と水と、必要に応じ、ポリマー微粒子を安定化させる保護コロイドとを含有する。
【0049】

また、本実施形態において非水電解質電池電極は、集電体に、少なくとも本実施形態のバインダー組成物および活物質を含む混合層を結着させてなることを特徴とする。この電極は、上述のスラリー組成物を集電体に塗布してから溶媒を乾燥などの方法で除去することにより形成することができる。前記混合層には、必要に応じてさらに導電助剤などを加えることができる。
【0050】

前記非水電解質電池用スラリー組成物において、活物質100重量部に対する、増粘安定剤の使用量は、通常、0.1〜4重量部であることが好ましく、より好ましくは0.3〜3重量部、さらに好ましくは0.5〜2重量部である。増粘安定剤の量が過度に少ないとスラリーの粘度が低すぎて混合層の厚みが薄くなるおそれがあり、逆に、増粘安定剤が過度に多いと放電容量が低下する可能性がある。
【0051】

また、上記スラリー組成物における粒子状結着剤の量は、活物質100重量部に対し、通常、0.1〜4重量部であることが好ましく、より好ましくは0.1〜2重量部である。粒子状結着剤の量が過度に多いと電池の内部抵抗の増大の恐れがあり、逆に過度に少ないと結着性の著しい低下を促す。
【0052】

本実施形態の負極用スラリー組成物における溶媒としては、上記水以外に、例えば、メタノール、エタノール、プロパノール、2−プロパノールなどのアルコール類、テトラヒドロフラン、1,4−ジオキサンなどの環状エーテル類、N,N−ジメチルホルミアミド、N,N−ジメチルアセトアミドなどのアミド類、N−メチルピロリドン、N−エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などを使用することもできる。これらの中では、安全性という観点から、水の使用が好ましい。
【0053】

また、本実施形態の負極用スラリー組成物の溶媒として水以外にも、次に記す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n−ドデカンなどの炭化水素類;2−エチル−1−ヘキサノール、1−ノナノールなどのアルコール類;γ−ブチロラクトン、乳酸メチルなどのエステル類;N−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。
【0054】

本実施形態のスラリー組成物を負極用に用いる場合、該負極用スラリー組成物に添加される負極活物質(活物質と略記する場合がある)としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiOx,SnOx,LiTiOxで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。
【0055】

本実施形態では、前記スラリー組成物に、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、特に、ポリビニルアルコールおよびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。
【0056】

スラリー組成物に必要に応じて配合される増粘剤の使用量は、負極活物質100部に対し0.1〜4重量部程度であることが好ましく、より好ましくは0.3〜3重量部、さらに好ましくは0.5〜2重量部である。増粘剤が過度に少ないと二次電池負極用スラリーの粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。
【0057】

また、スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、負極活物質100重量部に対し、通常、0.5〜10重量部であることが好ましく、より好ましくは1〜7重量部である。
【0058】

本実施形態の非水電解質電池電極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、負極の場合、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0059】

特に、負極として銅を用いた場合に、本発明の非水電解質電池電極用スラリーの効果が最もよく現れる。集電体の形状は特に制限されないが、通常、厚さ0.001〜0.5mm程度のシート状であることが好ましい。
【0060】

スラリーを集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005〜5mm、より好ましくは0.01〜2mmとなる量が一般的である。
【0061】

スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。
【0062】

さらに、本発明には、上記負極を有する非水電解質電池も包含される。非水電解質電池には、本実施形態の電極を負極すると場合、通常、当該負極と、正極と、電解液が含まれる。
【0063】

本実施形態では、正極は、リチウムイオン二次電池等の非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記負極と同様の導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。
【0064】

また、本実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常のリチウムイオン二次電池等の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。
【0065】

このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ−ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3−メチル−2−オキサゾリジノンなどのオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。
【0066】

本実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレーターを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。
【0067】

本実施形態の非水電解質電池は、接着性と電池特性の向上を両立させた電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。
【0068】
本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
【0069】
本発明の一局面に係る増粘安定剤は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩およびポリアミン類を含有することを特徴とする。
【0070】
このような構成により、電極用スラリー中における活物質分散性を損なうことなく、集電極との結着性向上及び非水電解質電池における内部抵抗低減を図ることができる。
【0071】
また、本発明の他の局面に係る非水電解質電池電極用バインダー水溶液は、上記増粘安定剤と粒子状結着剤とを含有することを特徴とする。
【0072】
また、本発明のさらに他の局面に係る非水電解質電池電極用スラリー組成物は、上記非水電解質電池電極用バインダー組成物、活物質及び溶媒を含むことを特徴とする。
【0073】
本発明のさらに他の局面に係る非水電解質電池電極は、集電体に、上記非水電解質電池電極用バインダー組成物と、活物質とを少なくとも含有する混合層を結着してなることを特徴とする。
【0074】
また、本発明のさらに他の局面に係る非水電解質電池は、上記非水電解質電池電極を備えることを特徴とする。
【実施例】
【0075】
以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
【0076】
(実施例1)
<負極用増粘安定剤>
負極用増粘安定剤として、リチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)10重量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10,000)10重量%水溶液とを99:1(固形分として樹脂:PEI=6.387:0.065)の重量比となるように混合した。得られた混合物を90℃に加温し、2時間加熱攪拌した。その後得られた混合液を固形分濃度5.5重量%になるように水を加え、ミキサーミルを用いて、回転数3,600rpmにて2時間均質攪拌し、増粘安定剤を得た。
【0077】
<負極用スラリーの作製>
電極用スラリー作製は負極用活物質としてDMGS(天然黒鉛、BYD製)100重量部に対して、粒子状結着剤としてTRD2001(SBR、JSR製)を固形分として2.08重量部、上述の増粘安定剤を固形分として1.04重量部、さらに、導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.04重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=100:1.04:3.12である。
【0078】
<電池用負極の作製>
得られたスラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
【0079】
<電極の靱性試験>
電極の靭性の評価はJIS K5600−5−1(塗料一般試験方法−第5部:塗膜の機械的性質−第1節:耐屈曲性(円筒形マンドレル法))のタイプ1の試験装置を用いて行った。電極割れの確認は目視で行い、割れが生じなかった最小のマンドレル径の結果を下記表1に示す。なお、靱性は、マンドレル径が小さいほど高く、5mm以下であると電極として使用するのに好ましい。
【0080】
<電極の剥離強度測定>
集電極である銅箔から電極を剥離したときの強度を測定した。当該剥離強度は、50Nのロードセル(株式会社イマダ製)を用いて180°剥離強度を測定した。上記で得られた電池用塗工電極のスラリー塗布面とステンレス板とを両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、180°剥離強度(剥離幅10mm、剥離速度100mm/min)を測定した。上記結果を下記表1に示す。
【0081】
<電池の作製>
上記で得られた電池用塗工電極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレーターとしてポリプロフィレン系(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M−LiPF、EC/EMC=3/7vol%、VC2重量%)を用いて注入し、コイン電池(2032タイプ)を作製した。
【0082】
<評価方法:充放電特性試験>
作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで活物質量に対して0.1C(約0.5mA/cm)の定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.1C(約0.5mA/cm)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表1に示す。
【0083】
(実施例2)
負極用活物質としてDMGS(天然黒鉛、BYD製)100重量部に対して、粒子状結着剤としてTRD2001(SBR、JSR製)を固形分として2.08重量部、実施例1と同じ増粘安定剤を固形分として1.56重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.04重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。その後、上記実施例1と同様の方法によって塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0084】
(実施例3)
負極用活物質としてDMGS(天然黒鉛、BYD製)100重量部に対して、粒子状結着剤としてTRD2001(SBR、JSR製)を固形分として2.08重量部、実施例1の増粘安定剤を固形分として2.08重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.04重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。その後、上記実施例1と同様の方法によって塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0085】
(実施例4)
負極用増粘安定剤として、リチウム変性メチルビニルエーテル−無水マレイン酸共重合樹脂(平均分子量630,000、中和度0.5、開環率98%)10重量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10,000)10重量%水溶液とを99:1(固形分として樹脂:PEI=6.387:0.065)の重量比となるように混合した。得られた混合物を90℃に加温し、2時間加熱攪拌した。その後、得られた混合液を固形分濃度5.5重量%になるように水を加え、ミキサーミルを用いて、回転数3,600rpmにて2時間均質攪拌した。その後、上記実施例1と同様の方法によってスラリー及び塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0086】
(実施例5)
負極用増粘安定剤として、リチウム変性エチレン−無水マレイン酸共重合樹脂(平均分子量100,000、中和度0.5、開環率99%)10重量%水溶液とポリエチレンイミン(PEI、和光純薬工業株式会社製、平均分子量10,000)10重量%水溶液とを99:1(固形分として樹脂:PEI=6.387:0.065)の重量比となるように混合した。得られた混合物を90℃に加温し、2時間加熱攪拌した。その後得られた混合液を固形分濃度5.5重量%になるように水を加え、ミキサーミルを用いて、回転数3,600rpmにて2時間均質攪拌した。その後、上記実施例1と同様の方法によってスラリー・塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0087】
(実施例6)
<粒子状結着剤>
1L容量のホモミキサー付き攪拌槽にポリビニルアルコール(商品名、株式会社クラレ製、ポバール405(重合度500、ケン化度81.5%))15g、トルエン300gに溶解させた水添ブロック共重合体(セプトン2002(商品名、株式会社クラレ製、スチレン−イソプレン−スチレントリブロック共重合体の水素添加物、スチレン含量 30%)150g、水500gを順次加え、室温にて回転数15,000rpmで10分間攪拌し、さらに加圧式ホモジナイザーに移して、乳化を行った。得られた分散溶液を、ロータリーエバポレーターを用い、減圧−加温(60℃)下にて、トルエン及び水を留去して、平均粒子径0.3μmの水性エマルジョンを得た。
【0088】
<負極用スラリーの作製>
電極用スラリー作製は負極用活物質としてDMGS(天然黒鉛、BYD製)100重量部に対して、上述の粒子状結着剤を固形分として2.08重量部、実施例1と同じ増粘安定剤を固形分として1.04重量部、さらに、導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.04重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。その後、上記実施例1と同様の方法によって塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0089】
(比較例1)
負極用増粘安定剤として、リチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)10重量%水溶液を用い、上記実施例1と同様の方法によってスラリー・塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0090】
(比較例2)
負極用活物質としてDMGS(天然黒鉛、BYD製)100重量部に対して、粒子状結着剤としてTRD2001(SBR、JSR製)を固形分として2.08重量部、増粘安定剤としてカルボキシメチルセルロースを固形分として1.08重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.04重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。その後、上記実施例1と同様の方法によって塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0091】
(比較例3)
負極用活物質としてDMGS(天然黒鉛、BYD製)100重量部に対して、粒子状結着剤としてTRD2001(SBR、JSR製)を固形分として2.08重量部、増粘安定剤としてヒドロキシエチルセルロースを固形分として1.08重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.04重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練した。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。その後、上記実施例1と同様の方法によって塗工電極を作製し、靱性試験及び剥離強度測定を行った。さらに、該電極を用いたコイン電池を得て、充放電特性試験を行った。これらの評価結果を表1に示す。
【0092】
【表1】
【0093】
(考察)
実施例1〜6及び比較例1はセルロース誘導体を用いた比較例2〜3に比べ、低抵抗であった。これは、実施例1〜6及び比較例1が、構造中にジカルボン酸ユニットを有することから、カルボン酸基を介したLiイオンのホッピングが生じLiイオン伝導性を発現しているものと考えている。また、結着性については、実施例1〜6が比較例1〜3に比べ高接着であった。これは、ポリアミンによる架橋が成されていること、またセルロース誘導体に比べポリマー単独での結着性に優れていることに起因すると考えられる。以上より、本発明の増粘安定剤を用いることにより、優れた結着性および抵抗低減を実現できることが示された。
【0094】
この出願は、2017年1月16日に出願された日本国特許出願特願2017−005051及び2017年5月10日に出願された特願2017−094146を基礎とするものであり、その内容は、本願に含まれるものである。
【0095】
本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
【産業上の利用可能性】
【0096】
本発明は、リチウムイオン二次電池等の非水電解質電池に関する技術分野において、広範な産業上の利用可能性を有する。